1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | #include "btHingeConstraint.h" |
---|
18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
19 | #include "LinearMath/btTransformUtil.h" |
---|
20 | #include "LinearMath/btMinMax.h" |
---|
21 | #include <new> |
---|
22 | #include "btSolverBody.h" |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | //#define HINGE_USE_OBSOLETE_SOLVER false |
---|
27 | #define HINGE_USE_OBSOLETE_SOLVER false |
---|
28 | |
---|
29 | #define HINGE_USE_FRAME_OFFSET true |
---|
30 | |
---|
31 | #ifndef __SPU__ |
---|
32 | |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, |
---|
38 | const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA) |
---|
39 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), |
---|
40 | m_angularOnly(false), |
---|
41 | m_enableAngularMotor(false), |
---|
42 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
43 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), |
---|
44 | m_useReferenceFrameA(useReferenceFrameA), |
---|
45 | m_flags(0) |
---|
46 | { |
---|
47 | m_rbAFrame.getOrigin() = pivotInA; |
---|
48 | |
---|
49 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
50 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); |
---|
51 | |
---|
52 | btVector3 rbAxisA2; |
---|
53 | btScalar projection = axisInA.dot(rbAxisA1); |
---|
54 | if (projection >= 1.0f - SIMD_EPSILON) { |
---|
55 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
56 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
57 | } else if (projection <= -1.0f + SIMD_EPSILON) { |
---|
58 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
59 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
60 | } else { |
---|
61 | rbAxisA2 = axisInA.cross(rbAxisA1); |
---|
62 | rbAxisA1 = rbAxisA2.cross(axisInA); |
---|
63 | } |
---|
64 | |
---|
65 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
66 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
67 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
68 | |
---|
69 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
70 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
71 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
72 | |
---|
73 | m_rbBFrame.getOrigin() = pivotInB; |
---|
74 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
75 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
76 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
77 | |
---|
78 | //start with free |
---|
79 | m_lowerLimit = btScalar(1.0f); |
---|
80 | m_upperLimit = btScalar(-1.0f); |
---|
81 | m_biasFactor = 0.3f; |
---|
82 | m_relaxationFactor = 1.0f; |
---|
83 | m_limitSoftness = 0.9f; |
---|
84 | m_solveLimit = false; |
---|
85 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
86 | } |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA) |
---|
91 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), |
---|
92 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
93 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), |
---|
94 | m_useReferenceFrameA(useReferenceFrameA), |
---|
95 | m_flags(0) |
---|
96 | { |
---|
97 | |
---|
98 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
99 | // fixed axis in worldspace |
---|
100 | btVector3 rbAxisA1, rbAxisA2; |
---|
101 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); |
---|
102 | |
---|
103 | m_rbAFrame.getOrigin() = pivotInA; |
---|
104 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
105 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
106 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
107 | |
---|
108 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA; |
---|
109 | |
---|
110 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
111 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
112 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
113 | |
---|
114 | |
---|
115 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); |
---|
116 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
117 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
118 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
119 | |
---|
120 | //start with free |
---|
121 | m_lowerLimit = btScalar(1.0f); |
---|
122 | m_upperLimit = btScalar(-1.0f); |
---|
123 | m_biasFactor = 0.3f; |
---|
124 | m_relaxationFactor = 1.0f; |
---|
125 | m_limitSoftness = 0.9f; |
---|
126 | m_solveLimit = false; |
---|
127 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
128 | } |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, |
---|
133 | const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA) |
---|
134 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
---|
135 | m_angularOnly(false), |
---|
136 | m_enableAngularMotor(false), |
---|
137 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
138 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), |
---|
139 | m_useReferenceFrameA(useReferenceFrameA), |
---|
140 | m_flags(0) |
---|
141 | { |
---|
142 | //start with free |
---|
143 | m_lowerLimit = btScalar(1.0f); |
---|
144 | m_upperLimit = btScalar(-1.0f); |
---|
145 | m_biasFactor = 0.3f; |
---|
146 | m_relaxationFactor = 1.0f; |
---|
147 | m_limitSoftness = 0.9f; |
---|
148 | m_solveLimit = false; |
---|
149 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
150 | } |
---|
151 | |
---|
152 | |
---|
153 | |
---|
154 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA) |
---|
155 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), |
---|
156 | m_angularOnly(false), |
---|
157 | m_enableAngularMotor(false), |
---|
158 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
159 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), |
---|
160 | m_useReferenceFrameA(useReferenceFrameA), |
---|
161 | m_flags(0) |
---|
162 | { |
---|
163 | ///not providing rigidbody B means implicitly using worldspace for body B |
---|
164 | |
---|
165 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); |
---|
166 | |
---|
167 | //start with free |
---|
168 | m_lowerLimit = btScalar(1.0f); |
---|
169 | m_upperLimit = btScalar(-1.0f); |
---|
170 | m_biasFactor = 0.3f; |
---|
171 | m_relaxationFactor = 1.0f; |
---|
172 | m_limitSoftness = 0.9f; |
---|
173 | m_solveLimit = false; |
---|
174 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
175 | } |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | void btHingeConstraint::buildJacobian() |
---|
180 | { |
---|
181 | if (m_useSolveConstraintObsolete) |
---|
182 | { |
---|
183 | m_appliedImpulse = btScalar(0.); |
---|
184 | m_accMotorImpulse = btScalar(0.); |
---|
185 | |
---|
186 | if (!m_angularOnly) |
---|
187 | { |
---|
188 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
189 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
190 | btVector3 relPos = pivotBInW - pivotAInW; |
---|
191 | |
---|
192 | btVector3 normal[3]; |
---|
193 | if (relPos.length2() > SIMD_EPSILON) |
---|
194 | { |
---|
195 | normal[0] = relPos.normalized(); |
---|
196 | } |
---|
197 | else |
---|
198 | { |
---|
199 | normal[0].setValue(btScalar(1.0),0,0); |
---|
200 | } |
---|
201 | |
---|
202 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
---|
203 | |
---|
204 | for (int i=0;i<3;i++) |
---|
205 | { |
---|
206 | new (&m_jac[i]) btJacobianEntry( |
---|
207 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
208 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
209 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
210 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
211 | normal[i], |
---|
212 | m_rbA.getInvInertiaDiagLocal(), |
---|
213 | m_rbA.getInvMass(), |
---|
214 | m_rbB.getInvInertiaDiagLocal(), |
---|
215 | m_rbB.getInvMass()); |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis |
---|
220 | //these two jointAxis require equal angular velocities for both bodies |
---|
221 | |
---|
222 | //this is unused for now, it's a todo |
---|
223 | btVector3 jointAxis0local; |
---|
224 | btVector3 jointAxis1local; |
---|
225 | |
---|
226 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); |
---|
227 | |
---|
228 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; |
---|
229 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; |
---|
230 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
231 | |
---|
232 | new (&m_jacAng[0]) btJacobianEntry(jointAxis0, |
---|
233 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
234 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
235 | m_rbA.getInvInertiaDiagLocal(), |
---|
236 | m_rbB.getInvInertiaDiagLocal()); |
---|
237 | |
---|
238 | new (&m_jacAng[1]) btJacobianEntry(jointAxis1, |
---|
239 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
240 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
241 | m_rbA.getInvInertiaDiagLocal(), |
---|
242 | m_rbB.getInvInertiaDiagLocal()); |
---|
243 | |
---|
244 | new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld, |
---|
245 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
246 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
247 | m_rbA.getInvInertiaDiagLocal(), |
---|
248 | m_rbB.getInvInertiaDiagLocal()); |
---|
249 | |
---|
250 | // clear accumulator |
---|
251 | m_accLimitImpulse = btScalar(0.); |
---|
252 | |
---|
253 | // test angular limit |
---|
254 | testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
255 | |
---|
256 | //Compute K = J*W*J' for hinge axis |
---|
257 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
258 | m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + |
---|
259 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); |
---|
260 | |
---|
261 | } |
---|
262 | } |
---|
263 | |
---|
264 | |
---|
265 | #endif //__SPU__ |
---|
266 | |
---|
267 | |
---|
268 | void btHingeConstraint::getInfo1(btConstraintInfo1* info) |
---|
269 | { |
---|
270 | if (m_useSolveConstraintObsolete) |
---|
271 | { |
---|
272 | info->m_numConstraintRows = 0; |
---|
273 | info->nub = 0; |
---|
274 | } |
---|
275 | else |
---|
276 | { |
---|
277 | info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular |
---|
278 | info->nub = 1; |
---|
279 | //always add the row, to avoid computation (data is not available yet) |
---|
280 | //prepare constraint |
---|
281 | testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
282 | if(getSolveLimit() || getEnableAngularMotor()) |
---|
283 | { |
---|
284 | info->m_numConstraintRows++; // limit 3rd anguar as well |
---|
285 | info->nub--; |
---|
286 | } |
---|
287 | |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info) |
---|
292 | { |
---|
293 | if (m_useSolveConstraintObsolete) |
---|
294 | { |
---|
295 | info->m_numConstraintRows = 0; |
---|
296 | info->nub = 0; |
---|
297 | } |
---|
298 | else |
---|
299 | { |
---|
300 | //always add the 'limit' row, to avoid computation (data is not available yet) |
---|
301 | info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular |
---|
302 | info->nub = 0; |
---|
303 | } |
---|
304 | } |
---|
305 | |
---|
306 | void btHingeConstraint::getInfo2 (btConstraintInfo2* info) |
---|
307 | { |
---|
308 | if(m_useOffsetForConstraintFrame) |
---|
309 | { |
---|
310 | getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); |
---|
311 | } |
---|
312 | else |
---|
313 | { |
---|
314 | getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | |
---|
319 | void btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) |
---|
320 | { |
---|
321 | ///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now |
---|
322 | testLimit(transA,transB); |
---|
323 | |
---|
324 | getInfo2Internal(info,transA,transB,angVelA,angVelB); |
---|
325 | } |
---|
326 | |
---|
327 | |
---|
328 | void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) |
---|
329 | { |
---|
330 | |
---|
331 | btAssert(!m_useSolveConstraintObsolete); |
---|
332 | int i, skip = info->rowskip; |
---|
333 | // transforms in world space |
---|
334 | btTransform trA = transA*m_rbAFrame; |
---|
335 | btTransform trB = transB*m_rbBFrame; |
---|
336 | // pivot point |
---|
337 | btVector3 pivotAInW = trA.getOrigin(); |
---|
338 | btVector3 pivotBInW = trB.getOrigin(); |
---|
339 | #if 0 |
---|
340 | if (0) |
---|
341 | { |
---|
342 | for (i=0;i<6;i++) |
---|
343 | { |
---|
344 | info->m_J1linearAxis[i*skip]=0; |
---|
345 | info->m_J1linearAxis[i*skip+1]=0; |
---|
346 | info->m_J1linearAxis[i*skip+2]=0; |
---|
347 | |
---|
348 | info->m_J1angularAxis[i*skip]=0; |
---|
349 | info->m_J1angularAxis[i*skip+1]=0; |
---|
350 | info->m_J1angularAxis[i*skip+2]=0; |
---|
351 | |
---|
352 | info->m_J2angularAxis[i*skip]=0; |
---|
353 | info->m_J2angularAxis[i*skip+1]=0; |
---|
354 | info->m_J2angularAxis[i*skip+2]=0; |
---|
355 | |
---|
356 | info->m_constraintError[i*skip]=0.f; |
---|
357 | } |
---|
358 | } |
---|
359 | #endif //#if 0 |
---|
360 | // linear (all fixed) |
---|
361 | |
---|
362 | if (!m_angularOnly) |
---|
363 | { |
---|
364 | info->m_J1linearAxis[0] = 1; |
---|
365 | info->m_J1linearAxis[skip + 1] = 1; |
---|
366 | info->m_J1linearAxis[2 * skip + 2] = 1; |
---|
367 | } |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | |
---|
372 | btVector3 a1 = pivotAInW - transA.getOrigin(); |
---|
373 | { |
---|
374 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); |
---|
375 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip); |
---|
376 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip); |
---|
377 | btVector3 a1neg = -a1; |
---|
378 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
379 | } |
---|
380 | btVector3 a2 = pivotBInW - transB.getOrigin(); |
---|
381 | { |
---|
382 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); |
---|
383 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip); |
---|
384 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip); |
---|
385 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
386 | } |
---|
387 | // linear RHS |
---|
388 | btScalar k = info->fps * info->erp; |
---|
389 | if (!m_angularOnly) |
---|
390 | { |
---|
391 | for(i = 0; i < 3; i++) |
---|
392 | { |
---|
393 | info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]); |
---|
394 | } |
---|
395 | } |
---|
396 | // make rotations around X and Y equal |
---|
397 | // the hinge axis should be the only unconstrained |
---|
398 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
399 | // the hinge axis should be equal. thus the constraint equations are |
---|
400 | // p*w1 - p*w2 = 0 |
---|
401 | // q*w1 - q*w2 = 0 |
---|
402 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 |
---|
403 | // are the angular velocity vectors of the two bodies. |
---|
404 | // get hinge axis (Z) |
---|
405 | btVector3 ax1 = trA.getBasis().getColumn(2); |
---|
406 | // get 2 orthos to hinge axis (X, Y) |
---|
407 | btVector3 p = trA.getBasis().getColumn(0); |
---|
408 | btVector3 q = trA.getBasis().getColumn(1); |
---|
409 | // set the two hinge angular rows |
---|
410 | int s3 = 3 * info->rowskip; |
---|
411 | int s4 = 4 * info->rowskip; |
---|
412 | |
---|
413 | info->m_J1angularAxis[s3 + 0] = p[0]; |
---|
414 | info->m_J1angularAxis[s3 + 1] = p[1]; |
---|
415 | info->m_J1angularAxis[s3 + 2] = p[2]; |
---|
416 | info->m_J1angularAxis[s4 + 0] = q[0]; |
---|
417 | info->m_J1angularAxis[s4 + 1] = q[1]; |
---|
418 | info->m_J1angularAxis[s4 + 2] = q[2]; |
---|
419 | |
---|
420 | info->m_J2angularAxis[s3 + 0] = -p[0]; |
---|
421 | info->m_J2angularAxis[s3 + 1] = -p[1]; |
---|
422 | info->m_J2angularAxis[s3 + 2] = -p[2]; |
---|
423 | info->m_J2angularAxis[s4 + 0] = -q[0]; |
---|
424 | info->m_J2angularAxis[s4 + 1] = -q[1]; |
---|
425 | info->m_J2angularAxis[s4 + 2] = -q[2]; |
---|
426 | // compute the right hand side of the constraint equation. set relative |
---|
427 | // body velocities along p and q to bring the hinge back into alignment. |
---|
428 | // if ax1,ax2 are the unit length hinge axes as computed from body1 and |
---|
429 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
430 | // if `theta' is the angle between ax1 and ax2, we need an angular velocity |
---|
431 | // along u to cover angle erp*theta in one step : |
---|
432 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
433 | // = (erp*fps) * theta |
---|
434 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
435 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
436 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
437 | // theta ~= sin(theta), so |
---|
438 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
439 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
440 | // velocity to p and q to find the right hand side. |
---|
441 | btVector3 ax2 = trB.getBasis().getColumn(2); |
---|
442 | btVector3 u = ax1.cross(ax2); |
---|
443 | info->m_constraintError[s3] = k * u.dot(p); |
---|
444 | info->m_constraintError[s4] = k * u.dot(q); |
---|
445 | // check angular limits |
---|
446 | int nrow = 4; // last filled row |
---|
447 | int srow; |
---|
448 | btScalar limit_err = btScalar(0.0); |
---|
449 | int limit = 0; |
---|
450 | if(getSolveLimit()) |
---|
451 | { |
---|
452 | limit_err = m_correction * m_referenceSign; |
---|
453 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
454 | } |
---|
455 | // if the hinge has joint limits or motor, add in the extra row |
---|
456 | int powered = 0; |
---|
457 | if(getEnableAngularMotor()) |
---|
458 | { |
---|
459 | powered = 1; |
---|
460 | } |
---|
461 | if(limit || powered) |
---|
462 | { |
---|
463 | nrow++; |
---|
464 | srow = nrow * info->rowskip; |
---|
465 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
466 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
467 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
468 | |
---|
469 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
470 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
471 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
472 | |
---|
473 | btScalar lostop = getLowerLimit(); |
---|
474 | btScalar histop = getUpperLimit(); |
---|
475 | if(limit && (lostop == histop)) |
---|
476 | { // the joint motor is ineffective |
---|
477 | powered = 0; |
---|
478 | } |
---|
479 | info->m_constraintError[srow] = btScalar(0.0f); |
---|
480 | btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp; |
---|
481 | if(powered) |
---|
482 | { |
---|
483 | if(m_flags & BT_HINGE_FLAGS_CFM_NORM) |
---|
484 | { |
---|
485 | info->cfm[srow] = m_normalCFM; |
---|
486 | } |
---|
487 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); |
---|
488 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; |
---|
489 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; |
---|
490 | info->m_upperLimit[srow] = m_maxMotorImpulse; |
---|
491 | } |
---|
492 | if(limit) |
---|
493 | { |
---|
494 | k = info->fps * currERP; |
---|
495 | info->m_constraintError[srow] += k * limit_err; |
---|
496 | if(m_flags & BT_HINGE_FLAGS_CFM_STOP) |
---|
497 | { |
---|
498 | info->cfm[srow] = m_stopCFM; |
---|
499 | } |
---|
500 | if(lostop == histop) |
---|
501 | { |
---|
502 | // limited low and high simultaneously |
---|
503 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
504 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
505 | } |
---|
506 | else if(limit == 1) |
---|
507 | { // low limit |
---|
508 | info->m_lowerLimit[srow] = 0; |
---|
509 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
510 | } |
---|
511 | else |
---|
512 | { // high limit |
---|
513 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
514 | info->m_upperLimit[srow] = 0; |
---|
515 | } |
---|
516 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
517 | btScalar bounce = m_relaxationFactor; |
---|
518 | if(bounce > btScalar(0.0)) |
---|
519 | { |
---|
520 | btScalar vel = angVelA.dot(ax1); |
---|
521 | vel -= angVelB.dot(ax1); |
---|
522 | // only apply bounce if the velocity is incoming, and if the |
---|
523 | // resulting c[] exceeds what we already have. |
---|
524 | if(limit == 1) |
---|
525 | { // low limit |
---|
526 | if(vel < 0) |
---|
527 | { |
---|
528 | btScalar newc = -bounce * vel; |
---|
529 | if(newc > info->m_constraintError[srow]) |
---|
530 | { |
---|
531 | info->m_constraintError[srow] = newc; |
---|
532 | } |
---|
533 | } |
---|
534 | } |
---|
535 | else |
---|
536 | { // high limit - all those computations are reversed |
---|
537 | if(vel > 0) |
---|
538 | { |
---|
539 | btScalar newc = -bounce * vel; |
---|
540 | if(newc < info->m_constraintError[srow]) |
---|
541 | { |
---|
542 | info->m_constraintError[srow] = newc; |
---|
543 | } |
---|
544 | } |
---|
545 | } |
---|
546 | } |
---|
547 | info->m_constraintError[srow] *= m_biasFactor; |
---|
548 | } // if(limit) |
---|
549 | } // if angular limit or powered |
---|
550 | } |
---|
551 | |
---|
552 | |
---|
553 | |
---|
554 | |
---|
555 | |
---|
556 | |
---|
557 | void btHingeConstraint::updateRHS(btScalar timeStep) |
---|
558 | { |
---|
559 | (void)timeStep; |
---|
560 | |
---|
561 | } |
---|
562 | |
---|
563 | |
---|
564 | btScalar btHingeConstraint::getHingeAngle() |
---|
565 | { |
---|
566 | return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
567 | } |
---|
568 | |
---|
569 | btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB) |
---|
570 | { |
---|
571 | const btVector3 refAxis0 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0); |
---|
572 | const btVector3 refAxis1 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1); |
---|
573 | const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1); |
---|
574 | // btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); |
---|
575 | btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); |
---|
576 | return m_referenceSign * angle; |
---|
577 | } |
---|
578 | |
---|
579 | |
---|
580 | #if 0 |
---|
581 | void btHingeConstraint::testLimit() |
---|
582 | { |
---|
583 | // Compute limit information |
---|
584 | m_hingeAngle = getHingeAngle(); |
---|
585 | m_correction = btScalar(0.); |
---|
586 | m_limitSign = btScalar(0.); |
---|
587 | m_solveLimit = false; |
---|
588 | if (m_lowerLimit <= m_upperLimit) |
---|
589 | { |
---|
590 | if (m_hingeAngle <= m_lowerLimit) |
---|
591 | { |
---|
592 | m_correction = (m_lowerLimit - m_hingeAngle); |
---|
593 | m_limitSign = 1.0f; |
---|
594 | m_solveLimit = true; |
---|
595 | } |
---|
596 | else if (m_hingeAngle >= m_upperLimit) |
---|
597 | { |
---|
598 | m_correction = m_upperLimit - m_hingeAngle; |
---|
599 | m_limitSign = -1.0f; |
---|
600 | m_solveLimit = true; |
---|
601 | } |
---|
602 | } |
---|
603 | return; |
---|
604 | } |
---|
605 | #else |
---|
606 | |
---|
607 | |
---|
608 | void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB) |
---|
609 | { |
---|
610 | // Compute limit information |
---|
611 | m_hingeAngle = getHingeAngle(transA,transB); |
---|
612 | m_correction = btScalar(0.); |
---|
613 | m_limitSign = btScalar(0.); |
---|
614 | m_solveLimit = false; |
---|
615 | if (m_lowerLimit <= m_upperLimit) |
---|
616 | { |
---|
617 | m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit); |
---|
618 | if (m_hingeAngle <= m_lowerLimit) |
---|
619 | { |
---|
620 | m_correction = (m_lowerLimit - m_hingeAngle); |
---|
621 | m_limitSign = 1.0f; |
---|
622 | m_solveLimit = true; |
---|
623 | } |
---|
624 | else if (m_hingeAngle >= m_upperLimit) |
---|
625 | { |
---|
626 | m_correction = m_upperLimit - m_hingeAngle; |
---|
627 | m_limitSign = -1.0f; |
---|
628 | m_solveLimit = true; |
---|
629 | } |
---|
630 | } |
---|
631 | return; |
---|
632 | } |
---|
633 | #endif |
---|
634 | |
---|
635 | static btVector3 vHinge(0, 0, btScalar(1)); |
---|
636 | |
---|
637 | void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt) |
---|
638 | { |
---|
639 | // convert target from body to constraint space |
---|
640 | btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation(); |
---|
641 | qConstraint.normalize(); |
---|
642 | |
---|
643 | // extract "pure" hinge component |
---|
644 | btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize(); |
---|
645 | btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge); |
---|
646 | btQuaternion qHinge = qNoHinge.inverse() * qConstraint; |
---|
647 | qHinge.normalize(); |
---|
648 | |
---|
649 | // compute angular target, clamped to limits |
---|
650 | btScalar targetAngle = qHinge.getAngle(); |
---|
651 | if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate. |
---|
652 | { |
---|
653 | qHinge = operator-(qHinge); |
---|
654 | targetAngle = qHinge.getAngle(); |
---|
655 | } |
---|
656 | if (qHinge.getZ() < 0) |
---|
657 | targetAngle = -targetAngle; |
---|
658 | |
---|
659 | setMotorTarget(targetAngle, dt); |
---|
660 | } |
---|
661 | |
---|
662 | void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt) |
---|
663 | { |
---|
664 | if (m_lowerLimit < m_upperLimit) |
---|
665 | { |
---|
666 | if (targetAngle < m_lowerLimit) |
---|
667 | targetAngle = m_lowerLimit; |
---|
668 | else if (targetAngle > m_upperLimit) |
---|
669 | targetAngle = m_upperLimit; |
---|
670 | } |
---|
671 | |
---|
672 | // compute angular velocity |
---|
673 | btScalar curAngle = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
674 | btScalar dAngle = targetAngle - curAngle; |
---|
675 | m_motorTargetVelocity = dAngle / dt; |
---|
676 | } |
---|
677 | |
---|
678 | |
---|
679 | |
---|
680 | void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) |
---|
681 | { |
---|
682 | btAssert(!m_useSolveConstraintObsolete); |
---|
683 | int i, s = info->rowskip; |
---|
684 | // transforms in world space |
---|
685 | btTransform trA = transA*m_rbAFrame; |
---|
686 | btTransform trB = transB*m_rbBFrame; |
---|
687 | // pivot point |
---|
688 | btVector3 pivotAInW = trA.getOrigin(); |
---|
689 | btVector3 pivotBInW = trB.getOrigin(); |
---|
690 | #if 1 |
---|
691 | // difference between frames in WCS |
---|
692 | btVector3 ofs = trB.getOrigin() - trA.getOrigin(); |
---|
693 | // now get weight factors depending on masses |
---|
694 | btScalar miA = getRigidBodyA().getInvMass(); |
---|
695 | btScalar miB = getRigidBodyB().getInvMass(); |
---|
696 | bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); |
---|
697 | btScalar miS = miA + miB; |
---|
698 | btScalar factA, factB; |
---|
699 | if(miS > btScalar(0.f)) |
---|
700 | { |
---|
701 | factA = miB / miS; |
---|
702 | } |
---|
703 | else |
---|
704 | { |
---|
705 | factA = btScalar(0.5f); |
---|
706 | } |
---|
707 | factB = btScalar(1.0f) - factA; |
---|
708 | // get the desired direction of hinge axis |
---|
709 | // as weighted sum of Z-orthos of frameA and frameB in WCS |
---|
710 | btVector3 ax1A = trA.getBasis().getColumn(2); |
---|
711 | btVector3 ax1B = trB.getBasis().getColumn(2); |
---|
712 | btVector3 ax1 = ax1A * factA + ax1B * factB; |
---|
713 | ax1.normalize(); |
---|
714 | // fill first 3 rows |
---|
715 | // we want: velA + wA x relA == velB + wB x relB |
---|
716 | btTransform bodyA_trans = transA; |
---|
717 | btTransform bodyB_trans = transB; |
---|
718 | int s0 = 0; |
---|
719 | int s1 = s; |
---|
720 | int s2 = s * 2; |
---|
721 | int nrow = 2; // last filled row |
---|
722 | btVector3 tmpA, tmpB, relA, relB, p, q; |
---|
723 | // get vector from bodyB to frameB in WCS |
---|
724 | relB = trB.getOrigin() - bodyB_trans.getOrigin(); |
---|
725 | // get its projection to hinge axis |
---|
726 | btVector3 projB = ax1 * relB.dot(ax1); |
---|
727 | // get vector directed from bodyB to hinge axis (and orthogonal to it) |
---|
728 | btVector3 orthoB = relB - projB; |
---|
729 | // same for bodyA |
---|
730 | relA = trA.getOrigin() - bodyA_trans.getOrigin(); |
---|
731 | btVector3 projA = ax1 * relA.dot(ax1); |
---|
732 | btVector3 orthoA = relA - projA; |
---|
733 | btVector3 totalDist = projA - projB; |
---|
734 | // get offset vectors relA and relB |
---|
735 | relA = orthoA + totalDist * factA; |
---|
736 | relB = orthoB - totalDist * factB; |
---|
737 | // now choose average ortho to hinge axis |
---|
738 | p = orthoB * factA + orthoA * factB; |
---|
739 | btScalar len2 = p.length2(); |
---|
740 | if(len2 > SIMD_EPSILON) |
---|
741 | { |
---|
742 | p /= btSqrt(len2); |
---|
743 | } |
---|
744 | else |
---|
745 | { |
---|
746 | p = trA.getBasis().getColumn(1); |
---|
747 | } |
---|
748 | // make one more ortho |
---|
749 | q = ax1.cross(p); |
---|
750 | // fill three rows |
---|
751 | tmpA = relA.cross(p); |
---|
752 | tmpB = relB.cross(p); |
---|
753 | for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i]; |
---|
754 | for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i]; |
---|
755 | tmpA = relA.cross(q); |
---|
756 | tmpB = relB.cross(q); |
---|
757 | if(hasStaticBody && getSolveLimit()) |
---|
758 | { // to make constraint between static and dynamic objects more rigid |
---|
759 | // remove wA (or wB) from equation if angular limit is hit |
---|
760 | tmpB *= factB; |
---|
761 | tmpA *= factA; |
---|
762 | } |
---|
763 | for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i]; |
---|
764 | for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i]; |
---|
765 | tmpA = relA.cross(ax1); |
---|
766 | tmpB = relB.cross(ax1); |
---|
767 | if(hasStaticBody) |
---|
768 | { // to make constraint between static and dynamic objects more rigid |
---|
769 | // remove wA (or wB) from equation |
---|
770 | tmpB *= factB; |
---|
771 | tmpA *= factA; |
---|
772 | } |
---|
773 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; |
---|
774 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; |
---|
775 | |
---|
776 | btScalar k = info->fps * info->erp; |
---|
777 | |
---|
778 | if (!m_angularOnly) |
---|
779 | { |
---|
780 | for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i]; |
---|
781 | for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i]; |
---|
782 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i]; |
---|
783 | |
---|
784 | // compute three elements of right hand side |
---|
785 | |
---|
786 | btScalar rhs = k * p.dot(ofs); |
---|
787 | info->m_constraintError[s0] = rhs; |
---|
788 | rhs = k * q.dot(ofs); |
---|
789 | info->m_constraintError[s1] = rhs; |
---|
790 | rhs = k * ax1.dot(ofs); |
---|
791 | info->m_constraintError[s2] = rhs; |
---|
792 | } |
---|
793 | // the hinge axis should be the only unconstrained |
---|
794 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
795 | // the hinge axis should be equal. thus the constraint equations are |
---|
796 | // p*w1 - p*w2 = 0 |
---|
797 | // q*w1 - q*w2 = 0 |
---|
798 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 |
---|
799 | // are the angular velocity vectors of the two bodies. |
---|
800 | int s3 = 3 * s; |
---|
801 | int s4 = 4 * s; |
---|
802 | info->m_J1angularAxis[s3 + 0] = p[0]; |
---|
803 | info->m_J1angularAxis[s3 + 1] = p[1]; |
---|
804 | info->m_J1angularAxis[s3 + 2] = p[2]; |
---|
805 | info->m_J1angularAxis[s4 + 0] = q[0]; |
---|
806 | info->m_J1angularAxis[s4 + 1] = q[1]; |
---|
807 | info->m_J1angularAxis[s4 + 2] = q[2]; |
---|
808 | |
---|
809 | info->m_J2angularAxis[s3 + 0] = -p[0]; |
---|
810 | info->m_J2angularAxis[s3 + 1] = -p[1]; |
---|
811 | info->m_J2angularAxis[s3 + 2] = -p[2]; |
---|
812 | info->m_J2angularAxis[s4 + 0] = -q[0]; |
---|
813 | info->m_J2angularAxis[s4 + 1] = -q[1]; |
---|
814 | info->m_J2angularAxis[s4 + 2] = -q[2]; |
---|
815 | // compute the right hand side of the constraint equation. set relative |
---|
816 | // body velocities along p and q to bring the hinge back into alignment. |
---|
817 | // if ax1A,ax1B are the unit length hinge axes as computed from bodyA and |
---|
818 | // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
819 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity |
---|
820 | // along u to cover angle erp*theta in one step : |
---|
821 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
822 | // = (erp*fps) * theta |
---|
823 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
824 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
825 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
826 | // theta ~= sin(theta), so |
---|
827 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
828 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
829 | // velocity to p and q to find the right hand side. |
---|
830 | k = info->fps * info->erp; |
---|
831 | btVector3 u = ax1A.cross(ax1B); |
---|
832 | info->m_constraintError[s3] = k * u.dot(p); |
---|
833 | info->m_constraintError[s4] = k * u.dot(q); |
---|
834 | #endif |
---|
835 | // check angular limits |
---|
836 | nrow = 4; // last filled row |
---|
837 | int srow; |
---|
838 | btScalar limit_err = btScalar(0.0); |
---|
839 | int limit = 0; |
---|
840 | if(getSolveLimit()) |
---|
841 | { |
---|
842 | limit_err = m_correction * m_referenceSign; |
---|
843 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
844 | } |
---|
845 | // if the hinge has joint limits or motor, add in the extra row |
---|
846 | int powered = 0; |
---|
847 | if(getEnableAngularMotor()) |
---|
848 | { |
---|
849 | powered = 1; |
---|
850 | } |
---|
851 | if(limit || powered) |
---|
852 | { |
---|
853 | nrow++; |
---|
854 | srow = nrow * info->rowskip; |
---|
855 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
856 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
857 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
858 | |
---|
859 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
860 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
861 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
862 | |
---|
863 | btScalar lostop = getLowerLimit(); |
---|
864 | btScalar histop = getUpperLimit(); |
---|
865 | if(limit && (lostop == histop)) |
---|
866 | { // the joint motor is ineffective |
---|
867 | powered = 0; |
---|
868 | } |
---|
869 | info->m_constraintError[srow] = btScalar(0.0f); |
---|
870 | btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp; |
---|
871 | if(powered) |
---|
872 | { |
---|
873 | if(m_flags & BT_HINGE_FLAGS_CFM_NORM) |
---|
874 | { |
---|
875 | info->cfm[srow] = m_normalCFM; |
---|
876 | } |
---|
877 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); |
---|
878 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; |
---|
879 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; |
---|
880 | info->m_upperLimit[srow] = m_maxMotorImpulse; |
---|
881 | } |
---|
882 | if(limit) |
---|
883 | { |
---|
884 | k = info->fps * currERP; |
---|
885 | info->m_constraintError[srow] += k * limit_err; |
---|
886 | if(m_flags & BT_HINGE_FLAGS_CFM_STOP) |
---|
887 | { |
---|
888 | info->cfm[srow] = m_stopCFM; |
---|
889 | } |
---|
890 | if(lostop == histop) |
---|
891 | { |
---|
892 | // limited low and high simultaneously |
---|
893 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
894 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
895 | } |
---|
896 | else if(limit == 1) |
---|
897 | { // low limit |
---|
898 | info->m_lowerLimit[srow] = 0; |
---|
899 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
900 | } |
---|
901 | else |
---|
902 | { // high limit |
---|
903 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
904 | info->m_upperLimit[srow] = 0; |
---|
905 | } |
---|
906 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
907 | btScalar bounce = m_relaxationFactor; |
---|
908 | if(bounce > btScalar(0.0)) |
---|
909 | { |
---|
910 | btScalar vel = angVelA.dot(ax1); |
---|
911 | vel -= angVelB.dot(ax1); |
---|
912 | // only apply bounce if the velocity is incoming, and if the |
---|
913 | // resulting c[] exceeds what we already have. |
---|
914 | if(limit == 1) |
---|
915 | { // low limit |
---|
916 | if(vel < 0) |
---|
917 | { |
---|
918 | btScalar newc = -bounce * vel; |
---|
919 | if(newc > info->m_constraintError[srow]) |
---|
920 | { |
---|
921 | info->m_constraintError[srow] = newc; |
---|
922 | } |
---|
923 | } |
---|
924 | } |
---|
925 | else |
---|
926 | { // high limit - all those computations are reversed |
---|
927 | if(vel > 0) |
---|
928 | { |
---|
929 | btScalar newc = -bounce * vel; |
---|
930 | if(newc < info->m_constraintError[srow]) |
---|
931 | { |
---|
932 | info->m_constraintError[srow] = newc; |
---|
933 | } |
---|
934 | } |
---|
935 | } |
---|
936 | } |
---|
937 | info->m_constraintError[srow] *= m_biasFactor; |
---|
938 | } // if(limit) |
---|
939 | } // if angular limit or powered |
---|
940 | } |
---|
941 | |
---|
942 | |
---|
943 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). |
---|
944 | ///If no axis is provided, it uses the default axis for this constraint. |
---|
945 | void btHingeConstraint::setParam(int num, btScalar value, int axis) |
---|
946 | { |
---|
947 | if((axis == -1) || (axis == 5)) |
---|
948 | { |
---|
949 | switch(num) |
---|
950 | { |
---|
951 | case BT_CONSTRAINT_STOP_ERP : |
---|
952 | m_stopERP = value; |
---|
953 | m_flags |= BT_HINGE_FLAGS_ERP_STOP; |
---|
954 | break; |
---|
955 | case BT_CONSTRAINT_STOP_CFM : |
---|
956 | m_stopCFM = value; |
---|
957 | m_flags |= BT_HINGE_FLAGS_CFM_STOP; |
---|
958 | break; |
---|
959 | case BT_CONSTRAINT_CFM : |
---|
960 | m_normalCFM = value; |
---|
961 | m_flags |= BT_HINGE_FLAGS_CFM_NORM; |
---|
962 | break; |
---|
963 | default : |
---|
964 | btAssertConstrParams(0); |
---|
965 | } |
---|
966 | } |
---|
967 | else |
---|
968 | { |
---|
969 | btAssertConstrParams(0); |
---|
970 | } |
---|
971 | } |
---|
972 | |
---|
973 | ///return the local value of parameter |
---|
974 | btScalar btHingeConstraint::getParam(int num, int axis) const |
---|
975 | { |
---|
976 | btScalar retVal = 0; |
---|
977 | if((axis == -1) || (axis == 5)) |
---|
978 | { |
---|
979 | switch(num) |
---|
980 | { |
---|
981 | case BT_CONSTRAINT_STOP_ERP : |
---|
982 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP); |
---|
983 | retVal = m_stopERP; |
---|
984 | break; |
---|
985 | case BT_CONSTRAINT_STOP_CFM : |
---|
986 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP); |
---|
987 | retVal = m_stopCFM; |
---|
988 | break; |
---|
989 | case BT_CONSTRAINT_CFM : |
---|
990 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM); |
---|
991 | retVal = m_normalCFM; |
---|
992 | break; |
---|
993 | default : |
---|
994 | btAssertConstrParams(0); |
---|
995 | } |
---|
996 | } |
---|
997 | else |
---|
998 | { |
---|
999 | btAssertConstrParams(0); |
---|
1000 | } |
---|
1001 | return retVal; |
---|
1002 | } |
---|
1003 | |
---|
1004 | |
---|