1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | //#define COMPUTE_IMPULSE_DENOM 1 |
---|
17 | //It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms. |
---|
18 | |
---|
19 | #include "btSequentialImpulseConstraintSolver.h" |
---|
20 | #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" |
---|
21 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
22 | #include "btContactConstraint.h" |
---|
23 | #include "btSolve2LinearConstraint.h" |
---|
24 | #include "btContactSolverInfo.h" |
---|
25 | #include "LinearMath/btIDebugDraw.h" |
---|
26 | #include "btJacobianEntry.h" |
---|
27 | #include "LinearMath/btMinMax.h" |
---|
28 | #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" |
---|
29 | #include <new> |
---|
30 | #include "LinearMath/btStackAlloc.h" |
---|
31 | #include "LinearMath/btQuickprof.h" |
---|
32 | #include "btSolverBody.h" |
---|
33 | #include "btSolverConstraint.h" |
---|
34 | #include "LinearMath/btAlignedObjectArray.h" |
---|
35 | #include <string.h> //for memset |
---|
36 | |
---|
37 | int gNumSplitImpulseRecoveries = 0; |
---|
38 | |
---|
39 | btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver() |
---|
40 | :m_btSeed2(0) |
---|
41 | { |
---|
42 | |
---|
43 | } |
---|
44 | |
---|
45 | btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver() |
---|
46 | { |
---|
47 | } |
---|
48 | |
---|
49 | #ifdef USE_SIMD |
---|
50 | #include <emmintrin.h> |
---|
51 | #define vec_splat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e)) |
---|
52 | static inline __m128 _vmathVfDot3( __m128 vec0, __m128 vec1 ) |
---|
53 | { |
---|
54 | __m128 result = _mm_mul_ps( vec0, vec1); |
---|
55 | return _mm_add_ps( vec_splat( result, 0 ), _mm_add_ps( vec_splat( result, 1 ), vec_splat( result, 2 ) ) ); |
---|
56 | } |
---|
57 | #endif//USE_SIMD |
---|
58 | |
---|
59 | // Project Gauss Seidel or the equivalent Sequential Impulse |
---|
60 | void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) |
---|
61 | { |
---|
62 | #ifdef USE_SIMD |
---|
63 | __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); |
---|
64 | __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); |
---|
65 | __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); |
---|
66 | __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); |
---|
67 | __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); |
---|
68 | __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); |
---|
69 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
70 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
71 | btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); |
---|
72 | btSimdScalar resultLowerLess,resultUpperLess; |
---|
73 | resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); |
---|
74 | resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); |
---|
75 | __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); |
---|
76 | deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); |
---|
77 | c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); |
---|
78 | __m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp); |
---|
79 | deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) ); |
---|
80 | c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) ); |
---|
81 | __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); |
---|
82 | __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); |
---|
83 | __m128 impulseMagnitude = deltaImpulse; |
---|
84 | body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); |
---|
85 | body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); |
---|
86 | body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); |
---|
87 | body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); |
---|
88 | #else |
---|
89 | resolveSingleConstraintRowGeneric(body1,body2,c); |
---|
90 | #endif |
---|
91 | } |
---|
92 | |
---|
93 | // Project Gauss Seidel or the equivalent Sequential Impulse |
---|
94 | void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) |
---|
95 | { |
---|
96 | btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm; |
---|
97 | const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); |
---|
98 | const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); |
---|
99 | |
---|
100 | // const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn; |
---|
101 | deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; |
---|
102 | deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; |
---|
103 | |
---|
104 | const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse; |
---|
105 | if (sum < c.m_lowerLimit) |
---|
106 | { |
---|
107 | deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; |
---|
108 | c.m_appliedImpulse = c.m_lowerLimit; |
---|
109 | } |
---|
110 | else if (sum > c.m_upperLimit) |
---|
111 | { |
---|
112 | deltaImpulse = c.m_upperLimit-c.m_appliedImpulse; |
---|
113 | c.m_appliedImpulse = c.m_upperLimit; |
---|
114 | } |
---|
115 | else |
---|
116 | { |
---|
117 | c.m_appliedImpulse = sum; |
---|
118 | } |
---|
119 | body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); |
---|
120 | body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); |
---|
121 | } |
---|
122 | |
---|
123 | void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) |
---|
124 | { |
---|
125 | #ifdef USE_SIMD |
---|
126 | __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); |
---|
127 | __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); |
---|
128 | __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); |
---|
129 | __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); |
---|
130 | __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); |
---|
131 | __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); |
---|
132 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
133 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
134 | btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); |
---|
135 | btSimdScalar resultLowerLess,resultUpperLess; |
---|
136 | resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); |
---|
137 | resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); |
---|
138 | __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); |
---|
139 | deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); |
---|
140 | c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); |
---|
141 | __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); |
---|
142 | __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); |
---|
143 | __m128 impulseMagnitude = deltaImpulse; |
---|
144 | body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); |
---|
145 | body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); |
---|
146 | body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); |
---|
147 | body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); |
---|
148 | #else |
---|
149 | resolveSingleConstraintRowLowerLimit(body1,body2,c); |
---|
150 | #endif |
---|
151 | } |
---|
152 | |
---|
153 | // Project Gauss Seidel or the equivalent Sequential Impulse |
---|
154 | void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) |
---|
155 | { |
---|
156 | btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm; |
---|
157 | const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); |
---|
158 | const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); |
---|
159 | |
---|
160 | deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; |
---|
161 | deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; |
---|
162 | const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse; |
---|
163 | if (sum < c.m_lowerLimit) |
---|
164 | { |
---|
165 | deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; |
---|
166 | c.m_appliedImpulse = c.m_lowerLimit; |
---|
167 | } |
---|
168 | else |
---|
169 | { |
---|
170 | c.m_appliedImpulse = sum; |
---|
171 | } |
---|
172 | body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); |
---|
173 | body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); |
---|
174 | } |
---|
175 | |
---|
176 | |
---|
177 | void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly( |
---|
178 | btRigidBody& body1, |
---|
179 | btRigidBody& body2, |
---|
180 | const btSolverConstraint& c) |
---|
181 | { |
---|
182 | if (c.m_rhsPenetration) |
---|
183 | { |
---|
184 | gNumSplitImpulseRecoveries++; |
---|
185 | btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm; |
---|
186 | const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity()); |
---|
187 | const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity()); |
---|
188 | |
---|
189 | deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; |
---|
190 | deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; |
---|
191 | const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse; |
---|
192 | if (sum < c.m_lowerLimit) |
---|
193 | { |
---|
194 | deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse; |
---|
195 | c.m_appliedPushImpulse = c.m_lowerLimit; |
---|
196 | } |
---|
197 | else |
---|
198 | { |
---|
199 | c.m_appliedPushImpulse = sum; |
---|
200 | } |
---|
201 | body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); |
---|
202 | body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) |
---|
207 | { |
---|
208 | #ifdef USE_SIMD |
---|
209 | if (!c.m_rhsPenetration) |
---|
210 | return; |
---|
211 | |
---|
212 | gNumSplitImpulseRecoveries++; |
---|
213 | |
---|
214 | __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse); |
---|
215 | __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); |
---|
216 | __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); |
---|
217 | __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm))); |
---|
218 | __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128)); |
---|
219 | __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128)); |
---|
220 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
221 | deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); |
---|
222 | btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); |
---|
223 | btSimdScalar resultLowerLess,resultUpperLess; |
---|
224 | resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); |
---|
225 | resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); |
---|
226 | __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); |
---|
227 | deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); |
---|
228 | c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); |
---|
229 | __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); |
---|
230 | __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); |
---|
231 | __m128 impulseMagnitude = deltaImpulse; |
---|
232 | body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); |
---|
233 | body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); |
---|
234 | body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); |
---|
235 | body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); |
---|
236 | #else |
---|
237 | resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c); |
---|
238 | #endif |
---|
239 | } |
---|
240 | |
---|
241 | |
---|
242 | |
---|
243 | unsigned long btSequentialImpulseConstraintSolver::btRand2() |
---|
244 | { |
---|
245 | m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff; |
---|
246 | return m_btSeed2; |
---|
247 | } |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | //See ODE: adam's all-int straightforward(?) dRandInt (0..n-1) |
---|
252 | int btSequentialImpulseConstraintSolver::btRandInt2 (int n) |
---|
253 | { |
---|
254 | // seems good; xor-fold and modulus |
---|
255 | const unsigned long un = static_cast<unsigned long>(n); |
---|
256 | unsigned long r = btRand2(); |
---|
257 | |
---|
258 | // note: probably more aggressive than it needs to be -- might be |
---|
259 | // able to get away without one or two of the innermost branches. |
---|
260 | if (un <= 0x00010000UL) { |
---|
261 | r ^= (r >> 16); |
---|
262 | if (un <= 0x00000100UL) { |
---|
263 | r ^= (r >> 8); |
---|
264 | if (un <= 0x00000010UL) { |
---|
265 | r ^= (r >> 4); |
---|
266 | if (un <= 0x00000004UL) { |
---|
267 | r ^= (r >> 2); |
---|
268 | if (un <= 0x00000002UL) { |
---|
269 | r ^= (r >> 1); |
---|
270 | } |
---|
271 | } |
---|
272 | } |
---|
273 | } |
---|
274 | } |
---|
275 | |
---|
276 | return (int) (r % un); |
---|
277 | } |
---|
278 | |
---|
279 | |
---|
280 | #if 0 |
---|
281 | void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject) |
---|
282 | { |
---|
283 | btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0; |
---|
284 | |
---|
285 | solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); |
---|
286 | solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); |
---|
287 | solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f); |
---|
288 | solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f); |
---|
289 | |
---|
290 | if (rb) |
---|
291 | { |
---|
292 | solverBody->internalGetInvMass() = btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor(); |
---|
293 | solverBody->m_originalBody = rb; |
---|
294 | solverBody->m_angularFactor = rb->getAngularFactor(); |
---|
295 | } else |
---|
296 | { |
---|
297 | solverBody->internalGetInvMass().setValue(0,0,0); |
---|
298 | solverBody->m_originalBody = 0; |
---|
299 | solverBody->m_angularFactor.setValue(1,1,1); |
---|
300 | } |
---|
301 | } |
---|
302 | #endif |
---|
303 | |
---|
304 | |
---|
305 | |
---|
306 | |
---|
307 | |
---|
308 | btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution) |
---|
309 | { |
---|
310 | btScalar rest = restitution * -rel_vel; |
---|
311 | return rest; |
---|
312 | } |
---|
313 | |
---|
314 | |
---|
315 | |
---|
316 | void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection); |
---|
317 | void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection) |
---|
318 | { |
---|
319 | if (colObj && colObj->hasAnisotropicFriction()) |
---|
320 | { |
---|
321 | // transform to local coordinates |
---|
322 | btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis(); |
---|
323 | const btVector3& friction_scaling = colObj->getAnisotropicFriction(); |
---|
324 | //apply anisotropic friction |
---|
325 | loc_lateral *= friction_scaling; |
---|
326 | // ... and transform it back to global coordinates |
---|
327 | frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral; |
---|
328 | } |
---|
329 | } |
---|
330 | |
---|
331 | |
---|
332 | void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip) |
---|
333 | { |
---|
334 | |
---|
335 | |
---|
336 | btRigidBody* body0=btRigidBody::upcast(colObj0); |
---|
337 | btRigidBody* body1=btRigidBody::upcast(colObj1); |
---|
338 | |
---|
339 | solverConstraint.m_contactNormal = normalAxis; |
---|
340 | |
---|
341 | solverConstraint.m_solverBodyA = body0 ? body0 : &getFixedBody(); |
---|
342 | solverConstraint.m_solverBodyB = body1 ? body1 : &getFixedBody(); |
---|
343 | |
---|
344 | solverConstraint.m_friction = cp.m_combinedFriction; |
---|
345 | solverConstraint.m_originalContactPoint = 0; |
---|
346 | |
---|
347 | solverConstraint.m_appliedImpulse = 0.f; |
---|
348 | solverConstraint.m_appliedPushImpulse = 0.f; |
---|
349 | |
---|
350 | { |
---|
351 | btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal); |
---|
352 | solverConstraint.m_relpos1CrossNormal = ftorqueAxis1; |
---|
353 | solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0); |
---|
354 | } |
---|
355 | { |
---|
356 | btVector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal); |
---|
357 | solverConstraint.m_relpos2CrossNormal = ftorqueAxis1; |
---|
358 | solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0); |
---|
359 | } |
---|
360 | |
---|
361 | #ifdef COMPUTE_IMPULSE_DENOM |
---|
362 | btScalar denom0 = rb0->computeImpulseDenominator(pos1,solverConstraint.m_contactNormal); |
---|
363 | btScalar denom1 = rb1->computeImpulseDenominator(pos2,solverConstraint.m_contactNormal); |
---|
364 | #else |
---|
365 | btVector3 vec; |
---|
366 | btScalar denom0 = 0.f; |
---|
367 | btScalar denom1 = 0.f; |
---|
368 | if (body0) |
---|
369 | { |
---|
370 | vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); |
---|
371 | denom0 = body0->getInvMass() + normalAxis.dot(vec); |
---|
372 | } |
---|
373 | if (body1) |
---|
374 | { |
---|
375 | vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); |
---|
376 | denom1 = body1->getInvMass() + normalAxis.dot(vec); |
---|
377 | } |
---|
378 | |
---|
379 | |
---|
380 | #endif //COMPUTE_IMPULSE_DENOM |
---|
381 | btScalar denom = relaxation/(denom0+denom1); |
---|
382 | solverConstraint.m_jacDiagABInv = denom; |
---|
383 | |
---|
384 | #ifdef _USE_JACOBIAN |
---|
385 | solverConstraint.m_jac = btJacobianEntry ( |
---|
386 | rel_pos1,rel_pos2,solverConstraint.m_contactNormal, |
---|
387 | body0->getInvInertiaDiagLocal(), |
---|
388 | body0->getInvMass(), |
---|
389 | body1->getInvInertiaDiagLocal(), |
---|
390 | body1->getInvMass()); |
---|
391 | #endif //_USE_JACOBIAN |
---|
392 | |
---|
393 | |
---|
394 | { |
---|
395 | btScalar rel_vel; |
---|
396 | btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?body0->getLinearVelocity():btVector3(0,0,0)) |
---|
397 | + solverConstraint.m_relpos1CrossNormal.dot(body0?body0->getAngularVelocity():btVector3(0,0,0)); |
---|
398 | btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?body1->getLinearVelocity():btVector3(0,0,0)) |
---|
399 | + solverConstraint.m_relpos2CrossNormal.dot(body1?body1->getAngularVelocity():btVector3(0,0,0)); |
---|
400 | |
---|
401 | rel_vel = vel1Dotn+vel2Dotn; |
---|
402 | |
---|
403 | // btScalar positionalError = 0.f; |
---|
404 | |
---|
405 | btSimdScalar velocityError = desiredVelocity - rel_vel; |
---|
406 | btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv); |
---|
407 | solverConstraint.m_rhs = velocityImpulse; |
---|
408 | solverConstraint.m_cfm = cfmSlip; |
---|
409 | solverConstraint.m_lowerLimit = 0; |
---|
410 | solverConstraint.m_upperLimit = 1e10f; |
---|
411 | } |
---|
412 | } |
---|
413 | |
---|
414 | |
---|
415 | |
---|
416 | btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip) |
---|
417 | { |
---|
418 | btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing(); |
---|
419 | solverConstraint.m_frictionIndex = frictionIndex; |
---|
420 | setupFrictionConstraint(solverConstraint, normalAxis, solverBodyA, solverBodyB, cp, rel_pos1, rel_pos2, |
---|
421 | colObj0, colObj1, relaxation, desiredVelocity, cfmSlip); |
---|
422 | return solverConstraint; |
---|
423 | } |
---|
424 | |
---|
425 | int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body) |
---|
426 | { |
---|
427 | #if 0 |
---|
428 | int solverBodyIdA = -1; |
---|
429 | |
---|
430 | if (body.getCompanionId() >= 0) |
---|
431 | { |
---|
432 | //body has already been converted |
---|
433 | solverBodyIdA = body.getCompanionId(); |
---|
434 | } else |
---|
435 | { |
---|
436 | btRigidBody* rb = btRigidBody::upcast(&body); |
---|
437 | if (rb && rb->getInvMass()) |
---|
438 | { |
---|
439 | solverBodyIdA = m_tmpSolverBodyPool.size(); |
---|
440 | btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); |
---|
441 | initSolverBody(&solverBody,&body); |
---|
442 | body.setCompanionId(solverBodyIdA); |
---|
443 | } else |
---|
444 | { |
---|
445 | return 0;//assume first one is a fixed solver body |
---|
446 | } |
---|
447 | } |
---|
448 | return solverBodyIdA; |
---|
449 | #endif |
---|
450 | return 0; |
---|
451 | } |
---|
452 | #include <stdio.h> |
---|
453 | |
---|
454 | |
---|
455 | void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint, |
---|
456 | btCollisionObject* colObj0, btCollisionObject* colObj1, |
---|
457 | btManifoldPoint& cp, const btContactSolverInfo& infoGlobal, |
---|
458 | btVector3& vel, btScalar& rel_vel, btScalar& relaxation, |
---|
459 | btVector3& rel_pos1, btVector3& rel_pos2) |
---|
460 | { |
---|
461 | btRigidBody* rb0 = btRigidBody::upcast(colObj0); |
---|
462 | btRigidBody* rb1 = btRigidBody::upcast(colObj1); |
---|
463 | |
---|
464 | const btVector3& pos1 = cp.getPositionWorldOnA(); |
---|
465 | const btVector3& pos2 = cp.getPositionWorldOnB(); |
---|
466 | |
---|
467 | // btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); |
---|
468 | // btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); |
---|
469 | rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); |
---|
470 | rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); |
---|
471 | |
---|
472 | relaxation = 1.f; |
---|
473 | |
---|
474 | btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB); |
---|
475 | solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0); |
---|
476 | btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB); |
---|
477 | solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0); |
---|
478 | |
---|
479 | { |
---|
480 | #ifdef COMPUTE_IMPULSE_DENOM |
---|
481 | btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB); |
---|
482 | btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB); |
---|
483 | #else |
---|
484 | btVector3 vec; |
---|
485 | btScalar denom0 = 0.f; |
---|
486 | btScalar denom1 = 0.f; |
---|
487 | if (rb0) |
---|
488 | { |
---|
489 | vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); |
---|
490 | denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec); |
---|
491 | } |
---|
492 | if (rb1) |
---|
493 | { |
---|
494 | vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); |
---|
495 | denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec); |
---|
496 | } |
---|
497 | #endif //COMPUTE_IMPULSE_DENOM |
---|
498 | |
---|
499 | btScalar denom = relaxation/(denom0+denom1); |
---|
500 | solverConstraint.m_jacDiagABInv = denom; |
---|
501 | } |
---|
502 | |
---|
503 | solverConstraint.m_contactNormal = cp.m_normalWorldOnB; |
---|
504 | solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB); |
---|
505 | solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB); |
---|
506 | |
---|
507 | |
---|
508 | |
---|
509 | |
---|
510 | btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0); |
---|
511 | btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0); |
---|
512 | vel = vel1 - vel2; |
---|
513 | rel_vel = cp.m_normalWorldOnB.dot(vel); |
---|
514 | |
---|
515 | btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop; |
---|
516 | |
---|
517 | |
---|
518 | solverConstraint.m_friction = cp.m_combinedFriction; |
---|
519 | |
---|
520 | btScalar restitution = 0.f; |
---|
521 | |
---|
522 | if (cp.m_lifeTime>infoGlobal.m_restingContactRestitutionThreshold) |
---|
523 | { |
---|
524 | restitution = 0.f; |
---|
525 | } else |
---|
526 | { |
---|
527 | restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution); |
---|
528 | if (restitution <= btScalar(0.)) |
---|
529 | { |
---|
530 | restitution = 0.f; |
---|
531 | }; |
---|
532 | } |
---|
533 | |
---|
534 | |
---|
535 | ///warm starting (or zero if disabled) |
---|
536 | if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) |
---|
537 | { |
---|
538 | solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; |
---|
539 | if (rb0) |
---|
540 | rb0->internalApplyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse); |
---|
541 | if (rb1) |
---|
542 | rb1->internalApplyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse); |
---|
543 | } else |
---|
544 | { |
---|
545 | solverConstraint.m_appliedImpulse = 0.f; |
---|
546 | } |
---|
547 | |
---|
548 | solverConstraint.m_appliedPushImpulse = 0.f; |
---|
549 | |
---|
550 | { |
---|
551 | btScalar rel_vel; |
---|
552 | btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0)) |
---|
553 | + solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0)); |
---|
554 | btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0)) |
---|
555 | + solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0)); |
---|
556 | |
---|
557 | rel_vel = vel1Dotn+vel2Dotn; |
---|
558 | |
---|
559 | btScalar positionalError = 0.f; |
---|
560 | positionalError = -penetration * infoGlobal.m_erp/infoGlobal.m_timeStep; |
---|
561 | btScalar velocityError = restitution - rel_vel;// * damping; |
---|
562 | btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; |
---|
563 | btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; |
---|
564 | if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) |
---|
565 | { |
---|
566 | //combine position and velocity into rhs |
---|
567 | solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; |
---|
568 | solverConstraint.m_rhsPenetration = 0.f; |
---|
569 | } else |
---|
570 | { |
---|
571 | //split position and velocity into rhs and m_rhsPenetration |
---|
572 | solverConstraint.m_rhs = velocityImpulse; |
---|
573 | solverConstraint.m_rhsPenetration = penetrationImpulse; |
---|
574 | } |
---|
575 | solverConstraint.m_cfm = 0.f; |
---|
576 | solverConstraint.m_lowerLimit = 0; |
---|
577 | solverConstraint.m_upperLimit = 1e10f; |
---|
578 | } |
---|
579 | |
---|
580 | |
---|
581 | |
---|
582 | |
---|
583 | } |
---|
584 | |
---|
585 | |
---|
586 | |
---|
587 | void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, |
---|
588 | btRigidBody* rb0, btRigidBody* rb1, |
---|
589 | btManifoldPoint& cp, const btContactSolverInfo& infoGlobal) |
---|
590 | { |
---|
591 | if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING) |
---|
592 | { |
---|
593 | { |
---|
594 | btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex]; |
---|
595 | if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) |
---|
596 | { |
---|
597 | frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor; |
---|
598 | if (rb0) |
---|
599 | rb0->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse); |
---|
600 | if (rb1) |
---|
601 | rb1->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse); |
---|
602 | } else |
---|
603 | { |
---|
604 | frictionConstraint1.m_appliedImpulse = 0.f; |
---|
605 | } |
---|
606 | } |
---|
607 | |
---|
608 | if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) |
---|
609 | { |
---|
610 | btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1]; |
---|
611 | if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) |
---|
612 | { |
---|
613 | frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor; |
---|
614 | if (rb0) |
---|
615 | rb0->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse); |
---|
616 | if (rb1) |
---|
617 | rb1->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse); |
---|
618 | } else |
---|
619 | { |
---|
620 | frictionConstraint2.m_appliedImpulse = 0.f; |
---|
621 | } |
---|
622 | } |
---|
623 | } else |
---|
624 | { |
---|
625 | btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex]; |
---|
626 | frictionConstraint1.m_appliedImpulse = 0.f; |
---|
627 | if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) |
---|
628 | { |
---|
629 | btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1]; |
---|
630 | frictionConstraint2.m_appliedImpulse = 0.f; |
---|
631 | } |
---|
632 | } |
---|
633 | } |
---|
634 | |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal) |
---|
639 | { |
---|
640 | btCollisionObject* colObj0=0,*colObj1=0; |
---|
641 | |
---|
642 | colObj0 = (btCollisionObject*)manifold->getBody0(); |
---|
643 | colObj1 = (btCollisionObject*)manifold->getBody1(); |
---|
644 | |
---|
645 | |
---|
646 | btRigidBody* solverBodyA = btRigidBody::upcast(colObj0); |
---|
647 | btRigidBody* solverBodyB = btRigidBody::upcast(colObj1); |
---|
648 | |
---|
649 | ///avoid collision response between two static objects |
---|
650 | if ((!solverBodyA || !solverBodyA->getInvMass()) && (!solverBodyB || !solverBodyB->getInvMass())) |
---|
651 | return; |
---|
652 | |
---|
653 | for (int j=0;j<manifold->getNumContacts();j++) |
---|
654 | { |
---|
655 | |
---|
656 | btManifoldPoint& cp = manifold->getContactPoint(j); |
---|
657 | |
---|
658 | if (cp.getDistance() <= manifold->getContactProcessingThreshold()) |
---|
659 | { |
---|
660 | btVector3 rel_pos1; |
---|
661 | btVector3 rel_pos2; |
---|
662 | btScalar relaxation; |
---|
663 | btScalar rel_vel; |
---|
664 | btVector3 vel; |
---|
665 | |
---|
666 | int frictionIndex = m_tmpSolverContactConstraintPool.size(); |
---|
667 | btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing(); |
---|
668 | btRigidBody* rb0 = btRigidBody::upcast(colObj0); |
---|
669 | btRigidBody* rb1 = btRigidBody::upcast(colObj1); |
---|
670 | solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody(); |
---|
671 | solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody(); |
---|
672 | solverConstraint.m_originalContactPoint = &cp; |
---|
673 | |
---|
674 | setupContactConstraint(solverConstraint, colObj0, colObj1, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2); |
---|
675 | |
---|
676 | // const btVector3& pos1 = cp.getPositionWorldOnA(); |
---|
677 | // const btVector3& pos2 = cp.getPositionWorldOnB(); |
---|
678 | |
---|
679 | /////setup the friction constraints |
---|
680 | |
---|
681 | solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size(); |
---|
682 | |
---|
683 | if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized) |
---|
684 | { |
---|
685 | cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel; |
---|
686 | btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2(); |
---|
687 | if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON) |
---|
688 | { |
---|
689 | cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel); |
---|
690 | if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) |
---|
691 | { |
---|
692 | cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB); |
---|
693 | cp.m_lateralFrictionDir2.normalize();//?? |
---|
694 | applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2); |
---|
695 | applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2); |
---|
696 | addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); |
---|
697 | } |
---|
698 | |
---|
699 | applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1); |
---|
700 | applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1); |
---|
701 | addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); |
---|
702 | cp.m_lateralFrictionInitialized = true; |
---|
703 | } else |
---|
704 | { |
---|
705 | //re-calculate friction direction every frame, todo: check if this is really needed |
---|
706 | btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2); |
---|
707 | if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) |
---|
708 | { |
---|
709 | applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2); |
---|
710 | applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2); |
---|
711 | addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); |
---|
712 | } |
---|
713 | |
---|
714 | applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1); |
---|
715 | applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1); |
---|
716 | addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); |
---|
717 | |
---|
718 | cp.m_lateralFrictionInitialized = true; |
---|
719 | } |
---|
720 | |
---|
721 | } else |
---|
722 | { |
---|
723 | addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1); |
---|
724 | if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) |
---|
725 | addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2); |
---|
726 | } |
---|
727 | |
---|
728 | setFrictionConstraintImpulse( solverConstraint, rb0, rb1, cp, infoGlobal); |
---|
729 | |
---|
730 | } |
---|
731 | } |
---|
732 | } |
---|
733 | |
---|
734 | |
---|
735 | btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) |
---|
736 | { |
---|
737 | BT_PROFILE("solveGroupCacheFriendlySetup"); |
---|
738 | (void)stackAlloc; |
---|
739 | (void)debugDrawer; |
---|
740 | |
---|
741 | |
---|
742 | if (!(numConstraints + numManifolds)) |
---|
743 | { |
---|
744 | // printf("empty\n"); |
---|
745 | return 0.f; |
---|
746 | } |
---|
747 | |
---|
748 | if (infoGlobal.m_splitImpulse) |
---|
749 | { |
---|
750 | for (int i = 0; i < numBodies; i++) |
---|
751 | { |
---|
752 | btRigidBody* body = btRigidBody::upcast(bodies[i]); |
---|
753 | if (body) |
---|
754 | { |
---|
755 | body->internalGetDeltaLinearVelocity().setZero(); |
---|
756 | body->internalGetDeltaAngularVelocity().setZero(); |
---|
757 | body->internalGetPushVelocity().setZero(); |
---|
758 | body->internalGetTurnVelocity().setZero(); |
---|
759 | } |
---|
760 | } |
---|
761 | } |
---|
762 | else |
---|
763 | { |
---|
764 | for (int i = 0; i < numBodies; i++) |
---|
765 | { |
---|
766 | btRigidBody* body = btRigidBody::upcast(bodies[i]); |
---|
767 | if (body) |
---|
768 | { |
---|
769 | body->internalGetDeltaLinearVelocity().setZero(); |
---|
770 | body->internalGetDeltaAngularVelocity().setZero(); |
---|
771 | } |
---|
772 | } |
---|
773 | } |
---|
774 | |
---|
775 | if (1) |
---|
776 | { |
---|
777 | int j; |
---|
778 | for (j=0;j<numConstraints;j++) |
---|
779 | { |
---|
780 | btTypedConstraint* constraint = constraints[j]; |
---|
781 | constraint->buildJacobian(); |
---|
782 | } |
---|
783 | } |
---|
784 | //btRigidBody* rb0=0,*rb1=0; |
---|
785 | |
---|
786 | //if (1) |
---|
787 | { |
---|
788 | { |
---|
789 | |
---|
790 | int totalNumRows = 0; |
---|
791 | int i; |
---|
792 | |
---|
793 | m_tmpConstraintSizesPool.resize(numConstraints); |
---|
794 | //calculate the total number of contraint rows |
---|
795 | for (i=0;i<numConstraints;i++) |
---|
796 | { |
---|
797 | btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i]; |
---|
798 | constraints[i]->getInfo1(&info1); |
---|
799 | totalNumRows += info1.m_numConstraintRows; |
---|
800 | } |
---|
801 | m_tmpSolverNonContactConstraintPool.resize(totalNumRows); |
---|
802 | |
---|
803 | |
---|
804 | ///setup the btSolverConstraints |
---|
805 | int currentRow = 0; |
---|
806 | |
---|
807 | for (i=0;i<numConstraints;i++) |
---|
808 | { |
---|
809 | const btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i]; |
---|
810 | |
---|
811 | if (info1.m_numConstraintRows) |
---|
812 | { |
---|
813 | btAssert(currentRow<totalNumRows); |
---|
814 | |
---|
815 | btSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow]; |
---|
816 | btTypedConstraint* constraint = constraints[i]; |
---|
817 | |
---|
818 | |
---|
819 | |
---|
820 | btRigidBody& rbA = constraint->getRigidBodyA(); |
---|
821 | btRigidBody& rbB = constraint->getRigidBodyB(); |
---|
822 | |
---|
823 | |
---|
824 | int j; |
---|
825 | for ( j=0;j<info1.m_numConstraintRows;j++) |
---|
826 | { |
---|
827 | memset(¤tConstraintRow[j],0,sizeof(btSolverConstraint)); |
---|
828 | currentConstraintRow[j].m_lowerLimit = -FLT_MAX; |
---|
829 | currentConstraintRow[j].m_upperLimit = FLT_MAX; |
---|
830 | currentConstraintRow[j].m_appliedImpulse = 0.f; |
---|
831 | currentConstraintRow[j].m_appliedPushImpulse = 0.f; |
---|
832 | currentConstraintRow[j].m_solverBodyA = &rbA; |
---|
833 | currentConstraintRow[j].m_solverBodyB = &rbB; |
---|
834 | } |
---|
835 | |
---|
836 | rbA.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); |
---|
837 | rbA.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); |
---|
838 | rbB.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); |
---|
839 | rbB.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); |
---|
840 | |
---|
841 | |
---|
842 | |
---|
843 | btTypedConstraint::btConstraintInfo2 info2; |
---|
844 | info2.fps = 1.f/infoGlobal.m_timeStep; |
---|
845 | info2.erp = infoGlobal.m_erp; |
---|
846 | info2.m_J1linearAxis = currentConstraintRow->m_contactNormal; |
---|
847 | info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal; |
---|
848 | info2.m_J2linearAxis = 0; |
---|
849 | info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal; |
---|
850 | info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this |
---|
851 | ///the size of btSolverConstraint needs be a multiple of btScalar |
---|
852 | btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint)); |
---|
853 | info2.m_constraintError = ¤tConstraintRow->m_rhs; |
---|
854 | currentConstraintRow->m_cfm = infoGlobal.m_globalCfm; |
---|
855 | info2.m_damping = infoGlobal.m_damping; |
---|
856 | info2.cfm = ¤tConstraintRow->m_cfm; |
---|
857 | info2.m_lowerLimit = ¤tConstraintRow->m_lowerLimit; |
---|
858 | info2.m_upperLimit = ¤tConstraintRow->m_upperLimit; |
---|
859 | info2.m_numIterations = infoGlobal.m_numIterations; |
---|
860 | constraints[i]->getInfo2(&info2); |
---|
861 | |
---|
862 | ///finalize the constraint setup |
---|
863 | for ( j=0;j<info1.m_numConstraintRows;j++) |
---|
864 | { |
---|
865 | btSolverConstraint& solverConstraint = currentConstraintRow[j]; |
---|
866 | solverConstraint.m_originalContactPoint = constraint; |
---|
867 | |
---|
868 | { |
---|
869 | const btVector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal; |
---|
870 | solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor(); |
---|
871 | } |
---|
872 | { |
---|
873 | const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal; |
---|
874 | solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor(); |
---|
875 | } |
---|
876 | |
---|
877 | { |
---|
878 | btVector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass(); |
---|
879 | btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal; |
---|
880 | btVector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal? |
---|
881 | btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal; |
---|
882 | |
---|
883 | btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal); |
---|
884 | sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal); |
---|
885 | sum += iMJlB.dot(solverConstraint.m_contactNormal); |
---|
886 | sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal); |
---|
887 | |
---|
888 | solverConstraint.m_jacDiagABInv = btScalar(1.)/sum; |
---|
889 | } |
---|
890 | |
---|
891 | |
---|
892 | ///fix rhs |
---|
893 | ///todo: add force/torque accelerators |
---|
894 | { |
---|
895 | btScalar rel_vel; |
---|
896 | btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()); |
---|
897 | btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()); |
---|
898 | |
---|
899 | rel_vel = vel1Dotn+vel2Dotn; |
---|
900 | |
---|
901 | btScalar restitution = 0.f; |
---|
902 | btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2 |
---|
903 | btScalar velocityError = restitution - rel_vel * info2.m_damping; |
---|
904 | btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; |
---|
905 | btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; |
---|
906 | solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; |
---|
907 | solverConstraint.m_appliedImpulse = 0.f; |
---|
908 | |
---|
909 | } |
---|
910 | } |
---|
911 | } |
---|
912 | currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows; |
---|
913 | } |
---|
914 | } |
---|
915 | |
---|
916 | { |
---|
917 | int i; |
---|
918 | btPersistentManifold* manifold = 0; |
---|
919 | // btCollisionObject* colObj0=0,*colObj1=0; |
---|
920 | |
---|
921 | |
---|
922 | for (i=0;i<numManifolds;i++) |
---|
923 | { |
---|
924 | manifold = manifoldPtr[i]; |
---|
925 | convertContact(manifold,infoGlobal); |
---|
926 | } |
---|
927 | } |
---|
928 | } |
---|
929 | |
---|
930 | btContactSolverInfo info = infoGlobal; |
---|
931 | |
---|
932 | |
---|
933 | |
---|
934 | int numConstraintPool = m_tmpSolverContactConstraintPool.size(); |
---|
935 | int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size(); |
---|
936 | |
---|
937 | ///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints |
---|
938 | m_orderTmpConstraintPool.resize(numConstraintPool); |
---|
939 | m_orderFrictionConstraintPool.resize(numFrictionPool); |
---|
940 | { |
---|
941 | int i; |
---|
942 | for (i=0;i<numConstraintPool;i++) |
---|
943 | { |
---|
944 | m_orderTmpConstraintPool[i] = i; |
---|
945 | } |
---|
946 | for (i=0;i<numFrictionPool;i++) |
---|
947 | { |
---|
948 | m_orderFrictionConstraintPool[i] = i; |
---|
949 | } |
---|
950 | } |
---|
951 | |
---|
952 | return 0.f; |
---|
953 | |
---|
954 | } |
---|
955 | |
---|
956 | btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/) |
---|
957 | { |
---|
958 | |
---|
959 | int numConstraintPool = m_tmpSolverContactConstraintPool.size(); |
---|
960 | int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size(); |
---|
961 | |
---|
962 | int j; |
---|
963 | |
---|
964 | if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER) |
---|
965 | { |
---|
966 | if ((iteration & 7) == 0) { |
---|
967 | for (j=0; j<numConstraintPool; ++j) { |
---|
968 | int tmp = m_orderTmpConstraintPool[j]; |
---|
969 | int swapi = btRandInt2(j+1); |
---|
970 | m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi]; |
---|
971 | m_orderTmpConstraintPool[swapi] = tmp; |
---|
972 | } |
---|
973 | |
---|
974 | for (j=0; j<numFrictionPool; ++j) { |
---|
975 | int tmp = m_orderFrictionConstraintPool[j]; |
---|
976 | int swapi = btRandInt2(j+1); |
---|
977 | m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi]; |
---|
978 | m_orderFrictionConstraintPool[swapi] = tmp; |
---|
979 | } |
---|
980 | } |
---|
981 | } |
---|
982 | |
---|
983 | if (infoGlobal.m_solverMode & SOLVER_SIMD) |
---|
984 | { |
---|
985 | ///solve all joint constraints, using SIMD, if available |
---|
986 | for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) |
---|
987 | { |
---|
988 | btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j]; |
---|
989 | resolveSingleConstraintRowGenericSIMD(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint); |
---|
990 | } |
---|
991 | |
---|
992 | for (j=0;j<numConstraints;j++) |
---|
993 | { |
---|
994 | constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep); |
---|
995 | } |
---|
996 | |
---|
997 | ///solve all contact constraints using SIMD, if available |
---|
998 | int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); |
---|
999 | for (j=0;j<numPoolConstraints;j++) |
---|
1000 | { |
---|
1001 | const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; |
---|
1002 | resolveSingleConstraintRowLowerLimitSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); |
---|
1003 | |
---|
1004 | } |
---|
1005 | ///solve all friction constraints, using SIMD, if available |
---|
1006 | int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size(); |
---|
1007 | for (j=0;j<numFrictionPoolConstraints;j++) |
---|
1008 | { |
---|
1009 | btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]]; |
---|
1010 | btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; |
---|
1011 | |
---|
1012 | if (totalImpulse>btScalar(0)) |
---|
1013 | { |
---|
1014 | solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); |
---|
1015 | solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; |
---|
1016 | |
---|
1017 | resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold); |
---|
1018 | } |
---|
1019 | } |
---|
1020 | } else |
---|
1021 | { |
---|
1022 | |
---|
1023 | ///solve all joint constraints |
---|
1024 | for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) |
---|
1025 | { |
---|
1026 | btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j]; |
---|
1027 | resolveSingleConstraintRowGeneric(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint); |
---|
1028 | } |
---|
1029 | |
---|
1030 | for (j=0;j<numConstraints;j++) |
---|
1031 | { |
---|
1032 | constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep); |
---|
1033 | } |
---|
1034 | ///solve all contact constraints |
---|
1035 | int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); |
---|
1036 | for (j=0;j<numPoolConstraints;j++) |
---|
1037 | { |
---|
1038 | const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; |
---|
1039 | resolveSingleConstraintRowLowerLimit(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); |
---|
1040 | } |
---|
1041 | ///solve all friction constraints |
---|
1042 | int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size(); |
---|
1043 | for (j=0;j<numFrictionPoolConstraints;j++) |
---|
1044 | { |
---|
1045 | btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]]; |
---|
1046 | btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; |
---|
1047 | |
---|
1048 | if (totalImpulse>btScalar(0)) |
---|
1049 | { |
---|
1050 | solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); |
---|
1051 | solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; |
---|
1052 | |
---|
1053 | resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); |
---|
1054 | } |
---|
1055 | } |
---|
1056 | } |
---|
1057 | return 0.f; |
---|
1058 | } |
---|
1059 | |
---|
1060 | |
---|
1061 | void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) |
---|
1062 | { |
---|
1063 | int iteration; |
---|
1064 | if (infoGlobal.m_splitImpulse) |
---|
1065 | { |
---|
1066 | if (infoGlobal.m_solverMode & SOLVER_SIMD) |
---|
1067 | { |
---|
1068 | for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) |
---|
1069 | { |
---|
1070 | { |
---|
1071 | int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); |
---|
1072 | int j; |
---|
1073 | for (j=0;j<numPoolConstraints;j++) |
---|
1074 | { |
---|
1075 | const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; |
---|
1076 | |
---|
1077 | resolveSplitPenetrationSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); |
---|
1078 | } |
---|
1079 | } |
---|
1080 | } |
---|
1081 | } |
---|
1082 | else |
---|
1083 | { |
---|
1084 | for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) |
---|
1085 | { |
---|
1086 | { |
---|
1087 | int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); |
---|
1088 | int j; |
---|
1089 | for (j=0;j<numPoolConstraints;j++) |
---|
1090 | { |
---|
1091 | const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; |
---|
1092 | |
---|
1093 | resolveSplitPenetrationImpulseCacheFriendly(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); |
---|
1094 | } |
---|
1095 | } |
---|
1096 | } |
---|
1097 | } |
---|
1098 | } |
---|
1099 | } |
---|
1100 | |
---|
1101 | btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) |
---|
1102 | { |
---|
1103 | BT_PROFILE("solveGroupCacheFriendlyIterations"); |
---|
1104 | |
---|
1105 | |
---|
1106 | //should traverse the contacts random order... |
---|
1107 | int iteration; |
---|
1108 | { |
---|
1109 | for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) |
---|
1110 | { |
---|
1111 | solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc); |
---|
1112 | } |
---|
1113 | |
---|
1114 | solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc); |
---|
1115 | } |
---|
1116 | return 0.f; |
---|
1117 | } |
---|
1118 | |
---|
1119 | btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies ,int numBodies,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** /*constraints*/,int /* numConstraints*/,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/) |
---|
1120 | { |
---|
1121 | int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); |
---|
1122 | int i,j; |
---|
1123 | |
---|
1124 | for (j=0;j<numPoolConstraints;j++) |
---|
1125 | { |
---|
1126 | |
---|
1127 | const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j]; |
---|
1128 | btManifoldPoint* pt = (btManifoldPoint*) solveManifold.m_originalContactPoint; |
---|
1129 | btAssert(pt); |
---|
1130 | pt->m_appliedImpulse = solveManifold.m_appliedImpulse; |
---|
1131 | if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING) |
---|
1132 | { |
---|
1133 | pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; |
---|
1134 | pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse; |
---|
1135 | } |
---|
1136 | |
---|
1137 | //do a callback here? |
---|
1138 | } |
---|
1139 | |
---|
1140 | numPoolConstraints = m_tmpSolverNonContactConstraintPool.size(); |
---|
1141 | for (j=0;j<numPoolConstraints;j++) |
---|
1142 | { |
---|
1143 | const btSolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j]; |
---|
1144 | btTypedConstraint* constr = (btTypedConstraint*)solverConstr.m_originalContactPoint; |
---|
1145 | btScalar sum = constr->internalGetAppliedImpulse(); |
---|
1146 | sum += solverConstr.m_appliedImpulse; |
---|
1147 | constr->internalSetAppliedImpulse(sum); |
---|
1148 | } |
---|
1149 | |
---|
1150 | |
---|
1151 | if (infoGlobal.m_splitImpulse) |
---|
1152 | { |
---|
1153 | for ( i=0;i<numBodies;i++) |
---|
1154 | { |
---|
1155 | btRigidBody* body = btRigidBody::upcast(bodies[i]); |
---|
1156 | if (body) |
---|
1157 | body->internalWritebackVelocity(infoGlobal.m_timeStep); |
---|
1158 | } |
---|
1159 | } else |
---|
1160 | { |
---|
1161 | for ( i=0;i<numBodies;i++) |
---|
1162 | { |
---|
1163 | btRigidBody* body = btRigidBody::upcast(bodies[i]); |
---|
1164 | if (body) |
---|
1165 | body->internalWritebackVelocity(); |
---|
1166 | } |
---|
1167 | } |
---|
1168 | |
---|
1169 | |
---|
1170 | m_tmpSolverContactConstraintPool.resize(0); |
---|
1171 | m_tmpSolverNonContactConstraintPool.resize(0); |
---|
1172 | m_tmpSolverContactFrictionConstraintPool.resize(0); |
---|
1173 | |
---|
1174 | return 0.f; |
---|
1175 | } |
---|
1176 | |
---|
1177 | |
---|
1178 | |
---|
1179 | /// btSequentialImpulseConstraintSolver Sequentially applies impulses |
---|
1180 | btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/) |
---|
1181 | { |
---|
1182 | |
---|
1183 | BT_PROFILE("solveGroup"); |
---|
1184 | //you need to provide at least some bodies |
---|
1185 | btAssert(bodies); |
---|
1186 | btAssert(numBodies); |
---|
1187 | |
---|
1188 | solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); |
---|
1189 | |
---|
1190 | solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); |
---|
1191 | |
---|
1192 | solveGroupCacheFriendlyFinish(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); |
---|
1193 | |
---|
1194 | return 0.f; |
---|
1195 | } |
---|
1196 | |
---|
1197 | void btSequentialImpulseConstraintSolver::reset() |
---|
1198 | { |
---|
1199 | m_btSeed2 = 0; |
---|
1200 | } |
---|
1201 | |
---|
1202 | btRigidBody& btSequentialImpulseConstraintSolver::getFixedBody() |
---|
1203 | { |
---|
1204 | static btRigidBody s_fixed(0, 0,0); |
---|
1205 | s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.))); |
---|
1206 | return s_fixed; |
---|
1207 | } |
---|
1208 | |
---|