1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #ifndef SIMD__VECTOR3_H |
---|
18 | #define SIMD__VECTOR3_H |
---|
19 | |
---|
20 | |
---|
21 | #include "btScalar.h" |
---|
22 | #include "btMinMax.h" |
---|
23 | |
---|
24 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
25 | #define btVector3Data btVector3DoubleData |
---|
26 | #define btVector3DataName "btVector3DoubleData" |
---|
27 | #else |
---|
28 | #define btVector3Data btVector3FloatData |
---|
29 | #define btVector3DataName "btVector3FloatData" |
---|
30 | #endif //BT_USE_DOUBLE_PRECISION |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | |
---|
35 | /**@brief btVector3 can be used to represent 3D points and vectors. |
---|
36 | * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user |
---|
37 | * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers |
---|
38 | */ |
---|
39 | ATTRIBUTE_ALIGNED16(class) btVector3 |
---|
40 | { |
---|
41 | public: |
---|
42 | |
---|
43 | #if defined (__SPU__) && defined (__CELLOS_LV2__) |
---|
44 | btScalar m_floats[4]; |
---|
45 | public: |
---|
46 | SIMD_FORCE_INLINE const vec_float4& get128() const |
---|
47 | { |
---|
48 | return *((const vec_float4*)&m_floats[0]); |
---|
49 | } |
---|
50 | public: |
---|
51 | #else //__CELLOS_LV2__ __SPU__ |
---|
52 | #ifdef BT_USE_SSE // _WIN32 |
---|
53 | union { |
---|
54 | __m128 mVec128; |
---|
55 | btScalar m_floats[4]; |
---|
56 | }; |
---|
57 | SIMD_FORCE_INLINE __m128 get128() const |
---|
58 | { |
---|
59 | return mVec128; |
---|
60 | } |
---|
61 | SIMD_FORCE_INLINE void set128(__m128 v128) |
---|
62 | { |
---|
63 | mVec128 = v128; |
---|
64 | } |
---|
65 | #else |
---|
66 | btScalar m_floats[4]; |
---|
67 | #endif |
---|
68 | #endif //__CELLOS_LV2__ __SPU__ |
---|
69 | |
---|
70 | public: |
---|
71 | |
---|
72 | /**@brief No initialization constructor */ |
---|
73 | SIMD_FORCE_INLINE btVector3() {} |
---|
74 | |
---|
75 | |
---|
76 | |
---|
77 | /**@brief Constructor from scalars |
---|
78 | * @param x X value |
---|
79 | * @param y Y value |
---|
80 | * @param z Z value |
---|
81 | */ |
---|
82 | SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z) |
---|
83 | { |
---|
84 | m_floats[0] = x; |
---|
85 | m_floats[1] = y; |
---|
86 | m_floats[2] = z; |
---|
87 | m_floats[3] = btScalar(0.); |
---|
88 | } |
---|
89 | |
---|
90 | |
---|
91 | /**@brief Add a vector to this one |
---|
92 | * @param The vector to add to this one */ |
---|
93 | SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) |
---|
94 | { |
---|
95 | |
---|
96 | m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1];m_floats[2] += v.m_floats[2]; |
---|
97 | return *this; |
---|
98 | } |
---|
99 | |
---|
100 | |
---|
101 | /**@brief Subtract a vector from this one |
---|
102 | * @param The vector to subtract */ |
---|
103 | SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) |
---|
104 | { |
---|
105 | m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1];m_floats[2] -= v.m_floats[2]; |
---|
106 | return *this; |
---|
107 | } |
---|
108 | /**@brief Scale the vector |
---|
109 | * @param s Scale factor */ |
---|
110 | SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) |
---|
111 | { |
---|
112 | m_floats[0] *= s; m_floats[1] *= s;m_floats[2] *= s; |
---|
113 | return *this; |
---|
114 | } |
---|
115 | |
---|
116 | /**@brief Inversely scale the vector |
---|
117 | * @param s Scale factor to divide by */ |
---|
118 | SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) |
---|
119 | { |
---|
120 | btFullAssert(s != btScalar(0.0)); |
---|
121 | return *this *= btScalar(1.0) / s; |
---|
122 | } |
---|
123 | |
---|
124 | /**@brief Return the dot product |
---|
125 | * @param v The other vector in the dot product */ |
---|
126 | SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const |
---|
127 | { |
---|
128 | return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] +m_floats[2] * v.m_floats[2]; |
---|
129 | } |
---|
130 | |
---|
131 | /**@brief Return the length of the vector squared */ |
---|
132 | SIMD_FORCE_INLINE btScalar length2() const |
---|
133 | { |
---|
134 | return dot(*this); |
---|
135 | } |
---|
136 | |
---|
137 | /**@brief Return the length of the vector */ |
---|
138 | SIMD_FORCE_INLINE btScalar length() const |
---|
139 | { |
---|
140 | return btSqrt(length2()); |
---|
141 | } |
---|
142 | |
---|
143 | /**@brief Return the distance squared between the ends of this and another vector |
---|
144 | * This is symantically treating the vector like a point */ |
---|
145 | SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; |
---|
146 | |
---|
147 | /**@brief Return the distance between the ends of this and another vector |
---|
148 | * This is symantically treating the vector like a point */ |
---|
149 | SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; |
---|
150 | |
---|
151 | SIMD_FORCE_INLINE btVector3& safeNormalize() |
---|
152 | { |
---|
153 | btVector3 absVec = this->absolute(); |
---|
154 | int maxIndex = absVec.maxAxis(); |
---|
155 | if (absVec[maxIndex]>0) |
---|
156 | { |
---|
157 | *this /= absVec[maxIndex]; |
---|
158 | return *this /= length(); |
---|
159 | } |
---|
160 | setValue(1,0,0); |
---|
161 | return *this; |
---|
162 | } |
---|
163 | |
---|
164 | /**@brief Normalize this vector |
---|
165 | * x^2 + y^2 + z^2 = 1 */ |
---|
166 | SIMD_FORCE_INLINE btVector3& normalize() |
---|
167 | { |
---|
168 | return *this /= length(); |
---|
169 | } |
---|
170 | |
---|
171 | /**@brief Return a normalized version of this vector */ |
---|
172 | SIMD_FORCE_INLINE btVector3 normalized() const; |
---|
173 | |
---|
174 | /**@brief Return a rotated version of this vector |
---|
175 | * @param wAxis The axis to rotate about |
---|
176 | * @param angle The angle to rotate by */ |
---|
177 | SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const; |
---|
178 | |
---|
179 | /**@brief Return the angle between this and another vector |
---|
180 | * @param v The other vector */ |
---|
181 | SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const |
---|
182 | { |
---|
183 | btScalar s = btSqrt(length2() * v.length2()); |
---|
184 | btFullAssert(s != btScalar(0.0)); |
---|
185 | return btAcos(dot(v) / s); |
---|
186 | } |
---|
187 | /**@brief Return a vector will the absolute values of each element */ |
---|
188 | SIMD_FORCE_INLINE btVector3 absolute() const |
---|
189 | { |
---|
190 | return btVector3( |
---|
191 | btFabs(m_floats[0]), |
---|
192 | btFabs(m_floats[1]), |
---|
193 | btFabs(m_floats[2])); |
---|
194 | } |
---|
195 | /**@brief Return the cross product between this and another vector |
---|
196 | * @param v The other vector */ |
---|
197 | SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const |
---|
198 | { |
---|
199 | return btVector3( |
---|
200 | m_floats[1] * v.m_floats[2] -m_floats[2] * v.m_floats[1], |
---|
201 | m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], |
---|
202 | m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); |
---|
203 | } |
---|
204 | |
---|
205 | SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const |
---|
206 | { |
---|
207 | return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + |
---|
208 | m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + |
---|
209 | m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); |
---|
210 | } |
---|
211 | |
---|
212 | /**@brief Return the axis with the smallest value |
---|
213 | * Note return values are 0,1,2 for x, y, or z */ |
---|
214 | SIMD_FORCE_INLINE int minAxis() const |
---|
215 | { |
---|
216 | return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2); |
---|
217 | } |
---|
218 | |
---|
219 | /**@brief Return the axis with the largest value |
---|
220 | * Note return values are 0,1,2 for x, y, or z */ |
---|
221 | SIMD_FORCE_INLINE int maxAxis() const |
---|
222 | { |
---|
223 | return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0); |
---|
224 | } |
---|
225 | |
---|
226 | SIMD_FORCE_INLINE int furthestAxis() const |
---|
227 | { |
---|
228 | return absolute().minAxis(); |
---|
229 | } |
---|
230 | |
---|
231 | SIMD_FORCE_INLINE int closestAxis() const |
---|
232 | { |
---|
233 | return absolute().maxAxis(); |
---|
234 | } |
---|
235 | |
---|
236 | SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) |
---|
237 | { |
---|
238 | btScalar s = btScalar(1.0) - rt; |
---|
239 | m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; |
---|
240 | m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; |
---|
241 | m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; |
---|
242 | //don't do the unused w component |
---|
243 | // m_co[3] = s * v0[3] + rt * v1[3]; |
---|
244 | } |
---|
245 | |
---|
246 | /**@brief Return the linear interpolation between this and another vector |
---|
247 | * @param v The other vector |
---|
248 | * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ |
---|
249 | SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const |
---|
250 | { |
---|
251 | return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, |
---|
252 | m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, |
---|
253 | m_floats[2] + (v.m_floats[2] -m_floats[2]) * t); |
---|
254 | } |
---|
255 | |
---|
256 | /**@brief Elementwise multiply this vector by the other |
---|
257 | * @param v The other vector */ |
---|
258 | SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) |
---|
259 | { |
---|
260 | m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1];m_floats[2] *= v.m_floats[2]; |
---|
261 | return *this; |
---|
262 | } |
---|
263 | |
---|
264 | /**@brief Return the x value */ |
---|
265 | SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } |
---|
266 | /**@brief Return the y value */ |
---|
267 | SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } |
---|
268 | /**@brief Return the z value */ |
---|
269 | SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } |
---|
270 | /**@brief Set the x value */ |
---|
271 | SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x;}; |
---|
272 | /**@brief Set the y value */ |
---|
273 | SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y;}; |
---|
274 | /**@brief Set the z value */ |
---|
275 | SIMD_FORCE_INLINE void setZ(btScalar z) {m_floats[2] = z;}; |
---|
276 | /**@brief Set the w value */ |
---|
277 | SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w;}; |
---|
278 | /**@brief Return the x value */ |
---|
279 | SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } |
---|
280 | /**@brief Return the y value */ |
---|
281 | SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } |
---|
282 | /**@brief Return the z value */ |
---|
283 | SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } |
---|
284 | /**@brief Return the w value */ |
---|
285 | SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } |
---|
286 | |
---|
287 | //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; } |
---|
288 | //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; } |
---|
289 | ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. |
---|
290 | SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; } |
---|
291 | SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; } |
---|
292 | |
---|
293 | SIMD_FORCE_INLINE bool operator==(const btVector3& other) const |
---|
294 | { |
---|
295 | return ((m_floats[3]==other.m_floats[3]) && (m_floats[2]==other.m_floats[2]) && (m_floats[1]==other.m_floats[1]) && (m_floats[0]==other.m_floats[0])); |
---|
296 | } |
---|
297 | |
---|
298 | SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const |
---|
299 | { |
---|
300 | return !(*this == other); |
---|
301 | } |
---|
302 | |
---|
303 | /**@brief Set each element to the max of the current values and the values of another btVector3 |
---|
304 | * @param other The other btVector3 to compare with |
---|
305 | */ |
---|
306 | SIMD_FORCE_INLINE void setMax(const btVector3& other) |
---|
307 | { |
---|
308 | btSetMax(m_floats[0], other.m_floats[0]); |
---|
309 | btSetMax(m_floats[1], other.m_floats[1]); |
---|
310 | btSetMax(m_floats[2], other.m_floats[2]); |
---|
311 | btSetMax(m_floats[3], other.w()); |
---|
312 | } |
---|
313 | /**@brief Set each element to the min of the current values and the values of another btVector3 |
---|
314 | * @param other The other btVector3 to compare with |
---|
315 | */ |
---|
316 | SIMD_FORCE_INLINE void setMin(const btVector3& other) |
---|
317 | { |
---|
318 | btSetMin(m_floats[0], other.m_floats[0]); |
---|
319 | btSetMin(m_floats[1], other.m_floats[1]); |
---|
320 | btSetMin(m_floats[2], other.m_floats[2]); |
---|
321 | btSetMin(m_floats[3], other.w()); |
---|
322 | } |
---|
323 | |
---|
324 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z) |
---|
325 | { |
---|
326 | m_floats[0]=x; |
---|
327 | m_floats[1]=y; |
---|
328 | m_floats[2]=z; |
---|
329 | m_floats[3] = btScalar(0.); |
---|
330 | } |
---|
331 | |
---|
332 | void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const |
---|
333 | { |
---|
334 | v0->setValue(0. ,-z() ,y()); |
---|
335 | v1->setValue(z() ,0. ,-x()); |
---|
336 | v2->setValue(-y() ,x() ,0.); |
---|
337 | } |
---|
338 | |
---|
339 | void setZero() |
---|
340 | { |
---|
341 | setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
342 | } |
---|
343 | |
---|
344 | SIMD_FORCE_INLINE bool isZero() const |
---|
345 | { |
---|
346 | return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0); |
---|
347 | } |
---|
348 | |
---|
349 | SIMD_FORCE_INLINE bool fuzzyZero() const |
---|
350 | { |
---|
351 | return length2() < SIMD_EPSILON; |
---|
352 | } |
---|
353 | |
---|
354 | SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const; |
---|
355 | |
---|
356 | SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn); |
---|
357 | |
---|
358 | SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const; |
---|
359 | |
---|
360 | SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); |
---|
361 | |
---|
362 | SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const; |
---|
363 | |
---|
364 | SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); |
---|
365 | |
---|
366 | }; |
---|
367 | |
---|
368 | /**@brief Return the sum of two vectors (Point symantics)*/ |
---|
369 | SIMD_FORCE_INLINE btVector3 |
---|
370 | operator+(const btVector3& v1, const btVector3& v2) |
---|
371 | { |
---|
372 | return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]); |
---|
373 | } |
---|
374 | |
---|
375 | /**@brief Return the elementwise product of two vectors */ |
---|
376 | SIMD_FORCE_INLINE btVector3 |
---|
377 | operator*(const btVector3& v1, const btVector3& v2) |
---|
378 | { |
---|
379 | return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]); |
---|
380 | } |
---|
381 | |
---|
382 | /**@brief Return the difference between two vectors */ |
---|
383 | SIMD_FORCE_INLINE btVector3 |
---|
384 | operator-(const btVector3& v1, const btVector3& v2) |
---|
385 | { |
---|
386 | return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]); |
---|
387 | } |
---|
388 | /**@brief Return the negative of the vector */ |
---|
389 | SIMD_FORCE_INLINE btVector3 |
---|
390 | operator-(const btVector3& v) |
---|
391 | { |
---|
392 | return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); |
---|
393 | } |
---|
394 | |
---|
395 | /**@brief Return the vector scaled by s */ |
---|
396 | SIMD_FORCE_INLINE btVector3 |
---|
397 | operator*(const btVector3& v, const btScalar& s) |
---|
398 | { |
---|
399 | return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s); |
---|
400 | } |
---|
401 | |
---|
402 | /**@brief Return the vector scaled by s */ |
---|
403 | SIMD_FORCE_INLINE btVector3 |
---|
404 | operator*(const btScalar& s, const btVector3& v) |
---|
405 | { |
---|
406 | return v * s; |
---|
407 | } |
---|
408 | |
---|
409 | /**@brief Return the vector inversely scaled by s */ |
---|
410 | SIMD_FORCE_INLINE btVector3 |
---|
411 | operator/(const btVector3& v, const btScalar& s) |
---|
412 | { |
---|
413 | btFullAssert(s != btScalar(0.0)); |
---|
414 | return v * (btScalar(1.0) / s); |
---|
415 | } |
---|
416 | |
---|
417 | /**@brief Return the vector inversely scaled by s */ |
---|
418 | SIMD_FORCE_INLINE btVector3 |
---|
419 | operator/(const btVector3& v1, const btVector3& v2) |
---|
420 | { |
---|
421 | return btVector3(v1.m_floats[0] / v2.m_floats[0],v1.m_floats[1] / v2.m_floats[1],v1.m_floats[2] / v2.m_floats[2]); |
---|
422 | } |
---|
423 | |
---|
424 | /**@brief Return the dot product between two vectors */ |
---|
425 | SIMD_FORCE_INLINE btScalar |
---|
426 | btDot(const btVector3& v1, const btVector3& v2) |
---|
427 | { |
---|
428 | return v1.dot(v2); |
---|
429 | } |
---|
430 | |
---|
431 | |
---|
432 | /**@brief Return the distance squared between two vectors */ |
---|
433 | SIMD_FORCE_INLINE btScalar |
---|
434 | btDistance2(const btVector3& v1, const btVector3& v2) |
---|
435 | { |
---|
436 | return v1.distance2(v2); |
---|
437 | } |
---|
438 | |
---|
439 | |
---|
440 | /**@brief Return the distance between two vectors */ |
---|
441 | SIMD_FORCE_INLINE btScalar |
---|
442 | btDistance(const btVector3& v1, const btVector3& v2) |
---|
443 | { |
---|
444 | return v1.distance(v2); |
---|
445 | } |
---|
446 | |
---|
447 | /**@brief Return the angle between two vectors */ |
---|
448 | SIMD_FORCE_INLINE btScalar |
---|
449 | btAngle(const btVector3& v1, const btVector3& v2) |
---|
450 | { |
---|
451 | return v1.angle(v2); |
---|
452 | } |
---|
453 | |
---|
454 | /**@brief Return the cross product of two vectors */ |
---|
455 | SIMD_FORCE_INLINE btVector3 |
---|
456 | btCross(const btVector3& v1, const btVector3& v2) |
---|
457 | { |
---|
458 | return v1.cross(v2); |
---|
459 | } |
---|
460 | |
---|
461 | SIMD_FORCE_INLINE btScalar |
---|
462 | btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3) |
---|
463 | { |
---|
464 | return v1.triple(v2, v3); |
---|
465 | } |
---|
466 | |
---|
467 | /**@brief Return the linear interpolation between two vectors |
---|
468 | * @param v1 One vector |
---|
469 | * @param v2 The other vector |
---|
470 | * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ |
---|
471 | SIMD_FORCE_INLINE btVector3 |
---|
472 | lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) |
---|
473 | { |
---|
474 | return v1.lerp(v2, t); |
---|
475 | } |
---|
476 | |
---|
477 | |
---|
478 | |
---|
479 | SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const |
---|
480 | { |
---|
481 | return (v - *this).length2(); |
---|
482 | } |
---|
483 | |
---|
484 | SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const |
---|
485 | { |
---|
486 | return (v - *this).length(); |
---|
487 | } |
---|
488 | |
---|
489 | SIMD_FORCE_INLINE btVector3 btVector3::normalized() const |
---|
490 | { |
---|
491 | return *this / length(); |
---|
492 | } |
---|
493 | |
---|
494 | SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar angle ) const |
---|
495 | { |
---|
496 | // wAxis must be a unit lenght vector |
---|
497 | |
---|
498 | btVector3 o = wAxis * wAxis.dot( *this ); |
---|
499 | btVector3 x = *this - o; |
---|
500 | btVector3 y; |
---|
501 | |
---|
502 | y = wAxis.cross( *this ); |
---|
503 | |
---|
504 | return ( o + x * btCos( angle ) + y * btSin( angle ) ); |
---|
505 | } |
---|
506 | |
---|
507 | class btVector4 : public btVector3 |
---|
508 | { |
---|
509 | public: |
---|
510 | |
---|
511 | SIMD_FORCE_INLINE btVector4() {} |
---|
512 | |
---|
513 | |
---|
514 | SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w) |
---|
515 | : btVector3(x,y,z) |
---|
516 | { |
---|
517 | m_floats[3] = w; |
---|
518 | } |
---|
519 | |
---|
520 | |
---|
521 | SIMD_FORCE_INLINE btVector4 absolute4() const |
---|
522 | { |
---|
523 | return btVector4( |
---|
524 | btFabs(m_floats[0]), |
---|
525 | btFabs(m_floats[1]), |
---|
526 | btFabs(m_floats[2]), |
---|
527 | btFabs(m_floats[3])); |
---|
528 | } |
---|
529 | |
---|
530 | |
---|
531 | |
---|
532 | btScalar getW() const { return m_floats[3];} |
---|
533 | |
---|
534 | |
---|
535 | SIMD_FORCE_INLINE int maxAxis4() const |
---|
536 | { |
---|
537 | int maxIndex = -1; |
---|
538 | btScalar maxVal = btScalar(-BT_LARGE_FLOAT); |
---|
539 | if (m_floats[0] > maxVal) |
---|
540 | { |
---|
541 | maxIndex = 0; |
---|
542 | maxVal = m_floats[0]; |
---|
543 | } |
---|
544 | if (m_floats[1] > maxVal) |
---|
545 | { |
---|
546 | maxIndex = 1; |
---|
547 | maxVal = m_floats[1]; |
---|
548 | } |
---|
549 | if (m_floats[2] > maxVal) |
---|
550 | { |
---|
551 | maxIndex = 2; |
---|
552 | maxVal =m_floats[2]; |
---|
553 | } |
---|
554 | if (m_floats[3] > maxVal) |
---|
555 | { |
---|
556 | maxIndex = 3; |
---|
557 | maxVal = m_floats[3]; |
---|
558 | } |
---|
559 | |
---|
560 | |
---|
561 | |
---|
562 | |
---|
563 | return maxIndex; |
---|
564 | |
---|
565 | } |
---|
566 | |
---|
567 | |
---|
568 | SIMD_FORCE_INLINE int minAxis4() const |
---|
569 | { |
---|
570 | int minIndex = -1; |
---|
571 | btScalar minVal = btScalar(BT_LARGE_FLOAT); |
---|
572 | if (m_floats[0] < minVal) |
---|
573 | { |
---|
574 | minIndex = 0; |
---|
575 | minVal = m_floats[0]; |
---|
576 | } |
---|
577 | if (m_floats[1] < minVal) |
---|
578 | { |
---|
579 | minIndex = 1; |
---|
580 | minVal = m_floats[1]; |
---|
581 | } |
---|
582 | if (m_floats[2] < minVal) |
---|
583 | { |
---|
584 | minIndex = 2; |
---|
585 | minVal =m_floats[2]; |
---|
586 | } |
---|
587 | if (m_floats[3] < minVal) |
---|
588 | { |
---|
589 | minIndex = 3; |
---|
590 | minVal = m_floats[3]; |
---|
591 | } |
---|
592 | |
---|
593 | return minIndex; |
---|
594 | |
---|
595 | } |
---|
596 | |
---|
597 | |
---|
598 | SIMD_FORCE_INLINE int closestAxis4() const |
---|
599 | { |
---|
600 | return absolute4().maxAxis4(); |
---|
601 | } |
---|
602 | |
---|
603 | |
---|
604 | |
---|
605 | |
---|
606 | /**@brief Set x,y,z and zero w |
---|
607 | * @param x Value of x |
---|
608 | * @param y Value of y |
---|
609 | * @param z Value of z |
---|
610 | */ |
---|
611 | |
---|
612 | |
---|
613 | /* void getValue(btScalar *m) const |
---|
614 | { |
---|
615 | m[0] = m_floats[0]; |
---|
616 | m[1] = m_floats[1]; |
---|
617 | m[2] =m_floats[2]; |
---|
618 | } |
---|
619 | */ |
---|
620 | /**@brief Set the values |
---|
621 | * @param x Value of x |
---|
622 | * @param y Value of y |
---|
623 | * @param z Value of z |
---|
624 | * @param w Value of w |
---|
625 | */ |
---|
626 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w) |
---|
627 | { |
---|
628 | m_floats[0]=x; |
---|
629 | m_floats[1]=y; |
---|
630 | m_floats[2]=z; |
---|
631 | m_floats[3]=w; |
---|
632 | } |
---|
633 | |
---|
634 | |
---|
635 | }; |
---|
636 | |
---|
637 | |
---|
638 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
639 | SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) |
---|
640 | { |
---|
641 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
642 | unsigned char* dest = (unsigned char*) &destVal; |
---|
643 | unsigned char* src = (unsigned char*) &sourceVal; |
---|
644 | dest[0] = src[7]; |
---|
645 | dest[1] = src[6]; |
---|
646 | dest[2] = src[5]; |
---|
647 | dest[3] = src[4]; |
---|
648 | dest[4] = src[3]; |
---|
649 | dest[5] = src[2]; |
---|
650 | dest[6] = src[1]; |
---|
651 | dest[7] = src[0]; |
---|
652 | #else |
---|
653 | unsigned char* dest = (unsigned char*) &destVal; |
---|
654 | unsigned char* src = (unsigned char*) &sourceVal; |
---|
655 | dest[0] = src[3]; |
---|
656 | dest[1] = src[2]; |
---|
657 | dest[2] = src[1]; |
---|
658 | dest[3] = src[0]; |
---|
659 | #endif //BT_USE_DOUBLE_PRECISION |
---|
660 | } |
---|
661 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
662 | SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) |
---|
663 | { |
---|
664 | for (int i=0;i<4;i++) |
---|
665 | { |
---|
666 | btSwapScalarEndian(sourceVec[i],destVec[i]); |
---|
667 | } |
---|
668 | |
---|
669 | } |
---|
670 | |
---|
671 | ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
672 | SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) |
---|
673 | { |
---|
674 | |
---|
675 | btVector3 swappedVec; |
---|
676 | for (int i=0;i<4;i++) |
---|
677 | { |
---|
678 | btSwapScalarEndian(vector[i],swappedVec[i]); |
---|
679 | } |
---|
680 | vector = swappedVec; |
---|
681 | } |
---|
682 | |
---|
683 | template <class T> |
---|
684 | SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q) |
---|
685 | { |
---|
686 | if (btFabs(n[2]) > SIMDSQRT12) { |
---|
687 | // choose p in y-z plane |
---|
688 | btScalar a = n[1]*n[1] + n[2]*n[2]; |
---|
689 | btScalar k = btRecipSqrt (a); |
---|
690 | p[0] = 0; |
---|
691 | p[1] = -n[2]*k; |
---|
692 | p[2] = n[1]*k; |
---|
693 | // set q = n x p |
---|
694 | q[0] = a*k; |
---|
695 | q[1] = -n[0]*p[2]; |
---|
696 | q[2] = n[0]*p[1]; |
---|
697 | } |
---|
698 | else { |
---|
699 | // choose p in x-y plane |
---|
700 | btScalar a = n[0]*n[0] + n[1]*n[1]; |
---|
701 | btScalar k = btRecipSqrt (a); |
---|
702 | p[0] = -n[1]*k; |
---|
703 | p[1] = n[0]*k; |
---|
704 | p[2] = 0; |
---|
705 | // set q = n x p |
---|
706 | q[0] = -n[2]*p[1]; |
---|
707 | q[1] = n[2]*p[0]; |
---|
708 | q[2] = a*k; |
---|
709 | } |
---|
710 | } |
---|
711 | |
---|
712 | |
---|
713 | struct btVector3FloatData |
---|
714 | { |
---|
715 | float m_floats[4]; |
---|
716 | }; |
---|
717 | |
---|
718 | struct btVector3DoubleData |
---|
719 | { |
---|
720 | double m_floats[4]; |
---|
721 | |
---|
722 | }; |
---|
723 | |
---|
724 | SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const |
---|
725 | { |
---|
726 | ///could also do a memcpy, check if it is worth it |
---|
727 | for (int i=0;i<4;i++) |
---|
728 | dataOut.m_floats[i] = float(m_floats[i]); |
---|
729 | } |
---|
730 | |
---|
731 | SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) |
---|
732 | { |
---|
733 | for (int i=0;i<4;i++) |
---|
734 | m_floats[i] = btScalar(dataIn.m_floats[i]); |
---|
735 | } |
---|
736 | |
---|
737 | |
---|
738 | SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const |
---|
739 | { |
---|
740 | ///could also do a memcpy, check if it is worth it |
---|
741 | for (int i=0;i<4;i++) |
---|
742 | dataOut.m_floats[i] = double(m_floats[i]); |
---|
743 | } |
---|
744 | |
---|
745 | SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) |
---|
746 | { |
---|
747 | for (int i=0;i<4;i++) |
---|
748 | m_floats[i] = btScalar(dataIn.m_floats[i]); |
---|
749 | } |
---|
750 | |
---|
751 | |
---|
752 | SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const |
---|
753 | { |
---|
754 | ///could also do a memcpy, check if it is worth it |
---|
755 | for (int i=0;i<4;i++) |
---|
756 | dataOut.m_floats[i] = m_floats[i]; |
---|
757 | } |
---|
758 | |
---|
759 | SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn) |
---|
760 | { |
---|
761 | for (int i=0;i<4;i++) |
---|
762 | m_floats[i] = dataIn.m_floats[i]; |
---|
763 | } |
---|
764 | |
---|
765 | |
---|
766 | #endif //SIMD__VECTOR3_H |
---|