[212] | 1 | |
---|
[495] | 2 | //Headerfile: Flocking.h |
---|
[212] | 3 | |
---|
| 4 | #ifndef Flocking_Class |
---|
| 5 | #define Flocking_Class |
---|
| 6 | |
---|
| 7 | #include <Ogre.h> |
---|
| 8 | #include <OgreVector3.h> |
---|
| 9 | |
---|
[426] | 10 | |
---|
[325] | 11 | #include <iostream> |
---|
[212] | 12 | |
---|
[325] | 13 | |
---|
[212] | 14 | #endif |
---|
| 15 | |
---|
| 16 | using namespace Ogre; |
---|
| 17 | |
---|
| 18 | class Element // An element that flocks |
---|
| 19 | { |
---|
| 20 | |
---|
| 21 | public: |
---|
| 22 | Vector3 location; // locationvector of the element |
---|
| 23 | Vector3 speed; // speedvector of the element |
---|
| 24 | Vector3 acceleration; // accelerationvector of the element |
---|
[495] | 25 | bool movable; // movability of the element, (false) gives the possiblity that an object can`t be moved by flocking but still gets into the calculation |
---|
| 26 | static int const SEPERATIONDISTANCE = 300; //detectionradius of seperation |
---|
| 27 | static int const ALIGNMENTDISTANCE = 300; //detectionradius of alignment |
---|
| 28 | static int const COHESIONDISTANCE = 5000; //detectionradius of cohesion |
---|
| 29 | static int const ANZELEMENTS = 9; //number of elements |
---|
[212] | 30 | |
---|
[495] | 31 | //default constructor |
---|
[325] | 32 | Element() { |
---|
| 33 | acceleration = (0,0,0); |
---|
| 34 | speed = (0,0,0); |
---|
| 35 | location = (0,0,0); |
---|
[426] | 36 | movable = true; |
---|
[325] | 37 | } |
---|
[212] | 38 | |
---|
[495] | 39 | //constructor |
---|
[426] | 40 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
[212] | 41 | acceleration = acceleration_; |
---|
| 42 | speed = speed_; |
---|
| 43 | location = location_; |
---|
[426] | 44 | movable = movable_; |
---|
[212] | 45 | } |
---|
| 46 | |
---|
[495] | 47 | //function to chance values of an element |
---|
[426] | 48 | void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
[325] | 49 | acceleration = acceleration_; |
---|
| 50 | speed = speed_; |
---|
| 51 | location = location_; |
---|
[426] | 52 | movable = movable_; |
---|
[325] | 53 | } |
---|
| 54 | |
---|
[212] | 55 | //calculates the distance between the element and an other point given by temp |
---|
| 56 | float getDistance(Element temp) { |
---|
[495] | 57 | Vector3 distance = temp.location-location; |
---|
[212] | 58 | return distance.length(); |
---|
| 59 | } |
---|
| 60 | |
---|
[495] | 61 | //updates the data of an element |
---|
| 62 | void update(Element arrayOfElements[]) { |
---|
| 63 | if (this->movable == true) {calculateAcceleration(arrayOfElements);} //if element is movable, calculate acceleration |
---|
[212] | 64 | } |
---|
| 65 | |
---|
[495] | 66 | //calculates the new acceleration of an element |
---|
[325] | 67 | void calculateAcceleration(Element arrayOfElements[]) { |
---|
[495] | 68 | acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); //acceleration consisting of flocking-functions |
---|
[212] | 69 | } |
---|
| 70 | |
---|
[495] | 71 | //separation-function (keep elements separated, avoid crashs) |
---|
[325] | 72 | Vector3 separation(Element arrayOfElements[]) { |
---|
[495] | 73 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
| 74 | Vector3 inverseDistance = Vector3(0,0,0); //vector pointing away from possible collisions |
---|
[325] | 75 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
[495] | 76 | float distance = 0; // distance to the actual element |
---|
| 77 | for(int i=0; i<ANZELEMENTS; i++) { //go through all elements |
---|
[212] | 78 | Element actual = arrayOfElements[i]; //get the actual element |
---|
[426] | 79 | distance = getDistance(actual); //get distance between this and actual |
---|
[495] | 80 | if ((distance > 0) && (distance < SEPERATIONDISTANCE)) { //do only if actual is inside detectionradius |
---|
| 81 | inverseDistance = (0,0,0); |
---|
| 82 | inverseDistance = location-actual.location; //calculate the distancevector heading towards this |
---|
| 83 | //adaptation of the inverseDistance to the distance |
---|
| 84 | if ((distance < 200) && (distance >= 120)) {inverseDistance = 2*inverseDistance;} |
---|
| 85 | if ((distance < 120) && (distance >= 80)) {inverseDistance = 5*inverseDistance;} |
---|
| 86 | if ((distance < 80) && (distance >= 40)) {inverseDistance = 10*inverseDistance;} |
---|
| 87 | if ((distance < 40) && (distance > 0)) {inverseDistance = 10*inverseDistance;} |
---|
| 88 | steering = steering + inverseDistance; //add up all significant steeringvectors |
---|
[212] | 89 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 90 | } |
---|
| 91 | } |
---|
[495] | 92 | if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
---|
| 93 | return steering; |
---|
[212] | 94 | } |
---|
| 95 | |
---|
[495] | 96 | //alignment-function (lead elements to the same heading) |
---|
[325] | 97 | Vector3 alignment(Element arrayOfElements[]) { |
---|
[495] | 98 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
[325] | 99 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
[426] | 100 | float distance = 0; |
---|
[212] | 101 | //go through all elements |
---|
[495] | 102 | for(int i=0; i<ANZELEMENTS; i++) { //just working with 3 elements at the moment |
---|
[212] | 103 | Element actual = arrayOfElements[i]; //get the actual element |
---|
[233] | 104 | float distance = getDistance(actual); //get distance between this and actual |
---|
[495] | 105 | if ((distance > 0) && (distance < ALIGNMENTDISTANCE)) { //check if actual element is inside detectionradius |
---|
| 106 | steering = steering + actual.speed; //add up all speedvectors inside the detectionradius |
---|
[212] | 107 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 108 | } |
---|
| 109 | } |
---|
[495] | 110 | if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
---|
| 111 | return steering; |
---|
[212] | 112 | } |
---|
| 113 | |
---|
[495] | 114 | //cohseion-function (keep elements close to each other) |
---|
[325] | 115 | Vector3 cohesion(Element arrayOfElements[]) { |
---|
[495] | 116 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
[325] | 117 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
[426] | 118 | float distance = 0; |
---|
[212] | 119 | //go through all elements |
---|
[495] | 120 | for(int i=0; i<ANZELEMENTS; i++) { //just working with 3 elements at the moment |
---|
[212] | 121 | Element actual = arrayOfElements[i]; //get the actual element |
---|
[233] | 122 | float distance = getDistance(actual); //get distance between this and actual |
---|
[495] | 123 | if ((distance > 0) && (distance < COHESIONDISTANCE)) { //check if actual element is inside detectionradius |
---|
| 124 | steering = steering + actual.location; //add up all locations of elements inside the detectionradius |
---|
[212] | 125 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 126 | } |
---|
[495] | 127 | } |
---|
[212] | 128 | if(numberOfNeighbour > 0) { |
---|
[495] | 129 | steering = steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
---|
| 130 | steering = steering - this->location; //transform the vector for the ship |
---|
[212] | 131 | } |
---|
[495] | 132 | return steering; |
---|
[212] | 133 | } |
---|
[495] | 134 | }; //End of class Element |
---|