1 | |
---|
2 | //My Flocking Class |
---|
3 | |
---|
4 | #ifndef Flocking_Class |
---|
5 | #define Flocking_Class |
---|
6 | |
---|
7 | #include <Ogre.h> |
---|
8 | #include <OgreVector3.h> |
---|
9 | |
---|
10 | |
---|
11 | #endif |
---|
12 | |
---|
13 | using namespace std; |
---|
14 | using namespace Ogre; |
---|
15 | |
---|
16 | class Element // An element that flocks |
---|
17 | { |
---|
18 | |
---|
19 | public: |
---|
20 | Vector3 location; // locationvector of the element |
---|
21 | Vector3 speed; // speedvector of the element |
---|
22 | Vector3 acceleration; // accelerationvector of the element |
---|
23 | |
---|
24 | |
---|
25 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_) { |
---|
26 | acceleration = acceleration_; |
---|
27 | speed = speed_; |
---|
28 | location = location_; |
---|
29 | } |
---|
30 | |
---|
31 | //calculates the distance between the element and an other point given by temp |
---|
32 | float getDistance(Element temp) { |
---|
33 | Vector3 distance = temp.location-location; //this doesn't work |
---|
34 | return distance.length(); |
---|
35 | } |
---|
36 | |
---|
37 | //EINF[GEN DES ELEMENTS |
---|
38 | void update(Element* arrayOfElements) { |
---|
39 | calculateAcceleration(arrayOfElements); //updates the acceleration |
---|
40 | calculateSpeed(); //updates the speed |
---|
41 | calculateLocation(); //updates the location |
---|
42 | } |
---|
43 | |
---|
44 | //EINF[GEN DES ELEMENTS |
---|
45 | void calculateAcceleration(Element* arrayOfElements) { |
---|
46 | //calculates the accelerationvector based on the steeringvectors of |
---|
47 | //separtion, alignment and cohesion. |
---|
48 | acceleration = acceleration + separation(arrayOfElements) + 2*alignment(arrayOfElements) + 2*cohesion(arrayOfElements); |
---|
49 | } |
---|
50 | |
---|
51 | void calculateSpeed() { |
---|
52 | speed = speed + acceleration; |
---|
53 | //speed = speed.normalise(); |
---|
54 | } |
---|
55 | |
---|
56 | void calculateLocation() { |
---|
57 | location = location + speed; |
---|
58 | acceleration = (0,0,0); //set acceleration to zero for the next calculation |
---|
59 | } |
---|
60 | |
---|
61 | Vector3 separation(Element* arrayOfElements) { |
---|
62 | Vector3 steering; //steeringvector |
---|
63 | int numberOfNeighbour; //number of observed neighbours |
---|
64 | //go through all elements |
---|
65 | for(int i=1; i<3; i++) { //just working with 3 elements at the moment |
---|
66 | Element actual = arrayOfElements[i]; //get the actual element |
---|
67 | float distance = getDistance(actual); //get distance between this and actual |
---|
68 | //DUMMY SEPERATION DETECTION DISTANCE = 25 |
---|
69 | if ((distance > 0) && (distance<1)) { //do only if actual is inside detectionradius |
---|
70 | Vector3 inverseDistance = actual.location-location; //calculate the distancevector heading towards this |
---|
71 | inverseDistance = inverseDistance.normalise(); //does this work correctly? //normalise the distancevector |
---|
72 | inverseDistance = inverseDistance/*/distance;*/ ; //devide distancevector by distance (the closer the bigger gets the distancevector -> steeringvector) |
---|
73 | steering = steering + inverseDistance; //add up all significant steeringvectors |
---|
74 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
75 | } |
---|
76 | } |
---|
77 | if(numberOfNeighbour > 0) { |
---|
78 | steering = steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
---|
79 | } |
---|
80 | return steering; |
---|
81 | } |
---|
82 | |
---|
83 | Vector3 alignment(Element* arrayOfElements) { |
---|
84 | Vector3 steering; //steeringvector |
---|
85 | int numberOfNeighbour; //number of observed neighbours |
---|
86 | //go through all elements |
---|
87 | for(int i=1; i<3; i++) { //just working with 3 elements at the moment |
---|
88 | Element actual = arrayOfElements[i]; //get the actual element |
---|
89 | float distance = getDistance(actual); //get distance between this and actual |
---|
90 | //DUMMY ALIGNMENT DETECTION DISTANCE = 50 |
---|
91 | if ((distance > 0) && (distance<1000)) { //check if actual element is inside detectionradius |
---|
92 | steering = steering + actual.speed; //add up all speedvectors inside the detectionradius |
---|
93 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
94 | } |
---|
95 | } |
---|
96 | if(numberOfNeighbour > 0) { |
---|
97 | steering = steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
---|
98 | } |
---|
99 | return steering; |
---|
100 | } |
---|
101 | |
---|
102 | Vector3 cohesion(Element* arrayOfElements) { |
---|
103 | Vector3 steering; //steeringvector |
---|
104 | int numberOfNeighbour; //number of observed neighbours |
---|
105 | //go through all elements |
---|
106 | for(int i=1; i<3; i++) { //just working with 3 elements at the moment |
---|
107 | Element actual = arrayOfElements[i]; //get the actual element |
---|
108 | float distance = getDistance(actual); //get distance between this and actual |
---|
109 | // DUMMY COHESION DETECTION DISTANCE = 50 |
---|
110 | if ((distance > 0) && (distance<1000)) { //check if actual element is inside detectionradius |
---|
111 | steering = steering + actual.location; //add up all locations of elements inside the detectionradius |
---|
112 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
113 | } |
---|
114 | } |
---|
115 | if(numberOfNeighbour > 0) { |
---|
116 | steering = steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
---|
117 | } |
---|
118 | } |
---|
119 | |
---|
120 | }; |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | //End of My Flocking Class |
---|