1 | // |
---|
2 | // |
---|
3 | // TODO: testing orxonox -flocking interface |
---|
4 | // testing algorithm |
---|
5 | |
---|
6 | // ueberpruefen ob vektoren relativ richtig berechnet werden |
---|
7 | // |
---|
8 | //My Flocking Class |
---|
9 | |
---|
10 | #ifndef Flocking_Class |
---|
11 | #define Flocking_Class |
---|
12 | |
---|
13 | #include <Ogre.h> |
---|
14 | #include <OgreVector3.h> |
---|
15 | |
---|
16 | |
---|
17 | #include <iostream> |
---|
18 | |
---|
19 | |
---|
20 | #endif |
---|
21 | |
---|
22 | using namespace std; |
---|
23 | using namespace Ogre; |
---|
24 | |
---|
25 | class Element // An element that flocks |
---|
26 | { |
---|
27 | |
---|
28 | public: |
---|
29 | Vector3 location; // locationvector of the element |
---|
30 | Vector3 speed; // speedvector of the element |
---|
31 | Vector3 acceleration; // accelerationvector of the element |
---|
32 | bool movable; // movability of the element |
---|
33 | |
---|
34 | Element() { |
---|
35 | acceleration = (0,0,0); |
---|
36 | speed = (0,0,0); |
---|
37 | location = (0,0,0); |
---|
38 | movable = true; |
---|
39 | } |
---|
40 | |
---|
41 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
42 | acceleration = acceleration_; |
---|
43 | speed = speed_; |
---|
44 | location = location_; |
---|
45 | movable = movable_; |
---|
46 | } |
---|
47 | |
---|
48 | void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
49 | acceleration = acceleration_; |
---|
50 | speed = speed_; |
---|
51 | location = location_; |
---|
52 | movable = movable_; |
---|
53 | } |
---|
54 | |
---|
55 | //calculates the distance between the element and an other point given by temp |
---|
56 | float getDistance(Element temp) { |
---|
57 | Vector3 distance = temp.location-location; //this doesn't work |
---|
58 | return distance.length(); |
---|
59 | } |
---|
60 | |
---|
61 | //EINFÜGEN DES ELEMENTS |
---|
62 | void update(Element arrayOfElements[], const FrameEvent& time) { |
---|
63 | if (this->movable == true) {calculateAcceleration(arrayOfElements);} |
---|
64 | |
---|
65 | /* if (this->movable == true) { |
---|
66 | calculateAcceleration(arrayOfElements); //updates the acceleration |
---|
67 | calculateSpeed(time); //updates the speed |
---|
68 | calculateLocation(time); //updates the location |
---|
69 | } */ |
---|
70 | } |
---|
71 | |
---|
72 | //EINFÜGEN DES ELEMENTS |
---|
73 | void calculateAcceleration(Element arrayOfElements[]) { |
---|
74 | //calculates the accelerationvector based on the steeringvectors of |
---|
75 | //separtion, alignment and cohesion. |
---|
76 | acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); |
---|
77 | } |
---|
78 | |
---|
79 | void calculateSpeed(const FrameEvent& time) { |
---|
80 | speed = speed + acceleration*time.timeSinceLastFrame; |
---|
81 | } |
---|
82 | |
---|
83 | void calculateLocation(const FrameEvent& time) { |
---|
84 | location = location + speed*time.timeSinceLastFrame; |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | Vector3 separation(Element arrayOfElements[]) { |
---|
89 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
90 | Vector3* inverseDistance = new Vector3(0,0,0); |
---|
91 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
92 | float distance = 0; |
---|
93 | //go through all elements |
---|
94 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
---|
95 | Element actual = arrayOfElements[i]; //get the actual element |
---|
96 | distance = getDistance(actual); //get distance between this and actual |
---|
97 | //DUMMY SEPERATION DETECTION DISTANCE =100 |
---|
98 | if ((distance > 0) && (distance < 200)) { //do only if actual is inside detectionradius |
---|
99 | *inverseDistance = (0,0,0); |
---|
100 | *inverseDistance = location-actual.location; //calculate the distancevector heading towards this |
---|
101 | //*inverseDistance = inverseDistance->normalise(); //does this work correctly? //normalise the distancevector |
---|
102 | if ((distance < 100) && (distance >= 80)) {*inverseDistance = *inverseDistance*2;} |
---|
103 | if ((distance < 80) && (distance >= 60)) {*inverseDistance = *inverseDistance*5;} |
---|
104 | if ((distance < 60) && (distance >= 40)) {*inverseDistance = *inverseDistance*10;} |
---|
105 | if ((distance < 40) && (distance > 0)) {*inverseDistance = *inverseDistance*20;} |
---|
106 | // *inverseDistance = *inverseDistance/distance; //devide distancevector by distance (the closer the bigger gets the distancevector -> steeringvector) |
---|
107 | *steering = *steering + *inverseDistance; //add up all significant steeringvectors |
---|
108 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
109 | } |
---|
110 | } |
---|
111 | if(numberOfNeighbour > 0) { |
---|
112 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
---|
113 | } |
---|
114 | cout<<*steering<<endl; |
---|
115 | return *steering; |
---|
116 | } |
---|
117 | |
---|
118 | Vector3 alignment(Element arrayOfElements[]) { |
---|
119 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
120 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
121 | float distance = 0; |
---|
122 | //go through all elements |
---|
123 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
---|
124 | Element actual = arrayOfElements[i]; //get the actual element |
---|
125 | float distance = getDistance(actual); //get distance between this and actual |
---|
126 | //DUMMY ALIGNMENT DETECTION DISTANCE = 1000 |
---|
127 | if ((distance > 0) && (distance < 300)) { //check if actual element is inside detectionradius |
---|
128 | *steering = *steering + actual.speed; //add up all speedvectors inside the detectionradius |
---|
129 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
130 | } |
---|
131 | } |
---|
132 | if(numberOfNeighbour > 0) { |
---|
133 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
---|
134 | } |
---|
135 | return *steering; |
---|
136 | } |
---|
137 | |
---|
138 | Vector3 cohesion(Element arrayOfElements[]) { |
---|
139 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
140 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
141 | float distance = 0; |
---|
142 | //go through all elements |
---|
143 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
---|
144 | Element actual = arrayOfElements[i]; //get the actual element |
---|
145 | float distance = getDistance(actual); //get distance between this and actual |
---|
146 | // DUMMY COHESION DETECTION DISTANCE = 1000 |
---|
147 | if ((distance > 0) && (distance < 5000)) { //check if actual element is inside detectionradius |
---|
148 | *steering = *steering + actual.location; //add up all locations of elements inside the detectionradius |
---|
149 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
150 | } |
---|
151 | } |
---|
152 | if(numberOfNeighbour > 0) { |
---|
153 | *steering = *steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
---|
154 | *steering = *steering - this->location; // (?) Koordinatensystem? |
---|
155 | } |
---|
156 | return *steering; |
---|
157 | } |
---|
158 | }; |
---|
159 | |
---|
160 | |
---|
161 | |
---|
162 | //End of My Flocking Class |
---|