1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | /* |
---|
16 | 2007-09-09 |
---|
17 | Refactored by Francisco Le?n |
---|
18 | email: projectileman@yahoo.com |
---|
19 | http://gimpact.sf.net |
---|
20 | */ |
---|
21 | |
---|
22 | #include "btGeneric6DofConstraint.h" |
---|
23 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
24 | #include "LinearMath/btTransformUtil.h" |
---|
25 | #include "LinearMath/btTransformUtil.h" |
---|
26 | #include <new> |
---|
27 | |
---|
28 | |
---|
29 | |
---|
30 | #define D6_USE_OBSOLETE_METHOD false |
---|
31 | #define D6_USE_FRAME_OFFSET true |
---|
32 | |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | |
---|
38 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
39 | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) |
---|
40 | , m_frameInA(frameInA) |
---|
41 | , m_frameInB(frameInB), |
---|
42 | m_useLinearReferenceFrameA(useLinearReferenceFrameA), |
---|
43 | m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), |
---|
44 | m_flags(0), |
---|
45 | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) |
---|
46 | { |
---|
47 | calculateTransforms(); |
---|
48 | } |
---|
49 | |
---|
50 | |
---|
51 | |
---|
52 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB) |
---|
53 | : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB), |
---|
54 | m_frameInB(frameInB), |
---|
55 | m_useLinearReferenceFrameA(useLinearReferenceFrameB), |
---|
56 | m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), |
---|
57 | m_flags(0), |
---|
58 | m_useSolveConstraintObsolete(false) |
---|
59 | { |
---|
60 | ///not providing rigidbody A means implicitly using worldspace for body A |
---|
61 | m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB; |
---|
62 | calculateTransforms(); |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | |
---|
67 | |
---|
68 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); |
---|
73 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) |
---|
74 | { |
---|
75 | int i = index%3; |
---|
76 | int j = index/3; |
---|
77 | return mat[i][j]; |
---|
78 | } |
---|
79 | |
---|
80 | |
---|
81 | |
---|
82 | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html |
---|
83 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); |
---|
84 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) |
---|
85 | { |
---|
86 | // // rot = cy*cz -cy*sz sy |
---|
87 | // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
---|
88 | // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
---|
89 | // |
---|
90 | |
---|
91 | btScalar fi = btGetMatrixElem(mat,2); |
---|
92 | if (fi < btScalar(1.0f)) |
---|
93 | { |
---|
94 | if (fi > btScalar(-1.0f)) |
---|
95 | { |
---|
96 | xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); |
---|
97 | xyz[1] = btAsin(btGetMatrixElem(mat,2)); |
---|
98 | xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); |
---|
99 | return true; |
---|
100 | } |
---|
101 | else |
---|
102 | { |
---|
103 | // WARNING. Not unique. XA - ZA = -atan2(r10,r11) |
---|
104 | xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
105 | xyz[1] = -SIMD_HALF_PI; |
---|
106 | xyz[2] = btScalar(0.0); |
---|
107 | return false; |
---|
108 | } |
---|
109 | } |
---|
110 | else |
---|
111 | { |
---|
112 | // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) |
---|
113 | xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
114 | xyz[1] = SIMD_HALF_PI; |
---|
115 | xyz[2] = 0.0; |
---|
116 | } |
---|
117 | return false; |
---|
118 | } |
---|
119 | |
---|
120 | //////////////////////////// btRotationalLimitMotor //////////////////////////////////// |
---|
121 | |
---|
122 | int btRotationalLimitMotor::testLimitValue(btScalar test_value) |
---|
123 | { |
---|
124 | if(m_loLimit>m_hiLimit) |
---|
125 | { |
---|
126 | m_currentLimit = 0;//Free from violation |
---|
127 | return 0; |
---|
128 | } |
---|
129 | if (test_value < m_loLimit) |
---|
130 | { |
---|
131 | m_currentLimit = 1;//low limit violation |
---|
132 | m_currentLimitError = test_value - m_loLimit; |
---|
133 | return 1; |
---|
134 | } |
---|
135 | else if (test_value> m_hiLimit) |
---|
136 | { |
---|
137 | m_currentLimit = 2;//High limit violation |
---|
138 | m_currentLimitError = test_value - m_hiLimit; |
---|
139 | return 2; |
---|
140 | }; |
---|
141 | |
---|
142 | m_currentLimit = 0;//Free from violation |
---|
143 | return 0; |
---|
144 | |
---|
145 | } |
---|
146 | |
---|
147 | |
---|
148 | |
---|
149 | btScalar btRotationalLimitMotor::solveAngularLimits( |
---|
150 | btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, |
---|
151 | btRigidBody * body0, btRigidBody * body1 ) |
---|
152 | { |
---|
153 | if (needApplyTorques()==false) return 0.0f; |
---|
154 | |
---|
155 | btScalar target_velocity = m_targetVelocity; |
---|
156 | btScalar maxMotorForce = m_maxMotorForce; |
---|
157 | |
---|
158 | //current error correction |
---|
159 | if (m_currentLimit!=0) |
---|
160 | { |
---|
161 | target_velocity = -m_stopERP*m_currentLimitError/(timeStep); |
---|
162 | maxMotorForce = m_maxLimitForce; |
---|
163 | } |
---|
164 | |
---|
165 | maxMotorForce *= timeStep; |
---|
166 | |
---|
167 | // current velocity difference |
---|
168 | |
---|
169 | btVector3 angVelA; |
---|
170 | body0->internalGetAngularVelocity(angVelA); |
---|
171 | btVector3 angVelB; |
---|
172 | body1->internalGetAngularVelocity(angVelB); |
---|
173 | |
---|
174 | btVector3 vel_diff; |
---|
175 | vel_diff = angVelA-angVelB; |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | btScalar rel_vel = axis.dot(vel_diff); |
---|
180 | |
---|
181 | // correction velocity |
---|
182 | btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel); |
---|
183 | |
---|
184 | |
---|
185 | if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON ) |
---|
186 | { |
---|
187 | return 0.0f;//no need for applying force |
---|
188 | } |
---|
189 | |
---|
190 | |
---|
191 | // correction impulse |
---|
192 | btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; |
---|
193 | |
---|
194 | // clip correction impulse |
---|
195 | btScalar clippedMotorImpulse; |
---|
196 | |
---|
197 | ///@todo: should clip against accumulated impulse |
---|
198 | if (unclippedMotorImpulse>0.0f) |
---|
199 | { |
---|
200 | clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; |
---|
201 | } |
---|
202 | else |
---|
203 | { |
---|
204 | clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; |
---|
205 | } |
---|
206 | |
---|
207 | |
---|
208 | // sort with accumulated impulses |
---|
209 | btScalar lo = btScalar(-BT_LARGE_FLOAT); |
---|
210 | btScalar hi = btScalar(BT_LARGE_FLOAT); |
---|
211 | |
---|
212 | btScalar oldaccumImpulse = m_accumulatedImpulse; |
---|
213 | btScalar sum = oldaccumImpulse + clippedMotorImpulse; |
---|
214 | m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
215 | |
---|
216 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; |
---|
217 | |
---|
218 | btVector3 motorImp = clippedMotorImpulse * axis; |
---|
219 | |
---|
220 | //body0->applyTorqueImpulse(motorImp); |
---|
221 | //body1->applyTorqueImpulse(-motorImp); |
---|
222 | |
---|
223 | body0->internalApplyImpulse(btVector3(0,0,0), body0->getInvInertiaTensorWorld()*axis,clippedMotorImpulse); |
---|
224 | body1->internalApplyImpulse(btVector3(0,0,0), body1->getInvInertiaTensorWorld()*axis,-clippedMotorImpulse); |
---|
225 | |
---|
226 | |
---|
227 | return clippedMotorImpulse; |
---|
228 | |
---|
229 | |
---|
230 | } |
---|
231 | |
---|
232 | //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | |
---|
237 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
238 | |
---|
239 | |
---|
240 | int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value) |
---|
241 | { |
---|
242 | btScalar loLimit = m_lowerLimit[limitIndex]; |
---|
243 | btScalar hiLimit = m_upperLimit[limitIndex]; |
---|
244 | if(loLimit > hiLimit) |
---|
245 | { |
---|
246 | m_currentLimit[limitIndex] = 0;//Free from violation |
---|
247 | m_currentLimitError[limitIndex] = btScalar(0.f); |
---|
248 | return 0; |
---|
249 | } |
---|
250 | |
---|
251 | if (test_value < loLimit) |
---|
252 | { |
---|
253 | m_currentLimit[limitIndex] = 2;//low limit violation |
---|
254 | m_currentLimitError[limitIndex] = test_value - loLimit; |
---|
255 | return 2; |
---|
256 | } |
---|
257 | else if (test_value> hiLimit) |
---|
258 | { |
---|
259 | m_currentLimit[limitIndex] = 1;//High limit violation |
---|
260 | m_currentLimitError[limitIndex] = test_value - hiLimit; |
---|
261 | return 1; |
---|
262 | }; |
---|
263 | |
---|
264 | m_currentLimit[limitIndex] = 0;//Free from violation |
---|
265 | m_currentLimitError[limitIndex] = btScalar(0.f); |
---|
266 | return 0; |
---|
267 | } |
---|
268 | |
---|
269 | |
---|
270 | |
---|
271 | btScalar btTranslationalLimitMotor::solveLinearAxis( |
---|
272 | btScalar timeStep, |
---|
273 | btScalar jacDiagABInv, |
---|
274 | btRigidBody& body1,const btVector3 &pointInA, |
---|
275 | btRigidBody& body2,const btVector3 &pointInB, |
---|
276 | int limit_index, |
---|
277 | const btVector3 & axis_normal_on_a, |
---|
278 | const btVector3 & anchorPos) |
---|
279 | { |
---|
280 | |
---|
281 | ///find relative velocity |
---|
282 | // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); |
---|
283 | // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); |
---|
284 | btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); |
---|
285 | btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); |
---|
286 | |
---|
287 | btVector3 vel1; |
---|
288 | body1.internalGetVelocityInLocalPointObsolete(rel_pos1,vel1); |
---|
289 | btVector3 vel2; |
---|
290 | body2.internalGetVelocityInLocalPointObsolete(rel_pos2,vel2); |
---|
291 | btVector3 vel = vel1 - vel2; |
---|
292 | |
---|
293 | btScalar rel_vel = axis_normal_on_a.dot(vel); |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | /// apply displacement correction |
---|
298 | |
---|
299 | //positional error (zeroth order error) |
---|
300 | btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); |
---|
301 | btScalar lo = btScalar(-BT_LARGE_FLOAT); |
---|
302 | btScalar hi = btScalar(BT_LARGE_FLOAT); |
---|
303 | |
---|
304 | btScalar minLimit = m_lowerLimit[limit_index]; |
---|
305 | btScalar maxLimit = m_upperLimit[limit_index]; |
---|
306 | |
---|
307 | //handle the limits |
---|
308 | if (minLimit < maxLimit) |
---|
309 | { |
---|
310 | { |
---|
311 | if (depth > maxLimit) |
---|
312 | { |
---|
313 | depth -= maxLimit; |
---|
314 | lo = btScalar(0.); |
---|
315 | |
---|
316 | } |
---|
317 | else |
---|
318 | { |
---|
319 | if (depth < minLimit) |
---|
320 | { |
---|
321 | depth -= minLimit; |
---|
322 | hi = btScalar(0.); |
---|
323 | } |
---|
324 | else |
---|
325 | { |
---|
326 | return 0.0f; |
---|
327 | } |
---|
328 | } |
---|
329 | } |
---|
330 | } |
---|
331 | |
---|
332 | btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; |
---|
333 | |
---|
334 | |
---|
335 | |
---|
336 | |
---|
337 | btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; |
---|
338 | btScalar sum = oldNormalImpulse + normalImpulse; |
---|
339 | m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
340 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; |
---|
341 | |
---|
342 | btVector3 impulse_vector = axis_normal_on_a * normalImpulse; |
---|
343 | //body1.applyImpulse( impulse_vector, rel_pos1); |
---|
344 | //body2.applyImpulse(-impulse_vector, rel_pos2); |
---|
345 | |
---|
346 | btVector3 ftorqueAxis1 = rel_pos1.cross(axis_normal_on_a); |
---|
347 | btVector3 ftorqueAxis2 = rel_pos2.cross(axis_normal_on_a); |
---|
348 | body1.internalApplyImpulse(axis_normal_on_a*body1.getInvMass(), body1.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); |
---|
349 | body2.internalApplyImpulse(axis_normal_on_a*body2.getInvMass(), body2.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); |
---|
350 | |
---|
351 | |
---|
352 | |
---|
353 | |
---|
354 | return normalImpulse; |
---|
355 | } |
---|
356 | |
---|
357 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
358 | |
---|
359 | void btGeneric6DofConstraint::calculateAngleInfo() |
---|
360 | { |
---|
361 | btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); |
---|
362 | matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); |
---|
363 | // in euler angle mode we do not actually constrain the angular velocity |
---|
364 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : |
---|
365 | // |
---|
366 | // to get constrain w2-w1 along ...not |
---|
367 | // ------ --------------------- ------ |
---|
368 | // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] |
---|
369 | // d(angle[1])/dt = 0 ax[1] |
---|
370 | // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] |
---|
371 | // |
---|
372 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. |
---|
373 | // to prove the result for angle[0], write the expression for angle[0] from |
---|
374 | // GetInfo1 then take the derivative. to prove this for angle[2] it is |
---|
375 | // easier to take the euler rate expression for d(angle[2])/dt with respect |
---|
376 | // to the components of w and set that to 0. |
---|
377 | btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); |
---|
378 | btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
379 | |
---|
380 | m_calculatedAxis[1] = axis2.cross(axis0); |
---|
381 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); |
---|
382 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); |
---|
383 | |
---|
384 | m_calculatedAxis[0].normalize(); |
---|
385 | m_calculatedAxis[1].normalize(); |
---|
386 | m_calculatedAxis[2].normalize(); |
---|
387 | |
---|
388 | } |
---|
389 | |
---|
390 | void btGeneric6DofConstraint::calculateTransforms() |
---|
391 | { |
---|
392 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
393 | } |
---|
394 | |
---|
395 | void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB) |
---|
396 | { |
---|
397 | m_calculatedTransformA = transA * m_frameInA; |
---|
398 | m_calculatedTransformB = transB * m_frameInB; |
---|
399 | calculateLinearInfo(); |
---|
400 | calculateAngleInfo(); |
---|
401 | if(m_useOffsetForConstraintFrame) |
---|
402 | { // get weight factors depending on masses |
---|
403 | btScalar miA = getRigidBodyA().getInvMass(); |
---|
404 | btScalar miB = getRigidBodyB().getInvMass(); |
---|
405 | m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); |
---|
406 | btScalar miS = miA + miB; |
---|
407 | if(miS > btScalar(0.f)) |
---|
408 | { |
---|
409 | m_factA = miB / miS; |
---|
410 | } |
---|
411 | else |
---|
412 | { |
---|
413 | m_factA = btScalar(0.5f); |
---|
414 | } |
---|
415 | m_factB = btScalar(1.0f) - m_factA; |
---|
416 | } |
---|
417 | } |
---|
418 | |
---|
419 | |
---|
420 | |
---|
421 | void btGeneric6DofConstraint::buildLinearJacobian( |
---|
422 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, |
---|
423 | const btVector3 & pivotAInW,const btVector3 & pivotBInW) |
---|
424 | { |
---|
425 | new (&jacLinear) btJacobianEntry( |
---|
426 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
427 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
428 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
429 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
430 | normalWorld, |
---|
431 | m_rbA.getInvInertiaDiagLocal(), |
---|
432 | m_rbA.getInvMass(), |
---|
433 | m_rbB.getInvInertiaDiagLocal(), |
---|
434 | m_rbB.getInvMass()); |
---|
435 | } |
---|
436 | |
---|
437 | |
---|
438 | |
---|
439 | void btGeneric6DofConstraint::buildAngularJacobian( |
---|
440 | btJacobianEntry & jacAngular,const btVector3 & jointAxisW) |
---|
441 | { |
---|
442 | new (&jacAngular) btJacobianEntry(jointAxisW, |
---|
443 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
444 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
445 | m_rbA.getInvInertiaDiagLocal(), |
---|
446 | m_rbB.getInvInertiaDiagLocal()); |
---|
447 | |
---|
448 | } |
---|
449 | |
---|
450 | |
---|
451 | |
---|
452 | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) |
---|
453 | { |
---|
454 | btScalar angle = m_calculatedAxisAngleDiff[axis_index]; |
---|
455 | angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit); |
---|
456 | m_angularLimits[axis_index].m_currentPosition = angle; |
---|
457 | //test limits |
---|
458 | m_angularLimits[axis_index].testLimitValue(angle); |
---|
459 | return m_angularLimits[axis_index].needApplyTorques(); |
---|
460 | } |
---|
461 | |
---|
462 | |
---|
463 | |
---|
464 | void btGeneric6DofConstraint::buildJacobian() |
---|
465 | { |
---|
466 | #ifndef __SPU__ |
---|
467 | if (m_useSolveConstraintObsolete) |
---|
468 | { |
---|
469 | |
---|
470 | // Clear accumulated impulses for the next simulation step |
---|
471 | m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); |
---|
472 | int i; |
---|
473 | for(i = 0; i < 3; i++) |
---|
474 | { |
---|
475 | m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); |
---|
476 | } |
---|
477 | //calculates transform |
---|
478 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
479 | |
---|
480 | // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); |
---|
481 | // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); |
---|
482 | calcAnchorPos(); |
---|
483 | btVector3 pivotAInW = m_AnchorPos; |
---|
484 | btVector3 pivotBInW = m_AnchorPos; |
---|
485 | |
---|
486 | // not used here |
---|
487 | // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
488 | // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
489 | |
---|
490 | btVector3 normalWorld; |
---|
491 | //linear part |
---|
492 | for (i=0;i<3;i++) |
---|
493 | { |
---|
494 | if (m_linearLimits.isLimited(i)) |
---|
495 | { |
---|
496 | if (m_useLinearReferenceFrameA) |
---|
497 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
498 | else |
---|
499 | normalWorld = m_calculatedTransformB.getBasis().getColumn(i); |
---|
500 | |
---|
501 | buildLinearJacobian( |
---|
502 | m_jacLinear[i],normalWorld , |
---|
503 | pivotAInW,pivotBInW); |
---|
504 | |
---|
505 | } |
---|
506 | } |
---|
507 | |
---|
508 | // angular part |
---|
509 | for (i=0;i<3;i++) |
---|
510 | { |
---|
511 | //calculates error angle |
---|
512 | if (testAngularLimitMotor(i)) |
---|
513 | { |
---|
514 | normalWorld = this->getAxis(i); |
---|
515 | // Create angular atom |
---|
516 | buildAngularJacobian(m_jacAng[i],normalWorld); |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | } |
---|
521 | #endif //__SPU__ |
---|
522 | |
---|
523 | } |
---|
524 | |
---|
525 | |
---|
526 | void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info) |
---|
527 | { |
---|
528 | if (m_useSolveConstraintObsolete) |
---|
529 | { |
---|
530 | info->m_numConstraintRows = 0; |
---|
531 | info->nub = 0; |
---|
532 | } else |
---|
533 | { |
---|
534 | //prepare constraint |
---|
535 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
536 | info->m_numConstraintRows = 0; |
---|
537 | info->nub = 6; |
---|
538 | int i; |
---|
539 | //test linear limits |
---|
540 | for(i = 0; i < 3; i++) |
---|
541 | { |
---|
542 | if(m_linearLimits.needApplyForce(i)) |
---|
543 | { |
---|
544 | info->m_numConstraintRows++; |
---|
545 | info->nub--; |
---|
546 | } |
---|
547 | } |
---|
548 | //test angular limits |
---|
549 | for (i=0;i<3 ;i++ ) |
---|
550 | { |
---|
551 | if(testAngularLimitMotor(i)) |
---|
552 | { |
---|
553 | info->m_numConstraintRows++; |
---|
554 | info->nub--; |
---|
555 | } |
---|
556 | } |
---|
557 | } |
---|
558 | } |
---|
559 | |
---|
560 | void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info) |
---|
561 | { |
---|
562 | if (m_useSolveConstraintObsolete) |
---|
563 | { |
---|
564 | info->m_numConstraintRows = 0; |
---|
565 | info->nub = 0; |
---|
566 | } else |
---|
567 | { |
---|
568 | //pre-allocate all 6 |
---|
569 | info->m_numConstraintRows = 6; |
---|
570 | info->nub = 0; |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | |
---|
575 | void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info) |
---|
576 | { |
---|
577 | btAssert(!m_useSolveConstraintObsolete); |
---|
578 | |
---|
579 | const btTransform& transA = m_rbA.getCenterOfMassTransform(); |
---|
580 | const btTransform& transB = m_rbB.getCenterOfMassTransform(); |
---|
581 | const btVector3& linVelA = m_rbA.getLinearVelocity(); |
---|
582 | const btVector3& linVelB = m_rbB.getLinearVelocity(); |
---|
583 | const btVector3& angVelA = m_rbA.getAngularVelocity(); |
---|
584 | const btVector3& angVelB = m_rbB.getAngularVelocity(); |
---|
585 | |
---|
586 | if(m_useOffsetForConstraintFrame) |
---|
587 | { // for stability better to solve angular limits first |
---|
588 | int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
589 | setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
590 | } |
---|
591 | else |
---|
592 | { // leave old version for compatibility |
---|
593 | int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
594 | setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
595 | } |
---|
596 | |
---|
597 | } |
---|
598 | |
---|
599 | |
---|
600 | void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) |
---|
601 | { |
---|
602 | |
---|
603 | btAssert(!m_useSolveConstraintObsolete); |
---|
604 | //prepare constraint |
---|
605 | calculateTransforms(transA,transB); |
---|
606 | |
---|
607 | int i; |
---|
608 | for (i=0;i<3 ;i++ ) |
---|
609 | { |
---|
610 | testAngularLimitMotor(i); |
---|
611 | } |
---|
612 | |
---|
613 | if(m_useOffsetForConstraintFrame) |
---|
614 | { // for stability better to solve angular limits first |
---|
615 | int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
616 | setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
617 | } |
---|
618 | else |
---|
619 | { // leave old version for compatibility |
---|
620 | int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
621 | setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB); |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | |
---|
626 | |
---|
627 | int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) |
---|
628 | { |
---|
629 | // int row = 0; |
---|
630 | //solve linear limits |
---|
631 | btRotationalLimitMotor limot; |
---|
632 | for (int i=0;i<3 ;i++ ) |
---|
633 | { |
---|
634 | if(m_linearLimits.needApplyForce(i)) |
---|
635 | { // re-use rotational motor code |
---|
636 | limot.m_bounce = btScalar(0.f); |
---|
637 | limot.m_currentLimit = m_linearLimits.m_currentLimit[i]; |
---|
638 | limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i]; |
---|
639 | limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i]; |
---|
640 | limot.m_damping = m_linearLimits.m_damping; |
---|
641 | limot.m_enableMotor = m_linearLimits.m_enableMotor[i]; |
---|
642 | limot.m_hiLimit = m_linearLimits.m_upperLimit[i]; |
---|
643 | limot.m_limitSoftness = m_linearLimits.m_limitSoftness; |
---|
644 | limot.m_loLimit = m_linearLimits.m_lowerLimit[i]; |
---|
645 | limot.m_maxLimitForce = btScalar(0.f); |
---|
646 | limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i]; |
---|
647 | limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i]; |
---|
648 | btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i); |
---|
649 | int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
650 | limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0]; |
---|
651 | limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0]; |
---|
652 | limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp; |
---|
653 | if(m_useOffsetForConstraintFrame) |
---|
654 | { |
---|
655 | int indx1 = (i + 1) % 3; |
---|
656 | int indx2 = (i + 2) % 3; |
---|
657 | int rotAllowed = 1; // rotations around orthos to current axis |
---|
658 | if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit) |
---|
659 | { |
---|
660 | rotAllowed = 0; |
---|
661 | } |
---|
662 | row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed); |
---|
663 | } |
---|
664 | else |
---|
665 | { |
---|
666 | row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0); |
---|
667 | } |
---|
668 | } |
---|
669 | } |
---|
670 | return row; |
---|
671 | } |
---|
672 | |
---|
673 | |
---|
674 | |
---|
675 | int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB) |
---|
676 | { |
---|
677 | btGeneric6DofConstraint * d6constraint = this; |
---|
678 | int row = row_offset; |
---|
679 | //solve angular limits |
---|
680 | for (int i=0;i<3 ;i++ ) |
---|
681 | { |
---|
682 | if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques()) |
---|
683 | { |
---|
684 | btVector3 axis = d6constraint->getAxis(i); |
---|
685 | int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
686 | if(!(flags & BT_6DOF_FLAGS_CFM_NORM)) |
---|
687 | { |
---|
688 | m_angularLimits[i].m_normalCFM = info->cfm[0]; |
---|
689 | } |
---|
690 | if(!(flags & BT_6DOF_FLAGS_CFM_STOP)) |
---|
691 | { |
---|
692 | m_angularLimits[i].m_stopCFM = info->cfm[0]; |
---|
693 | } |
---|
694 | if(!(flags & BT_6DOF_FLAGS_ERP_STOP)) |
---|
695 | { |
---|
696 | m_angularLimits[i].m_stopERP = info->erp; |
---|
697 | } |
---|
698 | row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i), |
---|
699 | transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1); |
---|
700 | } |
---|
701 | } |
---|
702 | |
---|
703 | return row; |
---|
704 | } |
---|
705 | |
---|
706 | |
---|
707 | |
---|
708 | |
---|
709 | void btGeneric6DofConstraint::updateRHS(btScalar timeStep) |
---|
710 | { |
---|
711 | (void)timeStep; |
---|
712 | |
---|
713 | } |
---|
714 | |
---|
715 | |
---|
716 | void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB) |
---|
717 | { |
---|
718 | m_frameInA = frameA; |
---|
719 | m_frameInB = frameB; |
---|
720 | buildJacobian(); |
---|
721 | calculateTransforms(); |
---|
722 | } |
---|
723 | |
---|
724 | |
---|
725 | |
---|
726 | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const |
---|
727 | { |
---|
728 | return m_calculatedAxis[axis_index]; |
---|
729 | } |
---|
730 | |
---|
731 | |
---|
732 | btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const |
---|
733 | { |
---|
734 | return m_calculatedLinearDiff[axisIndex]; |
---|
735 | } |
---|
736 | |
---|
737 | |
---|
738 | btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const |
---|
739 | { |
---|
740 | return m_calculatedAxisAngleDiff[axisIndex]; |
---|
741 | } |
---|
742 | |
---|
743 | |
---|
744 | |
---|
745 | void btGeneric6DofConstraint::calcAnchorPos(void) |
---|
746 | { |
---|
747 | btScalar imA = m_rbA.getInvMass(); |
---|
748 | btScalar imB = m_rbB.getInvMass(); |
---|
749 | btScalar weight; |
---|
750 | if(imB == btScalar(0.0)) |
---|
751 | { |
---|
752 | weight = btScalar(1.0); |
---|
753 | } |
---|
754 | else |
---|
755 | { |
---|
756 | weight = imA / (imA + imB); |
---|
757 | } |
---|
758 | const btVector3& pA = m_calculatedTransformA.getOrigin(); |
---|
759 | const btVector3& pB = m_calculatedTransformB.getOrigin(); |
---|
760 | m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); |
---|
761 | return; |
---|
762 | } |
---|
763 | |
---|
764 | |
---|
765 | |
---|
766 | void btGeneric6DofConstraint::calculateLinearInfo() |
---|
767 | { |
---|
768 | m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin(); |
---|
769 | m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff; |
---|
770 | for(int i = 0; i < 3; i++) |
---|
771 | { |
---|
772 | m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i]; |
---|
773 | m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]); |
---|
774 | } |
---|
775 | } |
---|
776 | |
---|
777 | |
---|
778 | |
---|
779 | int btGeneric6DofConstraint::get_limit_motor_info2( |
---|
780 | btRotationalLimitMotor * limot, |
---|
781 | const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, |
---|
782 | btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed) |
---|
783 | { |
---|
784 | int srow = row * info->rowskip; |
---|
785 | int powered = limot->m_enableMotor; |
---|
786 | int limit = limot->m_currentLimit; |
---|
787 | if (powered || limit) |
---|
788 | { // if the joint is powered, or has joint limits, add in the extra row |
---|
789 | btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis; |
---|
790 | btScalar *J2 = rotational ? info->m_J2angularAxis : 0; |
---|
791 | J1[srow+0] = ax1[0]; |
---|
792 | J1[srow+1] = ax1[1]; |
---|
793 | J1[srow+2] = ax1[2]; |
---|
794 | if(rotational) |
---|
795 | { |
---|
796 | J2[srow+0] = -ax1[0]; |
---|
797 | J2[srow+1] = -ax1[1]; |
---|
798 | J2[srow+2] = -ax1[2]; |
---|
799 | } |
---|
800 | if((!rotational)) |
---|
801 | { |
---|
802 | if (m_useOffsetForConstraintFrame) |
---|
803 | { |
---|
804 | btVector3 tmpA, tmpB, relA, relB; |
---|
805 | // get vector from bodyB to frameB in WCS |
---|
806 | relB = m_calculatedTransformB.getOrigin() - transB.getOrigin(); |
---|
807 | // get its projection to constraint axis |
---|
808 | btVector3 projB = ax1 * relB.dot(ax1); |
---|
809 | // get vector directed from bodyB to constraint axis (and orthogonal to it) |
---|
810 | btVector3 orthoB = relB - projB; |
---|
811 | // same for bodyA |
---|
812 | relA = m_calculatedTransformA.getOrigin() - transA.getOrigin(); |
---|
813 | btVector3 projA = ax1 * relA.dot(ax1); |
---|
814 | btVector3 orthoA = relA - projA; |
---|
815 | // get desired offset between frames A and B along constraint axis |
---|
816 | btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError; |
---|
817 | // desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis |
---|
818 | btVector3 totalDist = projA + ax1 * desiredOffs - projB; |
---|
819 | // get offset vectors relA and relB |
---|
820 | relA = orthoA + totalDist * m_factA; |
---|
821 | relB = orthoB - totalDist * m_factB; |
---|
822 | tmpA = relA.cross(ax1); |
---|
823 | tmpB = relB.cross(ax1); |
---|
824 | if(m_hasStaticBody && (!rotAllowed)) |
---|
825 | { |
---|
826 | tmpA *= m_factA; |
---|
827 | tmpB *= m_factB; |
---|
828 | } |
---|
829 | int i; |
---|
830 | for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i]; |
---|
831 | for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i]; |
---|
832 | } else |
---|
833 | { |
---|
834 | btVector3 ltd; // Linear Torque Decoupling vector |
---|
835 | btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin(); |
---|
836 | ltd = c.cross(ax1); |
---|
837 | info->m_J1angularAxis[srow+0] = ltd[0]; |
---|
838 | info->m_J1angularAxis[srow+1] = ltd[1]; |
---|
839 | info->m_J1angularAxis[srow+2] = ltd[2]; |
---|
840 | |
---|
841 | c = m_calculatedTransformB.getOrigin() - transB.getOrigin(); |
---|
842 | ltd = -c.cross(ax1); |
---|
843 | info->m_J2angularAxis[srow+0] = ltd[0]; |
---|
844 | info->m_J2angularAxis[srow+1] = ltd[1]; |
---|
845 | info->m_J2angularAxis[srow+2] = ltd[2]; |
---|
846 | } |
---|
847 | } |
---|
848 | // if we're limited low and high simultaneously, the joint motor is |
---|
849 | // ineffective |
---|
850 | if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = 0; |
---|
851 | info->m_constraintError[srow] = btScalar(0.f); |
---|
852 | if (powered) |
---|
853 | { |
---|
854 | info->cfm[srow] = limot->m_normalCFM; |
---|
855 | if(!limit) |
---|
856 | { |
---|
857 | btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity; |
---|
858 | |
---|
859 | btScalar mot_fact = getMotorFactor( limot->m_currentPosition, |
---|
860 | limot->m_loLimit, |
---|
861 | limot->m_hiLimit, |
---|
862 | tag_vel, |
---|
863 | info->fps * limot->m_stopERP); |
---|
864 | info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity; |
---|
865 | info->m_lowerLimit[srow] = -limot->m_maxMotorForce; |
---|
866 | info->m_upperLimit[srow] = limot->m_maxMotorForce; |
---|
867 | } |
---|
868 | } |
---|
869 | if(limit) |
---|
870 | { |
---|
871 | btScalar k = info->fps * limot->m_stopERP; |
---|
872 | if(!rotational) |
---|
873 | { |
---|
874 | info->m_constraintError[srow] += k * limot->m_currentLimitError; |
---|
875 | } |
---|
876 | else |
---|
877 | { |
---|
878 | info->m_constraintError[srow] += -k * limot->m_currentLimitError; |
---|
879 | } |
---|
880 | info->cfm[srow] = limot->m_stopCFM; |
---|
881 | if (limot->m_loLimit == limot->m_hiLimit) |
---|
882 | { // limited low and high simultaneously |
---|
883 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
884 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
885 | } |
---|
886 | else |
---|
887 | { |
---|
888 | if (limit == 1) |
---|
889 | { |
---|
890 | info->m_lowerLimit[srow] = 0; |
---|
891 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
892 | } |
---|
893 | else |
---|
894 | { |
---|
895 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
896 | info->m_upperLimit[srow] = 0; |
---|
897 | } |
---|
898 | // deal with bounce |
---|
899 | if (limot->m_bounce > 0) |
---|
900 | { |
---|
901 | // calculate joint velocity |
---|
902 | btScalar vel; |
---|
903 | if (rotational) |
---|
904 | { |
---|
905 | vel = angVelA.dot(ax1); |
---|
906 | //make sure that if no body -> angVelB == zero vec |
---|
907 | // if (body1) |
---|
908 | vel -= angVelB.dot(ax1); |
---|
909 | } |
---|
910 | else |
---|
911 | { |
---|
912 | vel = linVelA.dot(ax1); |
---|
913 | //make sure that if no body -> angVelB == zero vec |
---|
914 | // if (body1) |
---|
915 | vel -= linVelB.dot(ax1); |
---|
916 | } |
---|
917 | // only apply bounce if the velocity is incoming, and if the |
---|
918 | // resulting c[] exceeds what we already have. |
---|
919 | if (limit == 1) |
---|
920 | { |
---|
921 | if (vel < 0) |
---|
922 | { |
---|
923 | btScalar newc = -limot->m_bounce* vel; |
---|
924 | if (newc > info->m_constraintError[srow]) |
---|
925 | info->m_constraintError[srow] = newc; |
---|
926 | } |
---|
927 | } |
---|
928 | else |
---|
929 | { |
---|
930 | if (vel > 0) |
---|
931 | { |
---|
932 | btScalar newc = -limot->m_bounce * vel; |
---|
933 | if (newc < info->m_constraintError[srow]) |
---|
934 | info->m_constraintError[srow] = newc; |
---|
935 | } |
---|
936 | } |
---|
937 | } |
---|
938 | } |
---|
939 | } |
---|
940 | return 1; |
---|
941 | } |
---|
942 | else return 0; |
---|
943 | } |
---|
944 | |
---|
945 | |
---|
946 | |
---|
947 | |
---|
948 | |
---|
949 | |
---|
950 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). |
---|
951 | ///If no axis is provided, it uses the default axis for this constraint. |
---|
952 | void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis) |
---|
953 | { |
---|
954 | if((axis >= 0) && (axis < 3)) |
---|
955 | { |
---|
956 | switch(num) |
---|
957 | { |
---|
958 | case BT_CONSTRAINT_STOP_ERP : |
---|
959 | m_linearLimits.m_stopERP[axis] = value; |
---|
960 | m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
961 | break; |
---|
962 | case BT_CONSTRAINT_STOP_CFM : |
---|
963 | m_linearLimits.m_stopCFM[axis] = value; |
---|
964 | m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
965 | break; |
---|
966 | case BT_CONSTRAINT_CFM : |
---|
967 | m_linearLimits.m_normalCFM[axis] = value; |
---|
968 | m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
969 | break; |
---|
970 | default : |
---|
971 | btAssertConstrParams(0); |
---|
972 | } |
---|
973 | } |
---|
974 | else if((axis >=3) && (axis < 6)) |
---|
975 | { |
---|
976 | switch(num) |
---|
977 | { |
---|
978 | case BT_CONSTRAINT_STOP_ERP : |
---|
979 | m_angularLimits[axis - 3].m_stopERP = value; |
---|
980 | m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
981 | break; |
---|
982 | case BT_CONSTRAINT_STOP_CFM : |
---|
983 | m_angularLimits[axis - 3].m_stopCFM = value; |
---|
984 | m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
985 | break; |
---|
986 | case BT_CONSTRAINT_CFM : |
---|
987 | m_angularLimits[axis - 3].m_normalCFM = value; |
---|
988 | m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT); |
---|
989 | break; |
---|
990 | default : |
---|
991 | btAssertConstrParams(0); |
---|
992 | } |
---|
993 | } |
---|
994 | else |
---|
995 | { |
---|
996 | btAssertConstrParams(0); |
---|
997 | } |
---|
998 | } |
---|
999 | |
---|
1000 | ///return the local value of parameter |
---|
1001 | btScalar btGeneric6DofConstraint::getParam(int num, int axis) const |
---|
1002 | { |
---|
1003 | btScalar retVal = 0; |
---|
1004 | if((axis >= 0) && (axis < 3)) |
---|
1005 | { |
---|
1006 | switch(num) |
---|
1007 | { |
---|
1008 | case BT_CONSTRAINT_STOP_ERP : |
---|
1009 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1010 | retVal = m_linearLimits.m_stopERP[axis]; |
---|
1011 | break; |
---|
1012 | case BT_CONSTRAINT_STOP_CFM : |
---|
1013 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1014 | retVal = m_linearLimits.m_stopCFM[axis]; |
---|
1015 | break; |
---|
1016 | case BT_CONSTRAINT_CFM : |
---|
1017 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1018 | retVal = m_linearLimits.m_normalCFM[axis]; |
---|
1019 | break; |
---|
1020 | default : |
---|
1021 | btAssertConstrParams(0); |
---|
1022 | } |
---|
1023 | } |
---|
1024 | else if((axis >=3) && (axis < 6)) |
---|
1025 | { |
---|
1026 | switch(num) |
---|
1027 | { |
---|
1028 | case BT_CONSTRAINT_STOP_ERP : |
---|
1029 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1030 | retVal = m_angularLimits[axis - 3].m_stopERP; |
---|
1031 | break; |
---|
1032 | case BT_CONSTRAINT_STOP_CFM : |
---|
1033 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1034 | retVal = m_angularLimits[axis - 3].m_stopCFM; |
---|
1035 | break; |
---|
1036 | case BT_CONSTRAINT_CFM : |
---|
1037 | btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT))); |
---|
1038 | retVal = m_angularLimits[axis - 3].m_normalCFM; |
---|
1039 | break; |
---|
1040 | default : |
---|
1041 | btAssertConstrParams(0); |
---|
1042 | } |
---|
1043 | } |
---|
1044 | else |
---|
1045 | { |
---|
1046 | btAssertConstrParams(0); |
---|
1047 | } |
---|
1048 | return retVal; |
---|
1049 | } |
---|
1050 | |
---|
1051 | |
---|
1052 | |
---|
1053 | void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2) |
---|
1054 | { |
---|
1055 | btVector3 zAxis = axis1.normalized(); |
---|
1056 | btVector3 yAxis = axis2.normalized(); |
---|
1057 | btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system |
---|
1058 | |
---|
1059 | btTransform frameInW; |
---|
1060 | frameInW.setIdentity(); |
---|
1061 | frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0], |
---|
1062 | xAxis[1], yAxis[1], zAxis[1], |
---|
1063 | xAxis[2], yAxis[2], zAxis[2]); |
---|
1064 | |
---|
1065 | // now get constraint frame in local coordinate systems |
---|
1066 | m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW; |
---|
1067 | m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW; |
---|
1068 | |
---|
1069 | calculateTransforms(); |
---|
1070 | } |
---|