1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | /* |
---|
17 | Added by Roman Ponomarev (rponom@gmail.com) |
---|
18 | April 04, 2008 |
---|
19 | */ |
---|
20 | |
---|
21 | |
---|
22 | |
---|
23 | #include "btSliderConstraint.h" |
---|
24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
25 | #include "LinearMath/btTransformUtil.h" |
---|
26 | #include <new> |
---|
27 | |
---|
28 | #define USE_OFFSET_FOR_CONSTANT_FRAME true |
---|
29 | |
---|
30 | void btSliderConstraint::initParams() |
---|
31 | { |
---|
32 | m_lowerLinLimit = btScalar(1.0); |
---|
33 | m_upperLinLimit = btScalar(-1.0); |
---|
34 | m_lowerAngLimit = btScalar(0.); |
---|
35 | m_upperAngLimit = btScalar(0.); |
---|
36 | m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
37 | m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
38 | m_dampingDirLin = btScalar(0.); |
---|
39 | m_cfmDirLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
40 | m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
41 | m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
42 | m_dampingDirAng = btScalar(0.); |
---|
43 | m_cfmDirAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
44 | m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
45 | m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
46 | m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
47 | m_cfmOrthoLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
48 | m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
49 | m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
50 | m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
51 | m_cfmOrthoAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
52 | m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
53 | m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
54 | m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
55 | m_cfmLimLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
56 | m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
57 | m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
58 | m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
59 | m_cfmLimAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
60 | |
---|
61 | m_poweredLinMotor = false; |
---|
62 | m_targetLinMotorVelocity = btScalar(0.); |
---|
63 | m_maxLinMotorForce = btScalar(0.); |
---|
64 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
65 | |
---|
66 | m_poweredAngMotor = false; |
---|
67 | m_targetAngMotorVelocity = btScalar(0.); |
---|
68 | m_maxAngMotorForce = btScalar(0.); |
---|
69 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
70 | |
---|
71 | m_flags = 0; |
---|
72 | m_flags = 0; |
---|
73 | |
---|
74 | m_useOffsetForConstraintFrame = USE_OFFSET_FOR_CONSTANT_FRAME; |
---|
75 | |
---|
76 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | |
---|
81 | |
---|
82 | |
---|
83 | btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
84 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB), |
---|
85 | m_useSolveConstraintObsolete(false), |
---|
86 | m_frameInA(frameInA), |
---|
87 | m_frameInB(frameInB), |
---|
88 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
89 | { |
---|
90 | initParams(); |
---|
91 | } |
---|
92 | |
---|
93 | |
---|
94 | |
---|
95 | btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
96 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB), |
---|
97 | m_useSolveConstraintObsolete(false), |
---|
98 | m_frameInB(frameInB), |
---|
99 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
100 | { |
---|
101 | ///not providing rigidbody A means implicitly using worldspace for body A |
---|
102 | m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB; |
---|
103 | // m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin()); |
---|
104 | |
---|
105 | initParams(); |
---|
106 | } |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | void btSliderConstraint::getInfo1(btConstraintInfo1* info) |
---|
114 | { |
---|
115 | if (m_useSolveConstraintObsolete) |
---|
116 | { |
---|
117 | info->m_numConstraintRows = 0; |
---|
118 | info->nub = 0; |
---|
119 | } |
---|
120 | else |
---|
121 | { |
---|
122 | info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular |
---|
123 | info->nub = 2; |
---|
124 | //prepare constraint |
---|
125 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
126 | testAngLimits(); |
---|
127 | testLinLimits(); |
---|
128 | if(getSolveLinLimit() || getPoweredLinMotor()) |
---|
129 | { |
---|
130 | info->m_numConstraintRows++; // limit 3rd linear as well |
---|
131 | info->nub--; |
---|
132 | } |
---|
133 | if(getSolveAngLimit() || getPoweredAngMotor()) |
---|
134 | { |
---|
135 | info->m_numConstraintRows++; // limit 3rd angular as well |
---|
136 | info->nub--; |
---|
137 | } |
---|
138 | } |
---|
139 | } |
---|
140 | |
---|
141 | void btSliderConstraint::getInfo1NonVirtual(btConstraintInfo1* info) |
---|
142 | { |
---|
143 | |
---|
144 | info->m_numConstraintRows = 6; // Fixed 2 linear + 2 angular + 1 limit (even if not used) |
---|
145 | info->nub = 0; |
---|
146 | } |
---|
147 | |
---|
148 | void btSliderConstraint::getInfo2(btConstraintInfo2* info) |
---|
149 | { |
---|
150 | getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(), m_rbA.getLinearVelocity(),m_rbB.getLinearVelocity(), m_rbA.getInvMass(),m_rbB.getInvMass()); |
---|
151 | } |
---|
152 | |
---|
153 | |
---|
154 | |
---|
155 | |
---|
156 | |
---|
157 | |
---|
158 | |
---|
159 | void btSliderConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB) |
---|
160 | { |
---|
161 | if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete)) |
---|
162 | { |
---|
163 | m_calculatedTransformA = transA * m_frameInA; |
---|
164 | m_calculatedTransformB = transB * m_frameInB; |
---|
165 | } |
---|
166 | else |
---|
167 | { |
---|
168 | m_calculatedTransformA = transB * m_frameInB; |
---|
169 | m_calculatedTransformB = transA * m_frameInA; |
---|
170 | } |
---|
171 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
172 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
173 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
174 | if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete) |
---|
175 | { |
---|
176 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
177 | } |
---|
178 | else |
---|
179 | { |
---|
180 | m_delta = m_realPivotAInW - m_realPivotBInW; |
---|
181 | } |
---|
182 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
183 | btVector3 normalWorld; |
---|
184 | int i; |
---|
185 | //linear part |
---|
186 | for(i = 0; i < 3; i++) |
---|
187 | { |
---|
188 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
189 | m_depth[i] = m_delta.dot(normalWorld); |
---|
190 | } |
---|
191 | } |
---|
192 | |
---|
193 | |
---|
194 | |
---|
195 | void btSliderConstraint::testLinLimits(void) |
---|
196 | { |
---|
197 | m_solveLinLim = false; |
---|
198 | m_linPos = m_depth[0]; |
---|
199 | if(m_lowerLinLimit <= m_upperLinLimit) |
---|
200 | { |
---|
201 | if(m_depth[0] > m_upperLinLimit) |
---|
202 | { |
---|
203 | m_depth[0] -= m_upperLinLimit; |
---|
204 | m_solveLinLim = true; |
---|
205 | } |
---|
206 | else if(m_depth[0] < m_lowerLinLimit) |
---|
207 | { |
---|
208 | m_depth[0] -= m_lowerLinLimit; |
---|
209 | m_solveLinLim = true; |
---|
210 | } |
---|
211 | else |
---|
212 | { |
---|
213 | m_depth[0] = btScalar(0.); |
---|
214 | } |
---|
215 | } |
---|
216 | else |
---|
217 | { |
---|
218 | m_depth[0] = btScalar(0.); |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | void btSliderConstraint::testAngLimits(void) |
---|
225 | { |
---|
226 | m_angDepth = btScalar(0.); |
---|
227 | m_solveAngLim = false; |
---|
228 | if(m_lowerAngLimit <= m_upperAngLimit) |
---|
229 | { |
---|
230 | const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1); |
---|
231 | const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
232 | const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1); |
---|
233 | // btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
234 | btScalar rot = btAtan2(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
235 | rot = btAdjustAngleToLimits(rot, m_lowerAngLimit, m_upperAngLimit); |
---|
236 | m_angPos = rot; |
---|
237 | if(rot < m_lowerAngLimit) |
---|
238 | { |
---|
239 | m_angDepth = rot - m_lowerAngLimit; |
---|
240 | m_solveAngLim = true; |
---|
241 | } |
---|
242 | else if(rot > m_upperAngLimit) |
---|
243 | { |
---|
244 | m_angDepth = rot - m_upperAngLimit; |
---|
245 | m_solveAngLim = true; |
---|
246 | } |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | btVector3 btSliderConstraint::getAncorInA(void) |
---|
251 | { |
---|
252 | btVector3 ancorInA; |
---|
253 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis; |
---|
254 | ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA; |
---|
255 | return ancorInA; |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | |
---|
260 | btVector3 btSliderConstraint::getAncorInB(void) |
---|
261 | { |
---|
262 | btVector3 ancorInB; |
---|
263 | ancorInB = m_frameInB.getOrigin(); |
---|
264 | return ancorInB; |
---|
265 | } |
---|
266 | |
---|
267 | |
---|
268 | void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB, const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass ) |
---|
269 | { |
---|
270 | const btTransform& trA = getCalculatedTransformA(); |
---|
271 | const btTransform& trB = getCalculatedTransformB(); |
---|
272 | |
---|
273 | btAssert(!m_useSolveConstraintObsolete); |
---|
274 | int i, s = info->rowskip; |
---|
275 | |
---|
276 | btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f); |
---|
277 | |
---|
278 | // difference between frames in WCS |
---|
279 | btVector3 ofs = trB.getOrigin() - trA.getOrigin(); |
---|
280 | // now get weight factors depending on masses |
---|
281 | btScalar miA = rbAinvMass; |
---|
282 | btScalar miB = rbBinvMass; |
---|
283 | bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); |
---|
284 | btScalar miS = miA + miB; |
---|
285 | btScalar factA, factB; |
---|
286 | if(miS > btScalar(0.f)) |
---|
287 | { |
---|
288 | factA = miB / miS; |
---|
289 | } |
---|
290 | else |
---|
291 | { |
---|
292 | factA = btScalar(0.5f); |
---|
293 | } |
---|
294 | factB = btScalar(1.0f) - factA; |
---|
295 | btVector3 ax1, p, q; |
---|
296 | btVector3 ax1A = trA.getBasis().getColumn(0); |
---|
297 | btVector3 ax1B = trB.getBasis().getColumn(0); |
---|
298 | if(m_useOffsetForConstraintFrame) |
---|
299 | { |
---|
300 | // get the desired direction of slider axis |
---|
301 | // as weighted sum of X-orthos of frameA and frameB in WCS |
---|
302 | ax1 = ax1A * factA + ax1B * factB; |
---|
303 | ax1.normalize(); |
---|
304 | // construct two orthos to slider axis |
---|
305 | btPlaneSpace1 (ax1, p, q); |
---|
306 | } |
---|
307 | else |
---|
308 | { // old way - use frameA |
---|
309 | ax1 = trA.getBasis().getColumn(0); |
---|
310 | // get 2 orthos to slider axis (Y, Z) |
---|
311 | p = trA.getBasis().getColumn(1); |
---|
312 | q = trA.getBasis().getColumn(2); |
---|
313 | } |
---|
314 | // make rotations around these orthos equal |
---|
315 | // the slider axis should be the only unconstrained |
---|
316 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
317 | // the slider axis should be equal. thus the constraint equations are |
---|
318 | // p*w1 - p*w2 = 0 |
---|
319 | // q*w1 - q*w2 = 0 |
---|
320 | // where p and q are unit vectors normal to the slider axis, and w1 and w2 |
---|
321 | // are the angular velocity vectors of the two bodies. |
---|
322 | info->m_J1angularAxis[0] = p[0]; |
---|
323 | info->m_J1angularAxis[1] = p[1]; |
---|
324 | info->m_J1angularAxis[2] = p[2]; |
---|
325 | info->m_J1angularAxis[s+0] = q[0]; |
---|
326 | info->m_J1angularAxis[s+1] = q[1]; |
---|
327 | info->m_J1angularAxis[s+2] = q[2]; |
---|
328 | |
---|
329 | info->m_J2angularAxis[0] = -p[0]; |
---|
330 | info->m_J2angularAxis[1] = -p[1]; |
---|
331 | info->m_J2angularAxis[2] = -p[2]; |
---|
332 | info->m_J2angularAxis[s+0] = -q[0]; |
---|
333 | info->m_J2angularAxis[s+1] = -q[1]; |
---|
334 | info->m_J2angularAxis[s+2] = -q[2]; |
---|
335 | // compute the right hand side of the constraint equation. set relative |
---|
336 | // body velocities along p and q to bring the slider back into alignment. |
---|
337 | // if ax1A,ax1B are the unit length slider axes as computed from bodyA and |
---|
338 | // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
339 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity |
---|
340 | // along u to cover angle erp*theta in one step : |
---|
341 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
342 | // = (erp*fps) * theta |
---|
343 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
344 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
345 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
346 | // theta ~= sin(theta), so |
---|
347 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
348 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
349 | // velocity to p and q to find the right hand side. |
---|
350 | // btScalar k = info->fps * info->erp * getSoftnessOrthoAng(); |
---|
351 | btScalar currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTANG) ? m_softnessOrthoAng : m_softnessOrthoAng * info->erp; |
---|
352 | btScalar k = info->fps * currERP; |
---|
353 | |
---|
354 | btVector3 u = ax1A.cross(ax1B); |
---|
355 | info->m_constraintError[0] = k * u.dot(p); |
---|
356 | info->m_constraintError[s] = k * u.dot(q); |
---|
357 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG) |
---|
358 | { |
---|
359 | info->cfm[0] = m_cfmOrthoAng; |
---|
360 | info->cfm[s] = m_cfmOrthoAng; |
---|
361 | } |
---|
362 | |
---|
363 | int nrow = 1; // last filled row |
---|
364 | int srow; |
---|
365 | btScalar limit_err; |
---|
366 | int limit; |
---|
367 | int powered; |
---|
368 | |
---|
369 | // next two rows. |
---|
370 | // we want: velA + wA x relA == velB + wB x relB ... but this would |
---|
371 | // result in three equations, so we project along two orthos to the slider axis |
---|
372 | |
---|
373 | btTransform bodyA_trans = transA; |
---|
374 | btTransform bodyB_trans = transB; |
---|
375 | nrow++; |
---|
376 | int s2 = nrow * s; |
---|
377 | nrow++; |
---|
378 | int s3 = nrow * s; |
---|
379 | btVector3 tmpA(0,0,0), tmpB(0,0,0), relA(0,0,0), relB(0,0,0), c(0,0,0); |
---|
380 | if(m_useOffsetForConstraintFrame) |
---|
381 | { |
---|
382 | // get vector from bodyB to frameB in WCS |
---|
383 | relB = trB.getOrigin() - bodyB_trans.getOrigin(); |
---|
384 | // get its projection to slider axis |
---|
385 | btVector3 projB = ax1 * relB.dot(ax1); |
---|
386 | // get vector directed from bodyB to slider axis (and orthogonal to it) |
---|
387 | btVector3 orthoB = relB - projB; |
---|
388 | // same for bodyA |
---|
389 | relA = trA.getOrigin() - bodyA_trans.getOrigin(); |
---|
390 | btVector3 projA = ax1 * relA.dot(ax1); |
---|
391 | btVector3 orthoA = relA - projA; |
---|
392 | // get desired offset between frames A and B along slider axis |
---|
393 | btScalar sliderOffs = m_linPos - m_depth[0]; |
---|
394 | // desired vector from projection of center of bodyA to projection of center of bodyB to slider axis |
---|
395 | btVector3 totalDist = projA + ax1 * sliderOffs - projB; |
---|
396 | // get offset vectors relA and relB |
---|
397 | relA = orthoA + totalDist * factA; |
---|
398 | relB = orthoB - totalDist * factB; |
---|
399 | // now choose average ortho to slider axis |
---|
400 | p = orthoB * factA + orthoA * factB; |
---|
401 | btScalar len2 = p.length2(); |
---|
402 | if(len2 > SIMD_EPSILON) |
---|
403 | { |
---|
404 | p /= btSqrt(len2); |
---|
405 | } |
---|
406 | else |
---|
407 | { |
---|
408 | p = trA.getBasis().getColumn(1); |
---|
409 | } |
---|
410 | // make one more ortho |
---|
411 | q = ax1.cross(p); |
---|
412 | // fill two rows |
---|
413 | tmpA = relA.cross(p); |
---|
414 | tmpB = relB.cross(p); |
---|
415 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; |
---|
416 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; |
---|
417 | tmpA = relA.cross(q); |
---|
418 | tmpB = relB.cross(q); |
---|
419 | if(hasStaticBody && getSolveAngLimit()) |
---|
420 | { // to make constraint between static and dynamic objects more rigid |
---|
421 | // remove wA (or wB) from equation if angular limit is hit |
---|
422 | tmpB *= factB; |
---|
423 | tmpA *= factA; |
---|
424 | } |
---|
425 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmpA[i]; |
---|
426 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i]; |
---|
427 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; |
---|
428 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; |
---|
429 | } |
---|
430 | else |
---|
431 | { // old way - maybe incorrect if bodies are not on the slider axis |
---|
432 | // see discussion "Bug in slider constraint" http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4024&start=0 |
---|
433 | c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin(); |
---|
434 | btVector3 tmp = c.cross(p); |
---|
435 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i]; |
---|
436 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i]; |
---|
437 | tmp = c.cross(q); |
---|
438 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i]; |
---|
439 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i]; |
---|
440 | |
---|
441 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; |
---|
442 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; |
---|
443 | } |
---|
444 | // compute two elements of right hand side |
---|
445 | |
---|
446 | // k = info->fps * info->erp * getSoftnessOrthoLin(); |
---|
447 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN) ? m_softnessOrthoLin : m_softnessOrthoLin * info->erp; |
---|
448 | k = info->fps * currERP; |
---|
449 | |
---|
450 | btScalar rhs = k * p.dot(ofs); |
---|
451 | info->m_constraintError[s2] = rhs; |
---|
452 | rhs = k * q.dot(ofs); |
---|
453 | info->m_constraintError[s3] = rhs; |
---|
454 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN) |
---|
455 | { |
---|
456 | info->cfm[s2] = m_cfmOrthoLin; |
---|
457 | info->cfm[s3] = m_cfmOrthoLin; |
---|
458 | } |
---|
459 | |
---|
460 | |
---|
461 | // check linear limits |
---|
462 | limit_err = btScalar(0.0); |
---|
463 | limit = 0; |
---|
464 | if(getSolveLinLimit()) |
---|
465 | { |
---|
466 | limit_err = getLinDepth() * signFact; |
---|
467 | limit = (limit_err > btScalar(0.0)) ? 2 : 1; |
---|
468 | } |
---|
469 | powered = 0; |
---|
470 | if(getPoweredLinMotor()) |
---|
471 | { |
---|
472 | powered = 1; |
---|
473 | } |
---|
474 | // if the slider has joint limits or motor, add in the extra row |
---|
475 | if (limit || powered) |
---|
476 | { |
---|
477 | nrow++; |
---|
478 | srow = nrow * info->rowskip; |
---|
479 | info->m_J1linearAxis[srow+0] = ax1[0]; |
---|
480 | info->m_J1linearAxis[srow+1] = ax1[1]; |
---|
481 | info->m_J1linearAxis[srow+2] = ax1[2]; |
---|
482 | // linear torque decoupling step: |
---|
483 | // |
---|
484 | // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies |
---|
485 | // do not create a torque couple. in other words, the points that the |
---|
486 | // constraint force is applied at must lie along the same ax1 axis. |
---|
487 | // a torque couple will result in limited slider-jointed free |
---|
488 | // bodies from gaining angular momentum. |
---|
489 | if(m_useOffsetForConstraintFrame) |
---|
490 | { |
---|
491 | // this is needed only when bodyA and bodyB are both dynamic. |
---|
492 | if(!hasStaticBody) |
---|
493 | { |
---|
494 | tmpA = relA.cross(ax1); |
---|
495 | tmpB = relB.cross(ax1); |
---|
496 | info->m_J1angularAxis[srow+0] = tmpA[0]; |
---|
497 | info->m_J1angularAxis[srow+1] = tmpA[1]; |
---|
498 | info->m_J1angularAxis[srow+2] = tmpA[2]; |
---|
499 | info->m_J2angularAxis[srow+0] = -tmpB[0]; |
---|
500 | info->m_J2angularAxis[srow+1] = -tmpB[1]; |
---|
501 | info->m_J2angularAxis[srow+2] = -tmpB[2]; |
---|
502 | } |
---|
503 | } |
---|
504 | else |
---|
505 | { // The old way. May be incorrect if bodies are not on the slider axis |
---|
506 | btVector3 ltd; // Linear Torque Decoupling vector (a torque) |
---|
507 | ltd = c.cross(ax1); |
---|
508 | info->m_J1angularAxis[srow+0] = factA*ltd[0]; |
---|
509 | info->m_J1angularAxis[srow+1] = factA*ltd[1]; |
---|
510 | info->m_J1angularAxis[srow+2] = factA*ltd[2]; |
---|
511 | info->m_J2angularAxis[srow+0] = factB*ltd[0]; |
---|
512 | info->m_J2angularAxis[srow+1] = factB*ltd[1]; |
---|
513 | info->m_J2angularAxis[srow+2] = factB*ltd[2]; |
---|
514 | } |
---|
515 | // right-hand part |
---|
516 | btScalar lostop = getLowerLinLimit(); |
---|
517 | btScalar histop = getUpperLinLimit(); |
---|
518 | if(limit && (lostop == histop)) |
---|
519 | { // the joint motor is ineffective |
---|
520 | powered = 0; |
---|
521 | } |
---|
522 | info->m_constraintError[srow] = 0.; |
---|
523 | info->m_lowerLimit[srow] = 0.; |
---|
524 | info->m_upperLimit[srow] = 0.; |
---|
525 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN) ? m_softnessLimLin : info->erp; |
---|
526 | if(powered) |
---|
527 | { |
---|
528 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN) |
---|
529 | { |
---|
530 | info->cfm[srow] = m_cfmDirLin; |
---|
531 | } |
---|
532 | btScalar tag_vel = getTargetLinMotorVelocity(); |
---|
533 | btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * currERP); |
---|
534 | info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity(); |
---|
535 | info->m_lowerLimit[srow] += -getMaxLinMotorForce() * info->fps; |
---|
536 | info->m_upperLimit[srow] += getMaxLinMotorForce() * info->fps; |
---|
537 | } |
---|
538 | if(limit) |
---|
539 | { |
---|
540 | k = info->fps * currERP; |
---|
541 | info->m_constraintError[srow] += k * limit_err; |
---|
542 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN) |
---|
543 | { |
---|
544 | info->cfm[srow] = m_cfmLimLin; |
---|
545 | } |
---|
546 | if(lostop == histop) |
---|
547 | { // limited low and high simultaneously |
---|
548 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
549 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
550 | } |
---|
551 | else if(limit == 1) |
---|
552 | { // low limit |
---|
553 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
554 | info->m_upperLimit[srow] = 0; |
---|
555 | } |
---|
556 | else |
---|
557 | { // high limit |
---|
558 | info->m_lowerLimit[srow] = 0; |
---|
559 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
560 | } |
---|
561 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that) |
---|
562 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin()); |
---|
563 | if(bounce > btScalar(0.0)) |
---|
564 | { |
---|
565 | btScalar vel = linVelA.dot(ax1); |
---|
566 | vel -= linVelB.dot(ax1); |
---|
567 | vel *= signFact; |
---|
568 | // only apply bounce if the velocity is incoming, and if the |
---|
569 | // resulting c[] exceeds what we already have. |
---|
570 | if(limit == 1) |
---|
571 | { // low limit |
---|
572 | if(vel < 0) |
---|
573 | { |
---|
574 | btScalar newc = -bounce * vel; |
---|
575 | if (newc > info->m_constraintError[srow]) |
---|
576 | { |
---|
577 | info->m_constraintError[srow] = newc; |
---|
578 | } |
---|
579 | } |
---|
580 | } |
---|
581 | else |
---|
582 | { // high limit - all those computations are reversed |
---|
583 | if(vel > 0) |
---|
584 | { |
---|
585 | btScalar newc = -bounce * vel; |
---|
586 | if(newc < info->m_constraintError[srow]) |
---|
587 | { |
---|
588 | info->m_constraintError[srow] = newc; |
---|
589 | } |
---|
590 | } |
---|
591 | } |
---|
592 | } |
---|
593 | info->m_constraintError[srow] *= getSoftnessLimLin(); |
---|
594 | } // if(limit) |
---|
595 | } // if linear limit |
---|
596 | // check angular limits |
---|
597 | limit_err = btScalar(0.0); |
---|
598 | limit = 0; |
---|
599 | if(getSolveAngLimit()) |
---|
600 | { |
---|
601 | limit_err = getAngDepth(); |
---|
602 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
603 | } |
---|
604 | // if the slider has joint limits, add in the extra row |
---|
605 | powered = 0; |
---|
606 | if(getPoweredAngMotor()) |
---|
607 | { |
---|
608 | powered = 1; |
---|
609 | } |
---|
610 | if(limit || powered) |
---|
611 | { |
---|
612 | nrow++; |
---|
613 | srow = nrow * info->rowskip; |
---|
614 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
615 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
616 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
617 | |
---|
618 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
619 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
620 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
621 | |
---|
622 | btScalar lostop = getLowerAngLimit(); |
---|
623 | btScalar histop = getUpperAngLimit(); |
---|
624 | if(limit && (lostop == histop)) |
---|
625 | { // the joint motor is ineffective |
---|
626 | powered = 0; |
---|
627 | } |
---|
628 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMANG) ? m_softnessLimAng : info->erp; |
---|
629 | if(powered) |
---|
630 | { |
---|
631 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG) |
---|
632 | { |
---|
633 | info->cfm[srow] = m_cfmDirAng; |
---|
634 | } |
---|
635 | btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * currERP); |
---|
636 | info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity(); |
---|
637 | info->m_lowerLimit[srow] = -getMaxAngMotorForce() * info->fps; |
---|
638 | info->m_upperLimit[srow] = getMaxAngMotorForce() * info->fps; |
---|
639 | } |
---|
640 | if(limit) |
---|
641 | { |
---|
642 | k = info->fps * currERP; |
---|
643 | info->m_constraintError[srow] += k * limit_err; |
---|
644 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG) |
---|
645 | { |
---|
646 | info->cfm[srow] = m_cfmLimAng; |
---|
647 | } |
---|
648 | if(lostop == histop) |
---|
649 | { |
---|
650 | // limited low and high simultaneously |
---|
651 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
652 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
653 | } |
---|
654 | else if(limit == 1) |
---|
655 | { // low limit |
---|
656 | info->m_lowerLimit[srow] = 0; |
---|
657 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
658 | } |
---|
659 | else |
---|
660 | { // high limit |
---|
661 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
662 | info->m_upperLimit[srow] = 0; |
---|
663 | } |
---|
664 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
665 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng()); |
---|
666 | if(bounce > btScalar(0.0)) |
---|
667 | { |
---|
668 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); |
---|
669 | vel -= m_rbB.getAngularVelocity().dot(ax1); |
---|
670 | // only apply bounce if the velocity is incoming, and if the |
---|
671 | // resulting c[] exceeds what we already have. |
---|
672 | if(limit == 1) |
---|
673 | { // low limit |
---|
674 | if(vel < 0) |
---|
675 | { |
---|
676 | btScalar newc = -bounce * vel; |
---|
677 | if(newc > info->m_constraintError[srow]) |
---|
678 | { |
---|
679 | info->m_constraintError[srow] = newc; |
---|
680 | } |
---|
681 | } |
---|
682 | } |
---|
683 | else |
---|
684 | { // high limit - all those computations are reversed |
---|
685 | if(vel > 0) |
---|
686 | { |
---|
687 | btScalar newc = -bounce * vel; |
---|
688 | if(newc < info->m_constraintError[srow]) |
---|
689 | { |
---|
690 | info->m_constraintError[srow] = newc; |
---|
691 | } |
---|
692 | } |
---|
693 | } |
---|
694 | } |
---|
695 | info->m_constraintError[srow] *= getSoftnessLimAng(); |
---|
696 | } // if(limit) |
---|
697 | } // if angular limit or powered |
---|
698 | } |
---|
699 | |
---|
700 | |
---|
701 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). |
---|
702 | ///If no axis is provided, it uses the default axis for this constraint. |
---|
703 | void btSliderConstraint::setParam(int num, btScalar value, int axis) |
---|
704 | { |
---|
705 | switch(num) |
---|
706 | { |
---|
707 | case BT_CONSTRAINT_STOP_ERP : |
---|
708 | if(axis < 1) |
---|
709 | { |
---|
710 | m_softnessLimLin = value; |
---|
711 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMLIN; |
---|
712 | } |
---|
713 | else if(axis < 3) |
---|
714 | { |
---|
715 | m_softnessOrthoLin = value; |
---|
716 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTLIN; |
---|
717 | } |
---|
718 | else if(axis == 3) |
---|
719 | { |
---|
720 | m_softnessLimAng = value; |
---|
721 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMANG; |
---|
722 | } |
---|
723 | else if(axis < 6) |
---|
724 | { |
---|
725 | m_softnessOrthoAng = value; |
---|
726 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTANG; |
---|
727 | } |
---|
728 | else |
---|
729 | { |
---|
730 | btAssertConstrParams(0); |
---|
731 | } |
---|
732 | break; |
---|
733 | case BT_CONSTRAINT_CFM : |
---|
734 | if(axis < 1) |
---|
735 | { |
---|
736 | m_cfmDirLin = value; |
---|
737 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRLIN; |
---|
738 | } |
---|
739 | else if(axis == 3) |
---|
740 | { |
---|
741 | m_cfmDirAng = value; |
---|
742 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRANG; |
---|
743 | } |
---|
744 | else |
---|
745 | { |
---|
746 | btAssertConstrParams(0); |
---|
747 | } |
---|
748 | break; |
---|
749 | case BT_CONSTRAINT_STOP_CFM : |
---|
750 | if(axis < 1) |
---|
751 | { |
---|
752 | m_cfmLimLin = value; |
---|
753 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMLIN; |
---|
754 | } |
---|
755 | else if(axis < 3) |
---|
756 | { |
---|
757 | m_cfmOrthoLin = value; |
---|
758 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTLIN; |
---|
759 | } |
---|
760 | else if(axis == 3) |
---|
761 | { |
---|
762 | m_cfmLimAng = value; |
---|
763 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMANG; |
---|
764 | } |
---|
765 | else if(axis < 6) |
---|
766 | { |
---|
767 | m_cfmOrthoAng = value; |
---|
768 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTANG; |
---|
769 | } |
---|
770 | else |
---|
771 | { |
---|
772 | btAssertConstrParams(0); |
---|
773 | } |
---|
774 | break; |
---|
775 | } |
---|
776 | } |
---|
777 | |
---|
778 | ///return the local value of parameter |
---|
779 | btScalar btSliderConstraint::getParam(int num, int axis) const |
---|
780 | { |
---|
781 | btScalar retVal(SIMD_INFINITY); |
---|
782 | switch(num) |
---|
783 | { |
---|
784 | case BT_CONSTRAINT_STOP_ERP : |
---|
785 | if(axis < 1) |
---|
786 | { |
---|
787 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN); |
---|
788 | retVal = m_softnessLimLin; |
---|
789 | } |
---|
790 | else if(axis < 3) |
---|
791 | { |
---|
792 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN); |
---|
793 | retVal = m_softnessOrthoLin; |
---|
794 | } |
---|
795 | else if(axis == 3) |
---|
796 | { |
---|
797 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMANG); |
---|
798 | retVal = m_softnessLimAng; |
---|
799 | } |
---|
800 | else if(axis < 6) |
---|
801 | { |
---|
802 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTANG); |
---|
803 | retVal = m_softnessOrthoAng; |
---|
804 | } |
---|
805 | else |
---|
806 | { |
---|
807 | btAssertConstrParams(0); |
---|
808 | } |
---|
809 | break; |
---|
810 | case BT_CONSTRAINT_CFM : |
---|
811 | if(axis < 1) |
---|
812 | { |
---|
813 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN); |
---|
814 | retVal = m_cfmDirLin; |
---|
815 | } |
---|
816 | else if(axis == 3) |
---|
817 | { |
---|
818 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG); |
---|
819 | retVal = m_cfmDirAng; |
---|
820 | } |
---|
821 | else |
---|
822 | { |
---|
823 | btAssertConstrParams(0); |
---|
824 | } |
---|
825 | break; |
---|
826 | case BT_CONSTRAINT_STOP_CFM : |
---|
827 | if(axis < 1) |
---|
828 | { |
---|
829 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN); |
---|
830 | retVal = m_cfmLimLin; |
---|
831 | } |
---|
832 | else if(axis < 3) |
---|
833 | { |
---|
834 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN); |
---|
835 | retVal = m_cfmOrthoLin; |
---|
836 | } |
---|
837 | else if(axis == 3) |
---|
838 | { |
---|
839 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG); |
---|
840 | retVal = m_cfmLimAng; |
---|
841 | } |
---|
842 | else if(axis < 6) |
---|
843 | { |
---|
844 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG); |
---|
845 | retVal = m_cfmOrthoAng; |
---|
846 | } |
---|
847 | else |
---|
848 | { |
---|
849 | btAssertConstrParams(0); |
---|
850 | } |
---|
851 | break; |
---|
852 | } |
---|
853 | return retVal; |
---|
854 | } |
---|
855 | |
---|
856 | |
---|
857 | |
---|