[342] | 1 | // |
---|
| 2 | // |
---|
| 3 | // TODO: testing orxonox -flocking interface |
---|
| 4 | // testing algorithm |
---|
| 5 | |
---|
| 6 | // ueberpruefen ob vektoren relativ richtig berechnet werden |
---|
| 7 | // |
---|
| 8 | //My Flocking Class |
---|
| 9 | |
---|
| 10 | #ifndef Flocking_Class |
---|
| 11 | #define Flocking_Class |
---|
| 12 | |
---|
| 13 | #include <Ogre.h> |
---|
| 14 | #include <OgreVector3.h> |
---|
| 15 | |
---|
| 16 | #include <iostream> |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | #endif |
---|
| 20 | |
---|
| 21 | using namespace std; |
---|
| 22 | using namespace Ogre; |
---|
| 23 | |
---|
| 24 | class Element // An element that flocks |
---|
| 25 | { |
---|
| 26 | |
---|
| 27 | public: |
---|
| 28 | Vector3 location; // locationvector of the element |
---|
| 29 | Vector3 speed; // speedvector of the element |
---|
| 30 | Vector3 acceleration; // accelerationvector of the element |
---|
| 31 | |
---|
| 32 | Element() { |
---|
| 33 | acceleration = (0,0,0); |
---|
| 34 | speed = (0,0,0); |
---|
| 35 | location = (0,0,0); |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_) { |
---|
| 39 | acceleration = acceleration_; |
---|
| 40 | speed = speed_; |
---|
| 41 | location = location_; |
---|
| 42 | } |
---|
| 43 | |
---|
| 44 | void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_) { |
---|
| 45 | acceleration = acceleration_; |
---|
| 46 | speed = speed_; |
---|
| 47 | location = location_; |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | //calculates the distance between the element and an other point given by temp |
---|
| 51 | float getDistance(Element temp) { |
---|
| 52 | Vector3 distance = temp.location-location; //this doesn't work |
---|
| 53 | return distance.length(); |
---|
| 54 | } |
---|
| 55 | |
---|
| 56 | //EINF[GEN DES ELEMENTS |
---|
| 57 | void update(Element arrayOfElements[], const FrameEvent& time) { |
---|
| 58 | calculateAcceleration(arrayOfElements); //updates the acceleration |
---|
| 59 | calculateSpeed(time); //updates the speed |
---|
| 60 | calculateLocation(time); //updates the location |
---|
| 61 | } |
---|
| 62 | |
---|
| 63 | //EINF[GEN DES ELEMENTS |
---|
| 64 | void calculateAcceleration(Element arrayOfElements[]) { |
---|
| 65 | //calculates the accelerationvector based on the steeringvectors of |
---|
| 66 | //separtion, alignment and cohesion. |
---|
| 67 | acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | void calculateSpeed(const FrameEvent& time) { |
---|
| 71 | speed = speed + acceleration*time.timeSinceLastFrame; |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | void calculateLocation(const FrameEvent& time) { |
---|
| 75 | location = location + speed*time.timeSinceLastFrame; |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | Vector3 separation(Element arrayOfElements[]) { |
---|
| 80 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
| 81 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
| 82 | //go through all elements |
---|
| 83 | for(int i=0; i<3; i++) { //just working with 3 elements at the moment |
---|
| 84 | Element actual = arrayOfElements[i]; //get the actual element |
---|
| 85 | float distance = getDistance(actual); //get distance between this and actual |
---|
| 86 | //DUMMY SEPERATION DETECTION DISTANCE =100 |
---|
| 87 | if ((distance > 0) && (distance<100)) { //do only if actual is inside detectionradius |
---|
| 88 | Vector3 inverseDistance = actual.location-location; //calculate the distancevector heading towards this |
---|
| 89 | inverseDistance = inverseDistance.normalise(); //does this work correctly? //normalise the distancevector |
---|
| 90 | inverseDistance = inverseDistance/*/distance*/; //devide distancevector by distance (the closer the bigger gets the distancevector -> steeringvector) |
---|
| 91 | *steering = *steering + inverseDistance; //add up all significant steeringvectors |
---|
| 92 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 93 | } |
---|
| 94 | } |
---|
| 95 | if(numberOfNeighbour > 0) { |
---|
| 96 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
---|
| 97 | } |
---|
| 98 | return *steering; |
---|
| 99 | } |
---|
| 100 | |
---|
| 101 | Vector3 alignment(Element arrayOfElements[]) { |
---|
| 102 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
| 103 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
| 104 | //go through all elements |
---|
| 105 | for(int i=0; i<3; i++) { //just working with 3 elements at the moment |
---|
| 106 | Element actual = arrayOfElements[i]; //get the actual element |
---|
| 107 | float distance = getDistance(actual); //get distance between this and actual |
---|
| 108 | //DUMMY ALIGNMENT DETECTION DISTANCE = 1000 |
---|
| 109 | if ((distance > 0) && (distance<1000)) { //check if actual element is inside detectionradius |
---|
| 110 | *steering = *steering + actual.speed; //add up all speedvectors inside the detectionradius |
---|
| 111 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | if(numberOfNeighbour > 0) { |
---|
| 115 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
---|
| 116 | } |
---|
| 117 | return *steering; |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | Vector3 cohesion(Element arrayOfElements[]) { |
---|
| 121 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
---|
| 122 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
| 123 | //go through all elements |
---|
| 124 | for(int i=0; i<3; i++) { //just working with 3 elements at the moment |
---|
| 125 | Element actual = arrayOfElements[i]; //get the actual element |
---|
| 126 | float distance = getDistance(actual); //get distance between this and actual |
---|
| 127 | // DUMMY COHESION DETECTION DISTANCE = 1000 |
---|
| 128 | if ((distance > 0) && (distance<1000)) { //check if actual element is inside detectionradius |
---|
| 129 | *steering = *steering + actual.location; //add up all locations of elements inside the detectionradius |
---|
| 130 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
| 131 | } |
---|
| 132 | } |
---|
| 133 | if(numberOfNeighbour > 0) { |
---|
| 134 | *steering = *steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
---|
| 135 | } |
---|
| 136 | return *steering; |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | }; |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | //End of My Flocking Class |
---|