//Headerfile: Flocking.h #ifndef _Flocking_H__ #define _Flocking_H__ #include "misc/Vector3.h" namespace orxonox { class Element // An element that flocks { public: Vector3 location; //!< locationvector of the element Vector3 speed; //!< speedvector of the element Vector3 acceleration; //!< accelerationvector of the element bool movable; //!< movability of the element, (false) gives the possiblity that an object can`t be moved by flocking but still gets into the calculation static int const SEPERATIONDISTANCE = 300; //!< detectionradius of seperation static int const ALIGNMENTDISTANCE = 300; //!< detectionradius of alignment static int const COHESIONDISTANCE = 5000; //!< detectionradius of cohesion static int const ANZELEMENTS = 9; //!< number of elements //! default constructor Element() { acceleration = Vector3(0,0,0); speed = Vector3(0,0,0); location = Vector3(0,0,0); movable = true; } /** constructor * @param location_ sets locationvector of the element * @param speed_ sets speedvector of the element * @param acceleration_ sets accelerationvector of the element * @param movable_ sets movability of the element */ Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { acceleration = acceleration_; speed = speed_; location = location_; movable = movable_; } //! function to chance values of an element void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { acceleration = acceleration_; speed = speed_; location = location_; movable = movable_; } /** calculates the distance between the element and an other point given by temp * @param e remote object to calculate distance to */ float getDistance(Element e) { Vector3 distance = e.location - location; return distance.length(); } //! updates the data of an element void update(Element arrayOfElements[]) { if (this->movable == true) {calculateAcceleration(arrayOfElements);} //if element is movable, calculate acceleration } //! calculates the new acceleration of an element void calculateAcceleration(Element arrayOfElements[]) { acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); //acceleration consisting of flocking-functions } //! separation-function (keep elements separated, avoid crashs) Vector3 separation(Element arrayOfElements[]) { using namespace Ogre; Vector3 steering = Vector3(0,0,0); //steeringvector Vector3 inverseDistance = Vector3(0,0,0); //vector pointing away from possible collisions int numberOfNeighbour = 0; //number of observed neighbours float distance = 0; // distance to the actual element for(int i=0; i 0) && (distance < SEPERATIONDISTANCE)) { //do only if actual is inside detectionradius inverseDistance = (0,0,0); inverseDistance = location-actual.location; //calculate the distancevector heading towards this //adaptation of the inverseDistance to the distance if ((distance < 200) && (distance >= 120)) {inverseDistance = 2*inverseDistance;} if ((distance < 120) && (distance >= 80)) {inverseDistance = 5*inverseDistance;} if ((distance < 80) && (distance >= 40)) {inverseDistance = 10*inverseDistance;} if ((distance < 40) && (distance > 0)) {inverseDistance = 10*inverseDistance;} steering = steering + inverseDistance; //add up all significant steeringvectors numberOfNeighbour++; //counts the elements inside the detectionradius } } if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> separation steeringvector return steering; } //! alignment-function (lead elements to the same heading) Vector3 alignment(Element arrayOfElements[]) { using namespace Ogre; Vector3 steering = Vector3(0,0,0); //steeringvector int numberOfNeighbour = 0; //number of observed neighbours float distance = 0; //go through all elements for(int i=0; i 0) && (distance < ALIGNMENTDISTANCE)) { //check if actual element is inside detectionradius steering = steering + actual.speed; //add up all speedvectors inside the detectionradius numberOfNeighbour++; //counts the elements inside the detectionradius } } if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> alignment steeringvector return steering; } //! cohseion-function (keep elements close to each other) Vector3 cohesion(Element arrayOfElements[]) { using namespace Ogre; Vector3 steering = Vector3(0,0,0); //steeringvector int numberOfNeighbour = 0; //number of observed neighbours float distance = 0; //go through all elements for(int i=0; i 0) && (distance < COHESIONDISTANCE)) { //check if actual element is inside detectionradius steering = steering + actual.location; //add up all locations of elements inside the detectionradius numberOfNeighbour++; //counts the elements inside the detectionradius } } if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector steering = steering - this->location; //transform the vector for the ship } return steering; } }; //End of class Element } #endif /* _Flocking_H__*/