[12177] | 1 | /* |
---|
| 2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 3 | |
---|
| 4 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 6 | Permission is granted to anyone to use this software for any purpose, |
---|
| 7 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 8 | subject to the following restrictions: |
---|
| 9 | |
---|
| 10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 12 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #ifndef BT_SIMD__QUATERNION_H_ |
---|
| 18 | #define BT_SIMD__QUATERNION_H_ |
---|
| 19 | |
---|
| 20 | |
---|
| 21 | #include "btVector3.h" |
---|
| 22 | #include "btQuadWord.h" |
---|
| 23 | |
---|
| 24 | /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ |
---|
| 25 | class btQuaternion : public btQuadWord { |
---|
| 26 | public: |
---|
| 27 | /**@brief No initialization constructor */ |
---|
| 28 | btQuaternion() {} |
---|
| 29 | |
---|
| 30 | // template <typename btScalar> |
---|
| 31 | // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} |
---|
| 32 | /**@brief Constructor from scalars */ |
---|
| 33 | btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) |
---|
| 34 | : btQuadWord(x, y, z, w) |
---|
| 35 | {} |
---|
| 36 | /**@brief Axis angle Constructor |
---|
| 37 | * @param axis The axis which the rotation is around |
---|
| 38 | * @param angle The magnitude of the rotation around the angle (Radians) */ |
---|
| 39 | btQuaternion(const btVector3& axis, const btScalar& angle) |
---|
| 40 | { |
---|
| 41 | setRotation(axis, angle); |
---|
| 42 | } |
---|
| 43 | /**@brief Constructor from Euler angles |
---|
| 44 | * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z |
---|
| 45 | * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y |
---|
| 46 | * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ |
---|
| 47 | btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
| 48 | { |
---|
| 49 | #ifndef BT_EULER_DEFAULT_ZYX |
---|
| 50 | setEuler(yaw, pitch, roll); |
---|
| 51 | #else |
---|
| 52 | setEulerZYX(yaw, pitch, roll); |
---|
| 53 | #endif |
---|
| 54 | } |
---|
| 55 | /**@brief Set the rotation using axis angle notation |
---|
| 56 | * @param axis The axis around which to rotate |
---|
| 57 | * @param angle The magnitude of the rotation in Radians */ |
---|
| 58 | void setRotation(const btVector3& axis, const btScalar& angle) |
---|
| 59 | { |
---|
| 60 | btScalar d = axis.length(); |
---|
| 61 | btAssert(d != btScalar(0.0)); |
---|
| 62 | btScalar s = btSin(angle * btScalar(0.5)) / d; |
---|
| 63 | setValue(axis.x() * s, axis.y() * s, axis.z() * s, |
---|
| 64 | btCos(angle * btScalar(0.5))); |
---|
| 65 | } |
---|
| 66 | /**@brief Set the quaternion using Euler angles |
---|
| 67 | * @param yaw Angle around Y |
---|
| 68 | * @param pitch Angle around X |
---|
| 69 | * @param roll Angle around Z */ |
---|
| 70 | void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
| 71 | { |
---|
| 72 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); |
---|
| 73 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); |
---|
| 74 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); |
---|
| 75 | btScalar cosYaw = btCos(halfYaw); |
---|
| 76 | btScalar sinYaw = btSin(halfYaw); |
---|
| 77 | btScalar cosPitch = btCos(halfPitch); |
---|
| 78 | btScalar sinPitch = btSin(halfPitch); |
---|
| 79 | btScalar cosRoll = btCos(halfRoll); |
---|
| 80 | btScalar sinRoll = btSin(halfRoll); |
---|
| 81 | setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, |
---|
| 82 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, |
---|
| 83 | sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, |
---|
| 84 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); |
---|
| 85 | } |
---|
| 86 | /**@brief Set the quaternion using euler angles |
---|
| 87 | * @param yaw Angle around Z |
---|
| 88 | * @param pitch Angle around Y |
---|
| 89 | * @param roll Angle around X */ |
---|
| 90 | void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
| 91 | { |
---|
| 92 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); |
---|
| 93 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); |
---|
| 94 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); |
---|
| 95 | btScalar cosYaw = btCos(halfYaw); |
---|
| 96 | btScalar sinYaw = btSin(halfYaw); |
---|
| 97 | btScalar cosPitch = btCos(halfPitch); |
---|
| 98 | btScalar sinPitch = btSin(halfPitch); |
---|
| 99 | btScalar cosRoll = btCos(halfRoll); |
---|
| 100 | btScalar sinRoll = btSin(halfRoll); |
---|
| 101 | setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x |
---|
| 102 | cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y |
---|
| 103 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z |
---|
| 104 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx |
---|
| 105 | } |
---|
| 106 | /**@brief Add two quaternions |
---|
| 107 | * @param q The quaternion to add to this one */ |
---|
| 108 | SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q) |
---|
| 109 | { |
---|
| 110 | m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3]; |
---|
| 111 | return *this; |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | /**@brief Subtract out a quaternion |
---|
| 115 | * @param q The quaternion to subtract from this one */ |
---|
| 116 | btQuaternion& operator-=(const btQuaternion& q) |
---|
| 117 | { |
---|
| 118 | m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3]; |
---|
| 119 | return *this; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /**@brief Scale this quaternion |
---|
| 123 | * @param s The scalar to scale by */ |
---|
| 124 | btQuaternion& operator*=(const btScalar& s) |
---|
| 125 | { |
---|
| 126 | m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s; |
---|
| 127 | return *this; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /**@brief Multiply this quaternion by q on the right |
---|
| 131 | * @param q The other quaternion |
---|
| 132 | * Equivilant to this = this * q */ |
---|
| 133 | btQuaternion& operator*=(const btQuaternion& q) |
---|
| 134 | { |
---|
| 135 | setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), |
---|
| 136 | m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), |
---|
| 137 | m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), |
---|
| 138 | m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); |
---|
| 139 | return *this; |
---|
| 140 | } |
---|
| 141 | /**@brief Return the dot product between this quaternion and another |
---|
| 142 | * @param q The other quaternion */ |
---|
| 143 | btScalar dot(const btQuaternion& q) const |
---|
| 144 | { |
---|
| 145 | return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3]; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /**@brief Return the length squared of the quaternion */ |
---|
| 149 | btScalar length2() const |
---|
| 150 | { |
---|
| 151 | return dot(*this); |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | /**@brief Return the length of the quaternion */ |
---|
| 155 | btScalar length() const |
---|
| 156 | { |
---|
| 157 | return btSqrt(length2()); |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | /**@brief Normalize the quaternion |
---|
| 161 | * Such that x^2 + y^2 + z^2 +w^2 = 1 */ |
---|
| 162 | btQuaternion& normalize() |
---|
| 163 | { |
---|
| 164 | return *this /= length(); |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | /**@brief Return a scaled version of this quaternion |
---|
| 168 | * @param s The scale factor */ |
---|
| 169 | SIMD_FORCE_INLINE btQuaternion |
---|
| 170 | operator*(const btScalar& s) const |
---|
| 171 | { |
---|
| 172 | return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | /**@brief Return an inversely scaled versionof this quaternion |
---|
| 177 | * @param s The inverse scale factor */ |
---|
| 178 | btQuaternion operator/(const btScalar& s) const |
---|
| 179 | { |
---|
| 180 | btAssert(s != btScalar(0.0)); |
---|
| 181 | return *this * (btScalar(1.0) / s); |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | /**@brief Inversely scale this quaternion |
---|
| 185 | * @param s The scale factor */ |
---|
| 186 | btQuaternion& operator/=(const btScalar& s) |
---|
| 187 | { |
---|
| 188 | btAssert(s != btScalar(0.0)); |
---|
| 189 | return *this *= btScalar(1.0) / s; |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | /**@brief Return a normalized version of this quaternion */ |
---|
| 193 | btQuaternion normalized() const |
---|
| 194 | { |
---|
| 195 | return *this / length(); |
---|
| 196 | } |
---|
| 197 | /**@brief Return the angle between this quaternion and the other |
---|
| 198 | * @param q The other quaternion */ |
---|
| 199 | btScalar angle(const btQuaternion& q) const |
---|
| 200 | { |
---|
| 201 | btScalar s = btSqrt(length2() * q.length2()); |
---|
| 202 | btAssert(s != btScalar(0.0)); |
---|
| 203 | return btAcos(dot(q) / s); |
---|
| 204 | } |
---|
| 205 | /**@brief Return the angle of rotation represented by this quaternion */ |
---|
| 206 | btScalar getAngle() const |
---|
| 207 | { |
---|
| 208 | btScalar s = btScalar(2.) * btAcos(m_floats[3]); |
---|
| 209 | return s; |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | /**@brief Return the axis of the rotation represented by this quaternion */ |
---|
| 213 | btVector3 getAxis() const |
---|
| 214 | { |
---|
| 215 | btScalar s_squared = btScalar(1.) - btPow(m_floats[3], btScalar(2.)); |
---|
| 216 | if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero |
---|
| 217 | return btVector3(1.0, 0.0, 0.0); // Arbitrary |
---|
| 218 | btScalar s = btSqrt(s_squared); |
---|
| 219 | return btVector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s); |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /**@brief Return the inverse of this quaternion */ |
---|
| 223 | btQuaternion inverse() const |
---|
| 224 | { |
---|
| 225 | return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /**@brief Return the sum of this quaternion and the other |
---|
| 229 | * @param q2 The other quaternion */ |
---|
| 230 | SIMD_FORCE_INLINE btQuaternion |
---|
| 231 | operator+(const btQuaternion& q2) const |
---|
| 232 | { |
---|
| 233 | const btQuaternion& q1 = *this; |
---|
| 234 | return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /**@brief Return the difference between this quaternion and the other |
---|
| 238 | * @param q2 The other quaternion */ |
---|
| 239 | SIMD_FORCE_INLINE btQuaternion |
---|
| 240 | operator-(const btQuaternion& q2) const |
---|
| 241 | { |
---|
| 242 | const btQuaternion& q1 = *this; |
---|
| 243 | return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | /**@brief Return the negative of this quaternion |
---|
| 247 | * This simply negates each element */ |
---|
| 248 | SIMD_FORCE_INLINE btQuaternion operator-() const |
---|
| 249 | { |
---|
| 250 | const btQuaternion& q2 = *this; |
---|
| 251 | return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]); |
---|
| 252 | } |
---|
| 253 | /**@todo document this and it's use */ |
---|
| 254 | SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const |
---|
| 255 | { |
---|
| 256 | btQuaternion diff,sum; |
---|
| 257 | diff = *this - qd; |
---|
| 258 | sum = *this + qd; |
---|
| 259 | if( diff.dot(diff) > sum.dot(sum) ) |
---|
| 260 | return qd; |
---|
| 261 | return (-qd); |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | /**@todo document this and it's use */ |
---|
| 265 | SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const |
---|
| 266 | { |
---|
| 267 | btQuaternion diff,sum; |
---|
| 268 | diff = *this - qd; |
---|
| 269 | sum = *this + qd; |
---|
| 270 | if( diff.dot(diff) < sum.dot(sum) ) |
---|
| 271 | return qd; |
---|
| 272 | return (-qd); |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion |
---|
| 277 | * @param q The other quaternion to interpolate with |
---|
| 278 | * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q. |
---|
| 279 | * Slerp interpolates assuming constant velocity. */ |
---|
| 280 | btQuaternion slerp(const btQuaternion& q, const btScalar& t) const |
---|
| 281 | { |
---|
| 282 | btScalar theta = angle(q); |
---|
| 283 | if (theta != btScalar(0.0)) |
---|
| 284 | { |
---|
| 285 | btScalar d = btScalar(1.0) / btSin(theta); |
---|
| 286 | btScalar s0 = btSin((btScalar(1.0) - t) * theta); |
---|
| 287 | btScalar s1 = btSin(t * theta); |
---|
| 288 | if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp |
---|
| 289 | return btQuaternion((m_floats[0] * s0 + -q.x() * s1) * d, |
---|
| 290 | (m_floats[1] * s0 + -q.y() * s1) * d, |
---|
| 291 | (m_floats[2] * s0 + -q.z() * s1) * d, |
---|
| 292 | (m_floats[3] * s0 + -q.m_floats[3] * s1) * d); |
---|
| 293 | else |
---|
| 294 | return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d, |
---|
| 295 | (m_floats[1] * s0 + q.y() * s1) * d, |
---|
| 296 | (m_floats[2] * s0 + q.z() * s1) * d, |
---|
| 297 | (m_floats[3] * s0 + q.m_floats[3] * s1) * d); |
---|
| 298 | |
---|
| 299 | } |
---|
| 300 | else |
---|
| 301 | { |
---|
| 302 | return *this; |
---|
| 303 | } |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | static const btQuaternion& getIdentity() |
---|
| 307 | { |
---|
| 308 | static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.)); |
---|
| 309 | return identityQuat; |
---|
| 310 | } |
---|
| 311 | |
---|
| 312 | SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | }; |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | /**@brief Return the negative of a quaternion */ |
---|
| 319 | SIMD_FORCE_INLINE btQuaternion |
---|
| 320 | operator-(const btQuaternion& q) |
---|
| 321 | { |
---|
| 322 | return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w()); |
---|
| 323 | } |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | |
---|
| 327 | /**@brief Return the product of two quaternions */ |
---|
| 328 | SIMD_FORCE_INLINE btQuaternion |
---|
| 329 | operator*(const btQuaternion& q1, const btQuaternion& q2) { |
---|
| 330 | return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), |
---|
| 331 | q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), |
---|
| 332 | q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), |
---|
| 333 | q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | SIMD_FORCE_INLINE btQuaternion |
---|
| 337 | operator*(const btQuaternion& q, const btVector3& w) |
---|
| 338 | { |
---|
| 339 | return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), |
---|
| 340 | q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), |
---|
| 341 | q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), |
---|
| 342 | -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | SIMD_FORCE_INLINE btQuaternion |
---|
| 346 | operator*(const btVector3& w, const btQuaternion& q) |
---|
| 347 | { |
---|
| 348 | return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), |
---|
| 349 | w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), |
---|
| 350 | w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), |
---|
| 351 | -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | /**@brief Calculate the dot product between two quaternions */ |
---|
| 355 | SIMD_FORCE_INLINE btScalar |
---|
| 356 | dot(const btQuaternion& q1, const btQuaternion& q2) |
---|
| 357 | { |
---|
| 358 | return q1.dot(q2); |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | /**@brief Return the length of a quaternion */ |
---|
| 363 | SIMD_FORCE_INLINE btScalar |
---|
| 364 | length(const btQuaternion& q) |
---|
| 365 | { |
---|
| 366 | return q.length(); |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | /**@brief Return the angle between two quaternions*/ |
---|
| 370 | SIMD_FORCE_INLINE btScalar |
---|
| 371 | angle(const btQuaternion& q1, const btQuaternion& q2) |
---|
| 372 | { |
---|
| 373 | return q1.angle(q2); |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | /**@brief Return the inverse of a quaternion*/ |
---|
| 377 | SIMD_FORCE_INLINE btQuaternion |
---|
| 378 | inverse(const btQuaternion& q) |
---|
| 379 | { |
---|
| 380 | return q.inverse(); |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | /**@brief Return the result of spherical linear interpolation betwen two quaternions |
---|
| 384 | * @param q1 The first quaternion |
---|
| 385 | * @param q2 The second quaternion |
---|
| 386 | * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2 |
---|
| 387 | * Slerp assumes constant velocity between positions. */ |
---|
| 388 | SIMD_FORCE_INLINE btQuaternion |
---|
| 389 | slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) |
---|
| 390 | { |
---|
| 391 | return q1.slerp(q2, t); |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | SIMD_FORCE_INLINE btVector3 |
---|
| 395 | quatRotate(const btQuaternion& rotation, const btVector3& v) |
---|
| 396 | { |
---|
| 397 | btQuaternion q = rotation * v; |
---|
| 398 | q *= rotation.inverse(); |
---|
| 399 | return btVector3(q.getX(),q.getY(),q.getZ()); |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | SIMD_FORCE_INLINE btQuaternion |
---|
| 403 | shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized |
---|
| 404 | { |
---|
| 405 | btVector3 c = v0.cross(v1); |
---|
| 406 | btScalar d = v0.dot(v1); |
---|
| 407 | |
---|
| 408 | if (d < -1.0 + SIMD_EPSILON) |
---|
| 409 | { |
---|
| 410 | btVector3 n,unused; |
---|
| 411 | btPlaneSpace1(v0,n,unused); |
---|
| 412 | return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0 |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | btScalar s = btSqrt((1.0f + d) * 2.0f); |
---|
| 416 | btScalar rs = 1.0f / s; |
---|
| 417 | |
---|
| 418 | return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | SIMD_FORCE_INLINE btQuaternion |
---|
| 422 | shortestArcQuatNormalize2(btVector3& v0,btVector3& v1) |
---|
| 423 | { |
---|
| 424 | v0.normalize(); |
---|
| 425 | v1.normalize(); |
---|
| 426 | return shortestArcQuat(v0,v1); |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | #endif //BT_SIMD__QUATERNION_H_ |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | |
---|
| 433 | |
---|