/* * ORXONOX - the hottest 3D action shooter ever to exist * > www.orxonox.net < * * * License notice: * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Author: * Fabian 'x3n' Landau * Co-authors: * Dominik Solenicki * */ #include "ArtificialController.h" #include #include #include "util/Math.h" #include "core/CoreIncludes.h" #include "core/XMLPort.h" #include "core/command/ConsoleCommand.h" #include "worldentities/ControllableEntity.h" #include "worldentities/pawns/Pawn.h" #include "worldentities/pawns/TeamBaseMatchBase.h" #include "worldentities/pawns/SpaceShip.h" #include "gametypes/TeamDeathmatch.h" #include "gametypes/Dynamicmatch.h" #include "controllers/WaypointPatrolController.h" #include "controllers/NewHumanController.h" #include "controllers/DroneController.h" #include "weaponsystem/WeaponMode.h" #include "weaponsystem/WeaponPack.h" #include "weaponsystem/Weapon.h" #include "weaponsystem/WeaponSlot.h" #include "weaponsystem/WeaponSlot.h" namespace orxonox { SetConsoleCommand("ArtificialController", "formationflight", &ArtificialController::formationflight); SetConsoleCommand("ArtificialController", "masteraction", &ArtificialController::masteraction); SetConsoleCommand("ArtificialController", "followme", &ArtificialController::followme); SetConsoleCommand("ArtificialController", "passivebehaviour", &ArtificialController::passivebehaviour); SetConsoleCommand("ArtificialController", "formationsize", &ArtificialController::formationsize); SetConsoleCommand("ArtificialController", "setbotlevel", &ArtificialController::setAllBotLevel); static const unsigned int STANDARD_MAX_FORMATION_SIZE = 7; static const int RADIUS_TO_SEARCH_FOR_MASTERS = 5000; static const int FORMATION_LENGTH = 130; static const int FORMATION_WIDTH = 110; static const int FREEDOM_COUNT = 4; //seconds the slaves in a formation will be set free when master attacks an enemy static const float SPEED_MASTER = 0.6f; static const float ROTATEFACTOR_MASTER = 0.2f; static const float SPEED_FREE = 0.8f; static const float ROTATEFACTOR_FREE = 0.8f; ArtificialController::ArtificialController(BaseObject* creator) : Controller(creator) { RegisterObject(ArtificialController); this->target_ = 0; this->formationFlight_ = false; this->passive_ = false; this->maxFormationSize_ = STANDARD_MAX_FORMATION_SIZE; this->myMaster_ = 0; this->freedomCount_ = 0; this->team_ = -1; this->state_ = FREE; this->specificMasterAction_ = NONE; this->specificMasterActionHoldCount_ = 0; this->bShooting_ = false; this->bHasTargetPosition_ = false; this->speedCounter_ = 0.2f; this->targetPosition_ = Vector3::ZERO; this->target_.setCallback(createFunctor(&ArtificialController::targetDied, this)); this->bSetupWorked = false; this->botlevel_ = 0.5f; this->mode_ = DEFAULT;////Vector-implementation: mode_.push_back(DEFAULT); this->timeout_ = 0; this->currentWaypoint_ = 0; this->setAccuracy(5); this->defaultWaypoint_ = NULL; } ArtificialController::~ArtificialController() { if (this->isInitialized()) {//Vector-implementation: mode_.erase(mode_.begin(),mode_.end()); this->waypoints_.clear(); this->removeFromFormation(); this->weaponModes_.clear(); for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { if (*it != this) { if (it->myMaster_ == this) { COUT(1) << "error: " << this << " is still master in " << (*it) << std::endl; it->myMaster_ = 0; } while (true) { std::vector::iterator it2 = std::find(it->slaves_.begin(), it->slaves_.end(), this); if (it2 != it->slaves_.end()) { COUT(1) << "error: " << this << " is still slave in " << (*it) << std::endl; it->slaves_.erase(it2); } else break; } } } } } void ArtificialController::XMLPort(Element& xmlelement, XMLPort::Mode mode) { SUPER(ArtificialController, XMLPort, xmlelement, mode); XMLPortParam(ArtificialController, "team", setTeam, getTeam, xmlelement, mode).defaultValues(-1); XMLPortParam(ArtificialController, "formationFlight", setFormationFlight, getFormationFlight, xmlelement, mode).defaultValues(false); XMLPortParam(ArtificialController, "formationSize", setFormationSize, getFormationSize, xmlelement, mode).defaultValues(STANDARD_MAX_FORMATION_SIZE); XMLPortParam(ArtificialController, "passive", setPassive, getPassive, xmlelement, mode).defaultValues(false); } // Documentation only here to get a faster overview for creating a useful documentation... /** @brief Activates / deactivates formationflight behaviour @param form activate formflight if form is true */ void ArtificialController::formationflight(const bool form) { for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; ArtificialController *aiController = orxonox_cast(controller); if (aiController) { aiController->formationFlight_ = form; if (!form) { aiController->removeFromFormation(); } } } } /** @brief Get all masters to do a "specific master action" @param action which action to perform (integer, so it can be called with a console command (tmp solution)) */ void ArtificialController::masteraction(const int action) { for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; ArtificialController *aiController = orxonox_cast(controller); if(aiController && aiController->state_ == MASTER) { if (action == 1) aiController->spinInit(); if (action == 2) aiController->turn180Init(); } } } /** @brief A human player gets followed by its nearest master. Initiated by console command, so far intended for demonstration puproses (possible future pickup). */ void ArtificialController::followme() { Pawn *humanPawn = NULL; NewHumanController *currentHumanController = NULL; std::vector allMasters; for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; currentHumanController = orxonox_cast(controller); if(currentHumanController) humanPawn = *it; ArtificialController *aiController = orxonox_cast(controller); if(aiController && aiController->state_ == MASTER) allMasters.push_back(aiController); } if((humanPawn != NULL) && (allMasters.size() != 0)) { float posHuman = humanPawn->getPosition().length(); float distance = 0.0f; float minDistance = FLT_MAX; int index = 0; int i = 0; for(std::vector::iterator it = allMasters.begin(); it != allMasters.end(); it++, i++) { if (!ArtificialController::sameTeam((*it)->getControllableEntity(), humanPawn, (*it)->getGametype())) continue; distance = posHuman - (*it)->getControllableEntity()->getPosition().length(); if(distance < minDistance) index = i; } allMasters[index]->followInit(humanPawn); } } /** @brief Sets shooting behaviour of pawns. @param passive if true, bots won't shoot. */ void ArtificialController::passivebehaviour(const bool passive) { for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; ArtificialController *aiController = orxonox_cast(controller); if(aiController) { aiController->passive_ = passive; } } } /** @brief Sets maximal formation size @param size maximal formation size. */ void ArtificialController::formationsize(const int size) { for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; ArtificialController *aiController = orxonox_cast(controller); if(aiController) { aiController->maxFormationSize_ = size; } } } /** @brief Gets called when ControllableEntity is being changed. Resets the bot when it dies. */ void ArtificialController::changedControllableEntity() { if (!this->getControllableEntity()) this->removeFromFormation(); this->bSetupWorked = false; // reset weapon information this->setupWeapons(); } void ArtificialController::removeFromFormation() { if (this->state_ == SLAVE || this->myMaster_) // slaves can also be temporary free, so check if myMaster_ is set this->unregisterSlave(); else if (this->state_ == MASTER) this->setNewMasterWithinFormation(); } void ArtificialController::moveToPosition(const Vector3& target) { if (!this->getControllableEntity()) return; // Slave uses special movement if its master is in FOLLOW mode if(this->state_ == SLAVE && this->myMaster_ && this->myMaster_->specificMasterAction_ == FOLLOW) { // this->followForSlaves(target); // return; } Vector2 coord = get2DViewdirection(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->getControllableEntity()->getOrientation() * WorldEntity::UP, target); float distance = (target - this->getControllableEntity()->getPosition()).length(); if(this->state_ == FREE) { if (this->target_ || distance > 10) { // Multiply with ROTATEFACTOR_FREE to make them a bit slower this->getControllableEntity()->rotateYaw(-1.0f * ROTATEFACTOR_FREE * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(ROTATEFACTOR_FREE * sgn(coord.y) * coord.y*coord.y); } if (this->target_ && distance < 200 && this->getControllableEntity()->getVelocity().squaredLength() > this->target_->getVelocity().squaredLength()) { this->getControllableEntity()->moveFrontBack(-0.05f); // They don't brake with full power to give the player a chance } else this->getControllableEntity()->moveFrontBack(SPEED_FREE); } if(this->state_ == MASTER) { if (this->target_ || distance > 10) { this->getControllableEntity()->rotateYaw(-1.0f * ROTATEFACTOR_MASTER * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(ROTATEFACTOR_MASTER * sgn(coord.y) * coord.y*coord.y); } if (this->target_ && distance < 200 && this->getControllableEntity()->getVelocity().squaredLength() > this->target_->getVelocity().squaredLength()) { this->getControllableEntity()->moveFrontBack(-0.05f); } else this->getControllableEntity()->moveFrontBack(SPEED_MASTER); } if(this->state_ == SLAVE) { this->getControllableEntity()->rotateYaw(-2.0f * ROTATEFACTOR_MASTER * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(2.0f * ROTATEFACTOR_MASTER * sgn(coord.y) * coord.y*coord.y); if (distance < 300) { if (distance < 40) { this->getControllableEntity()->moveFrontBack(0.8f*SPEED_MASTER); } else this->getControllableEntity()->moveFrontBack(1.2f*SPEED_MASTER); } else { this->getControllableEntity()->moveFrontBack(1.2f*SPEED_MASTER + distance/300.0f); } } if (distance < 10) { this->positionReached(); } } void ArtificialController::absoluteMoveToPosition(const Vector3& target) { float minDistance = 40.0f; if (!this->getControllableEntity()) return; Vector2 coord = get2DViewdirection(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->getControllableEntity()->getOrientation() * WorldEntity::UP, target); float distance = (target - this->getControllableEntity()->getPosition()).length(); if (this->target_ || distance > minDistance) { // Multiply with ROTATEFACTOR_FREE to make them a bit slower this->getControllableEntity()->rotateYaw(-1.0f * ROTATEFACTOR_FREE * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(ROTATEFACTOR_FREE * sgn(coord.y) * coord.y*coord.y); this->getControllableEntity()->moveFrontBack(SPEED_FREE); } if (distance < minDistance) { this->positionReached(); } } void ArtificialController::moveToTargetPosition() { this->moveToPosition(this->targetPosition_); } /** @brief Unregisters a slave from its master. Initiated by a slave. */ void ArtificialController::unregisterSlave() { if (this->myMaster_) { std::vector::iterator it = std::find(this->myMaster_->slaves_.begin(), this->myMaster_->slaves_.end(), this); if (it != this->myMaster_->slaves_.end()) this->myMaster_->slaves_.erase(it); } this->myMaster_ = 0; this->state_ = FREE; } void ArtificialController::searchNewMaster() { if (!this->getControllableEntity()) return; this->targetPosition_ = this->getControllableEntity()->getPosition(); this->forgetTarget(); int teamSize = 0; //go through all pawns for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { //same team? if (!ArtificialController::sameTeam(this->getControllableEntity(), static_cast(*it), this->getGametype())) continue; //has it an ArtificialController? Controller* controller = 0; if (it->getController()) controller = it->getController(); else if (it->getXMLController()) controller = it->getXMLController(); if (!controller) continue; //is pawn oneself? if (orxonox_cast(*it) == this->getControllableEntity()) continue; teamSize++; ArtificialController *newMaster = orxonox_cast(controller); //is it a master? if (!newMaster || newMaster->state_ != MASTER) continue; float distance = (it->getPosition() - this->getControllableEntity()->getPosition()).length(); // is pawn in range? if (distance < RADIUS_TO_SEARCH_FOR_MASTERS) { if(newMaster->slaves_.size() > this->maxFormationSize_) continue; for(std::vector::iterator itSlave = this->slaves_.begin(); itSlave != this->slaves_.end(); itSlave++) { (*itSlave)->myMaster_ = newMaster; newMaster->slaves_.push_back(*itSlave); } this->slaves_.clear(); this->state_ = SLAVE; this->myMaster_ = newMaster; newMaster->slaves_.push_back(this); break; } } if (this->state_ != SLAVE && teamSize != 0) { this->state_ = MASTER; this->myMaster_ = 0; } } /** @brief Commands the slaves of a master into a formation. Sufficiently fast not to be called within tick. Initiated by a master. */ void ArtificialController::commandSlaves() { if(this->state_ != MASTER) return; Quaternion orient = this->getControllableEntity()->getOrientation(); Vector3 dest = this->getControllableEntity()->getPosition(); // 1 slave: follow if (this->slaves_.size() == 1) { dest += 4*orient*WorldEntity::BACK; this->slaves_.front()->setTargetPosition(dest); } else { dest += 1.0f*orient*WorldEntity::BACK; Vector3 pos = Vector3::ZERO; int i = 1; for(std::vector::iterator it = slaves_.begin(); it != slaves_.end(); it++) { pos = Vector3::ZERO; if (i <= 1) pos += dest + (float)FORMATION_WIDTH*(orient*WorldEntity::LEFT); if (i == 2) pos += dest + (float)FORMATION_WIDTH*(orient*WorldEntity::RIGHT); if (i == 3) pos += dest + (float)FORMATION_WIDTH*(orient*WorldEntity::UP); if (i >= 4) { pos += dest + (float)FORMATION_WIDTH*(orient*WorldEntity::DOWN); i = 1; dest += (float)FORMATION_LENGTH*(orient*WorldEntity::BACK); (*it)->setTargetPosition(pos); continue; } i++; (*it)->setTargetPosition(pos); } } } /** @brief Sets a new master within the formation. Called by a master. */ void ArtificialController::setNewMasterWithinFormation() { if(this->state_ != MASTER) return; if (!this->slaves_.empty()) { ArtificialController *newMaster = this->slaves_.back(); this->slaves_.pop_back(); newMaster->state_ = MASTER; newMaster->slaves_ = this->slaves_; newMaster->myMaster_ = 0; for(std::vector::iterator it = newMaster->slaves_.begin(); it != newMaster->slaves_.end(); it++) { (*it)->myMaster_ = newMaster; } } this->slaves_.clear(); this->specificMasterAction_ = NONE; this->state_ = FREE; } /** @brief Frees all slaves form a master. Initiated by a master. */ void ArtificialController::freeSlaves() { if(this->state_ != MASTER) return; for(std::vector::iterator it = slaves_.begin(); it != slaves_.end(); it++) { (*it)->state_ = FREE; (*it)->myMaster_ = 0; } this->slaves_.clear(); } /** @brief Master sets its slaves free for @ref FREEDOM_COUNT seconds. */ void ArtificialController::forceFreeSlaves() { if(this->state_ != MASTER) return; for(std::vector::iterator it = slaves_.begin(); it != slaves_.end(); it++) { (*it)->state_ = FREE; (*it)->forceFreedom(); (*it)->targetPosition_ = this->targetPosition_; (*it)->bShooting_ = true; // (*it)->getControllableEntity()->fire(0);// fire once for fun } } void ArtificialController::loseMasterState() { this->freeSlaves(); this->state_ = FREE; } void ArtificialController::forceFreedom() { this->freedomCount_ = FREEDOM_COUNT; } /** @brief Checks wether caller has been forced free, decrements time to stay forced free. @return true if forced free. */ bool ArtificialController::forcedFree() { if(this->freedomCount_ > 0) { this->freedomCount_--; return true; } else return false; } /** @brief Used to continue a "specific master action" for a certain time and resuming normal behaviour after. */ void ArtificialController::specificMasterActionHold() { if(this->state_ != MASTER) return; if (specificMasterActionHoldCount_ == 0) { this->specificMasterAction_ = NONE; this->searchNewTarget(); } else specificMasterActionHoldCount_--; } /** @brief Master initializes a 180 degree turn. Leads to a "specific master action". */ void ArtificialController::turn180Init() { if(this->state_ != MASTER) return; Quaternion orient = this->getControllableEntity()->getOrientation(); this->setTargetPosition(this->getControllableEntity()->getPosition() + 1000.0f*orient*WorldEntity::BACK); this->specificMasterActionHoldCount_ = 4; this->specificMasterAction_ = TURN180; } /** @brief Execute the 180 degree turn. Called within tick. */ void ArtificialController::turn180() { Vector2 coord = get2DViewdirection(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->getControllableEntity()->getOrientation() * WorldEntity::UP, this->targetPosition_); this->getControllableEntity()->rotateYaw(-2.0f * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(2.0f * sgn(coord.y) * coord.y*coord.y); this->getControllableEntity()->moveFrontBack(SPEED_MASTER); } /** @brief Master initializes a spin around its looking direction axis. Leads to a "specific master action". */ void ArtificialController::spinInit() { if(this->state_ != MASTER) return; this->specificMasterAction_ = SPIN; this->specificMasterActionHoldCount_ = 10; } /** @brief Execute the spin. Called within tick. */ void ArtificialController::spin() { this->moveToTargetPosition(); this->getControllableEntity()->rotateRoll(0.8f); } /** @brief Master begins to follow a pawn. Is a "specific master action". @param pawn pawn to follow. @param always follows pawn forever if true (false if omitted). @param secondsToFollow seconds to follow the pawn if always is false. Will follow pawn 100 seconds if omitted (set in header). */ void ArtificialController::followInit(Pawn* pawn, const bool always, const int secondsToFollow) { if (pawn == NULL || this->state_ != MASTER) return; this->specificMasterAction_ = FOLLOW; this->setTarget(pawn); if (!always) this->specificMasterActionHoldCount_ = secondsToFollow; else this->specificMasterActionHoldCount_ = INT_MAX; //for now... } /** @brief Master begins to follow a randomly chosen human player of the same team. Is a "specific master action". */ void ArtificialController::followRandomHumanInit() { Pawn *humanPawn = NULL; NewHumanController *currentHumanController = NULL; for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { if (!it->getController()) continue; currentHumanController = orxonox_cast(it->getController()); if(currentHumanController) { if (!ArtificialController::sameTeam(this->getControllableEntity(), *it, this->getGametype())) continue; humanPawn = *it; break; } } if((humanPawn != NULL)) this->followInit(humanPawn); } /** @brief Master follows target with adjusted speed. Called within tick. */ void ArtificialController::follow() { if (this->target_) this->moveToPosition(this->target_->getPosition()); else this->specificMasterActionHoldCount_ = 0; /* if (!this->getControllableEntity()) return; float distance = (this->target_->getPosition() - this->getControllableEntity()->getPosition()).length(); Vector2 coord = get2DViewdirection(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->getControllableEntity()->getOrientation() * WorldEntity::UP, this->target_->getPosition()); this->getControllableEntity()->rotateYaw(-0.8f * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(0.8f * sgn(coord.y) * coord.y*coord.y); float speedDiv = this->getControllableEntity()->getVelocity().squaredLength() - this->target_->getVelocity().squaredLength(); COUT(0) << "~follow distance: " << distance << "SpeedCounter: " << this->speedCounter_ << "~speedDiv: " << speedDiv << std::endl; if (distance < 800) { if (distance < 200) { this->speedCounter_ -= 0.5f; if(this->speedCounter_ < 0) this->speedCounter_ = 0.0f; this->getControllableEntity()->moveFrontBack(speedCounter_); } else { if(speedDiv < 0) this->speedCounter_ += 0.01f; else this->speedCounter_ -= 0.05f; this->getControllableEntity()->moveFrontBack(speedCounter_); } } else { this->speedCounter_ += 0.05f; this->getControllableEntity()->moveFrontBack(speedCounter_ + distance/300.0f); } // if (this->getControllableEntity()->getVelocity().squaredLength() > 50.0f) this->speedCounter_ = 0; */ } /** @brief Slave moving behaviour when master is following a pawn, gets redirected from moveToPosition(const Vector3& target)). Called within tick. */ void ArtificialController::followForSlaves(const Vector3& target) { /* if (!this->getControllableEntity() && !this->myMaster_ && this->myMaster_->state_ != FOLLOW && !this->myMaster_->target_) return; float distance = (target - this->getControllableEntity()->getPosition()).length(); Vector2 coord = get2DViewdirection(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->getControllableEntity()->getOrientation() * WorldEntity::UP, target); this->getControllableEntity()->rotateYaw(-0.8f * sgn(coord.x) * coord.x*coord.x); this->getControllableEntity()->rotatePitch(0.8f * sgn(coord.y) * coord.y*coord.y); float speedDiv = this->getControllableEntity()->getVelocity().squaredLength() - this->myMaster_->target_->getVelocity().squaredLength(); if (distance < 800) { if (distance < 200) { this->speedCounter_ -= 5.0f; if(this->speedCounter_ < 0) this->speedCounter_ = 0.0f; this->getControllableEntity()->moveFrontBack(speedCounter_); } else { if(speedDiv < 0) this->speedCounter_ += 0.01f; else this->speedCounter_ -= 0.05f; this->getControllableEntity()->moveFrontBack(speedCounter_); } } else { this->speedCounter_ += 0.05f; this->getControllableEntity()->moveFrontBack(speedCounter_ + distance/300.0f); } // if (this->getControllableEntity()->getVelocity().squaredLength() > 50.0f) this->speedCounter_ = 0; */ } void ArtificialController::setTargetPosition(const Vector3& target) { this->targetPosition_ = target; this->bHasTargetPosition_ = true; } void ArtificialController::searchRandomTargetPosition() { this->targetPosition_ = Vector3(rnd(-2000,2000), rnd(-2000,2000), rnd(-2000,2000)); this->bHasTargetPosition_ = true; } void ArtificialController::setTarget(Pawn* target) { this->target_ = target; if (target) this->targetPosition_ = target->getPosition(); } void ArtificialController::searchNewTarget() { if (!this->getControllableEntity()) return; this->targetPosition_ = this->getControllableEntity()->getPosition(); this->forgetTarget(); for (ObjectList::iterator it = ObjectList::begin(); it; ++it) { if (ArtificialController::sameTeam(this->getControllableEntity(), static_cast(*it), this->getGametype())) continue; /* So AI won't choose invisible Spaceships as target */ if (!it->getRadarVisibility()) continue; if (static_cast(*it) != this->getControllableEntity()) { float speed = this->getControllableEntity()->getVelocity().length(); Vector3 distanceCurrent = this->targetPosition_ - this->getControllableEntity()->getPosition(); Vector3 distanceNew = it->getPosition() - this->getControllableEntity()->getPosition(); if (!this->target_ || it->getPosition().squaredDistance(this->getControllableEntity()->getPosition()) * (1.5f + acos((this->getControllableEntity()->getOrientation() * WorldEntity::FRONT).dotProduct(distanceNew) / speed / distanceNew.length()) / math::twoPi) < this->targetPosition_.squaredDistance(this->getControllableEntity()->getPosition()) * (1.5f + acos((this->getControllableEntity()->getOrientation() * WorldEntity::FRONT).dotProduct(distanceCurrent) / speed / distanceCurrent.length()) / math::twoPi) + rnd(-250, 250)) { this->target_ = (*it); this->targetPosition_ = it->getPosition(); } } } } void ArtificialController::forgetTarget() { this->target_ = 0; this->bShooting_ = false; } void ArtificialController::aimAtTarget() { if (!this->target_ || !this->getControllableEntity()) return; static const float hardcoded_projectile_speed = 1250; this->targetPosition_ = getPredictedPosition(this->getControllableEntity()->getPosition(), hardcoded_projectile_speed, this->target_->getPosition(), this->target_->getVelocity()); this->bHasTargetPosition_ = (this->targetPosition_ != Vector3::ZERO); Pawn* pawn = orxonox_cast(this->getControllableEntity()); if (pawn) pawn->setAimPosition(this->targetPosition_); } bool ArtificialController::isCloseAtTarget(float distance) const { if (!this->getControllableEntity()) return false; if (!this->target_) return (this->getControllableEntity()->getPosition().squaredDistance(this->targetPosition_) < distance*distance); else return (this->getControllableEntity()->getPosition().squaredDistance(this->target_->getPosition()) < distance*distance); } bool ArtificialController::isLookingAtTarget(float angle) const { if (!this->getControllableEntity()) return false; return (getAngle(this->getControllableEntity()->getPosition(), this->getControllableEntity()->getOrientation() * WorldEntity::FRONT, this->targetPosition_) < angle); } void ArtificialController::abandonTarget(Pawn* target) { if (target == this->target_) this->targetDied(); } void ArtificialController::targetDied() { this->forgetTarget(); this->searchRandomTargetPosition(); } bool ArtificialController::sameTeam(ControllableEntity* entity1, ControllableEntity* entity2, Gametype* gametype) { if(!entity1 || !entity2) return true; if (entity1 == entity2) return true; int team1 = -1; int team2 = -1; Controller* controller = 0; if (entity1->getController()) controller = entity1->getController(); else controller = entity1->getXMLController(); if (controller) { ArtificialController* ac = orxonox_cast(controller); if (ac) team1 = ac->getTeam(); } if (entity2->getController()) controller = entity2->getController(); else controller = entity2->getXMLController(); if (controller) { ArtificialController* ac = orxonox_cast(controller); if (ac) team2 = ac->getTeam(); } TeamDeathmatch* tdm = orxonox_cast(gametype); if (tdm) { if (entity1->getPlayer()) team1 = tdm->getTeam(entity1->getPlayer()); if (entity2->getPlayer()) team2 = tdm->getTeam(entity2->getPlayer()); } TeamBaseMatchBase* base = 0; base = orxonox_cast(entity1); if (base) { switch (base->getState()) { case BaseState::ControlTeam1: team1 = 0; break; case BaseState::ControlTeam2: team1 = 1; break; case BaseState::Uncontrolled: default: team1 = -1; } } base = orxonox_cast(entity2); if (base) { switch (base->getState()) { case BaseState::ControlTeam1: team2 = 0; break; case BaseState::ControlTeam2: team2 = 1; break; case BaseState::Uncontrolled: default: team2 = -1; } } DroneController* droneController = 0; droneController = orxonox_cast(entity1->getController()); if (droneController && static_cast(droneController->getOwner()) == entity2) return true; droneController = orxonox_cast(entity2->getController()); if (droneController && static_cast(droneController->getOwner()) == entity1) return true; DroneController* droneController1 = orxonox_cast(entity1->getController()); DroneController* droneController2 = orxonox_cast(entity2->getController()); if (droneController1 && droneController2 && droneController1->getOwner() == droneController2->getOwner()) return true; Dynamicmatch* dynamic = orxonox_cast(gametype); if (dynamic) { if (dynamic->notEnoughPigs||dynamic->notEnoughKillers||dynamic->notEnoughChasers) {return false;} if (entity1->getPlayer()) team1 = dynamic->getParty(entity1->getPlayer()); if (entity2->getPlayer()) team2 = dynamic->getParty(entity2->getPlayer()); if (team1 ==-1 ||team2 ==-1 ) {return false;} else if (team1 == dynamic->chaser && team2 != dynamic->chaser) {return false;} else if (team1 == dynamic->piggy && team2 == dynamic->chaser) {return false;} else if (team1 == dynamic->killer && team2 == dynamic->chaser) {return false;} else return true; } return (team1 == team2 && team1 != -1); } /** @brief DoFire is called when a bot should shoot and decides which weapon is used and whether the bot shoots at all. */ void ArtificialController::doFire() { if(!this->bSetupWorked)//setup: find out which weapons are active ! hard coded: laser is "0", lens flare is "1", ... { this->setupWeapons(); } else if(this->getControllableEntity() && weaponModes_.size()&&this->bShooting_ && this->isCloseAtTarget((1 + 2*botlevel_)*1000) && this->isLookingAtTarget(math::pi / 20.0f)) { int firemode; float random = rnd(1);// if (this->isCloseAtTarget(130) && (firemode = getFiremode("LightningGun")) > -1 ) {//LENSFLARE: short range weapon this->getControllableEntity()->fire(firemode); //ai uses lens flare if they're close enough to the target } else if( this->isCloseAtTarget(400) && (random < this->botlevel_) && (firemode = getFiremode("RocketFire")) > -1 ) {//ROCKET: mid range weapon this->mode_ = ROCKET; //Vector-implementation: mode_.push_back(ROCKET); this->getControllableEntity()->fire(firemode); //launch rocket if(this->getControllableEntity() && this->target_) //after fire(3) is called, getControllableEntity() refers to the rocket! { float speed = this->getControllableEntity()->getVelocity().length() - target_->getVelocity().length(); if(!speed) speed = 0.1f; float distance = target_->getPosition().length() - this->getControllableEntity()->getPosition().length(); this->timeout_= distance/speed*sgn(speed*distance) + 1.8f; //predicted time of target hit (+ tolerance) } else this->timeout_ = 4.0f; //TODO: find better default value } else if ((firemode = getFiremode("HsW01")) > -1 ) //LASER: default weapon this->getControllableEntity()->fire(firemode); } } /** @brief Information gathering: Which weapons are ready to use? */ void ArtificialController::setupWeapons() //TODO: Make this function generic!! (at the moment is is based on conventions) { this->bSetupWorked = false; if(this->getControllableEntity()) { Pawn* pawn = orxonox_cast(this->getControllableEntity()); if(pawn) { this->weaponModes_.clear(); // reset previous weapon information WeaponSlot* wSlot = 0; for(int l=0; (wSlot = pawn->getWeaponSlot(l)) ; l++) { WeaponMode* wMode = 0; for(int i=0; (wMode = wSlot->getWeapon()->getWeaponmode(i)) ; i++) { std::string wName = wMode->getIdentifier()->getName(); if(this->getFiremode(wName) == -1) //only add a weapon, if it is "new" weaponModes_[wName] = wMode->getMode(); } } if(weaponModes_.size())//at least one weapon detected this->bSetupWorked = true; }//pawn->weaponSystem_->getMunition(SubclassIdentifier< Munition > *identifier)->getNumMunition (WeaponMode *user); } } void ArtificialController::setBotLevel(float level) { if (level < 0.0f) this->botlevel_ = 0.0f; else if (level > 1.0f) this->botlevel_ = 1.0f; else this->botlevel_ = level; } void ArtificialController::setAllBotLevel(float level) { for (ObjectList::iterator it = ObjectList::begin(); it != ObjectList::end(); ++it) it->setBotLevel(level); } void ArtificialController::setPreviousMode() { this->mode_ = DEFAULT; //Vector-implementation: mode_.pop_back(); } /** @brief Manages boost. Switches between boost usage and boost safe mode. */ void ArtificialController::boostControl() { SpaceShip* ship = orxonox_cast(this->getControllableEntity()); if(ship == NULL) return; if(ship->getBoostPower()*1.5f > ship->getInitialBoostPower() ) //upper limit ->boost this->getControllableEntity()->boost(true); else if(ship->getBoostPower()*4.0f < ship->getInitialBoostPower()) //lower limit ->do not boost this->getControllableEntity()->boost(false); } int ArtificialController::getFiremode(std::string name) { for (std::map< std::string, int >::iterator it = this->weaponModes_.begin(); it != this->weaponModes_.end(); ++it) { if (it->first == name) return it->second; } return -1; } void ArtificialController::addWaypoint(WorldEntity* waypoint) { this->waypoints_.push_back(waypoint); } WorldEntity* ArtificialController::getWaypoint(unsigned int index) const { if (index < this->waypoints_.size()) return this->waypoints_[index]; else return 0; } /** @brief Adds first waypoint of type name to the waypoint stack, which is within the searchDistance @param name object-name of a point of interest (e.g. "PickupSpawner", "ForceField") */ void ArtificialController::updatePointsOfInterest(std::string name, float searchDistance) { WorldEntity* waypoint = NULL; for (ObjectList::iterator it = ObjectList::begin(); it != ObjectList::end(); ++it) { if((*it)->getIdentifier() == ClassByString(name)) { ControllableEntity* controllable = this->getControllableEntity(); if(!controllable) continue; float actualDistance = ( (*it)->getPosition() - controllable->getPosition() ).length(); if(actualDistance > searchDistance || actualDistance < 5.0f) continue; // TODO: PickupSpawner: adjust waypoint accuracy to PickupSpawner's triggerdistance // TODO: ForceField: analyze is angle between forcefield boost and own flying direction is acceptable else { waypoint = *it; break; } } } if(waypoint) this->waypoints_.push_back(waypoint); } /** @brief Adds point of interest depending on context. Further Possibilites: "ForceField", "PortalEndPoint", "MovableEntity", "Dock" */ void ArtificialController::manageWaypoints() { if(!defaultWaypoint_) this->updatePointsOfInterest("PickupSpawner", 200.0f); // long search radius if there is no default goal else this->updatePointsOfInterest("PickupSpawner", 20.0f); // take pickup en passant if there is a default waypoint } }