/* * ORXONOX - the hottest 3D action shooter ever to exist * > www.orxonox.net < * * * License notice: * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Author: * Fabian 'x3n' Landau * Co-authors: * Wolfgang Roenninger * */ /** @defgroup Math Mathematical functions @ingroup Util */ /** @file @ingroup Math @brief Declaration and implementation of several math-functions, typedefs of some Ogre::Math classes to the orxonox namespace. */ #ifndef _Util_Math_H__ #define _Util_Math_H__ #include "UtilPrereqs.h" #include #include #include #include #include #include #include #include #include #include // Certain headers might define unwanted macros... #undef max #undef min #undef sgn #undef clamp #undef sqrt #undef square #undef mod #undef rnd namespace orxonox { /** Often used numerical constants because C++ doesn't define any. @note The values here are decimal representations of the approximate floating point value as it is stored according to the IEEE 754 standard. */ namespace math { constexpr float twoPi = 6.283185482025146484375f; ///< PI * 2 constexpr float pi = 3.1415927410125732421875f; ///< PI constexpr float pi_2 = 1.57079637050628662109375f; ///< PI / 2 constexpr float pi_4 = 0.785398185253143310546875f; ///< PI / 4 constexpr float e = 2.718281269073486328125f; ///< e constexpr float sqrt2 = 1.41421353816986083984375f; ///< sqrt(2) constexpr float sqrt2_2 = 0.707106769084930419921875f; ///< sqrt(2) / 2 } #if OGRE_VERSION < 0x010603 _UtilExport std::ostream& operator<<(std::ostream& out, const orxonox::Radian& radian); _UtilExport std::ostream& operator<<(std::ostream& out, const orxonox::Degree& degree); #endif _UtilExport std::istream& operator>>(std::istream& in, orxonox::Radian& radian); _UtilExport std::istream& operator>>(std::istream& in, orxonox::Degree& degree); _UtilExport float getAngle(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector2 get2DViewdirection(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector2 get2DViewcoordinates(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector2 get3DProjection(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition, const float mapangle, const float detectionlimit); _UtilExport bool isObjectHigherThanShipOnMap(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition, const float mapangle); _UtilExport int determineMap3DZOrder(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition, const float detectionlimit); _UtilExport orxonox::Vector3 getTransformedVector(const orxonox::Vector3& distance, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& myside); _UtilExport orxonox::Vector3 getPredictedPosition(const orxonox::Vector3& myposition, float projectilespeed, const orxonox::Vector3& targetposition, const orxonox::Vector3& targetvelocity); /** @brief Returns the sign of the given value. @param x The value @return 1 if the value is positive or zero, -1 if the value is negative */ template constexpr inline T sgn(T x) { return (x >= 0) ? (T)1 : (T)-1; } /** @brief Keeps a value between a lower and an upper limit. Values beyond these limits are limited to either @a min or @a max. @param x The value @param min The lower limit @param max The upper limit */ template constexpr inline T clamp(T x, T min, T max) { return x < min ? min : (x > max ? max : x); } /** @brief Returns the squared value (x^2). */ template constexpr inline T square(T x) { return x*x; } /** @brief Returns the cubed value (x^3). */ template constexpr inline T cube(T x) { return x*x*x; } /** @brief The modulo operation, enhanced to work properly with negative values. @param x The value @param max The operand The built in modulo operator % yields a strange behavior with negative values. This function corrects this - the result is guaranteed to lie always between zero and (max-1). Example: @code int var = 11 % 10; // 1 int var = -1 % 10; // -1 int var = mod(11, 10); // 1 int var = mod(-1, 10); // 9 @endcode */ template inline int mod(T x, int max) { if (x >= 0) return (x % max); else { T temp = x % max; return (temp < 0) ? (temp + max) : temp; } } /** @brief Returns a "zero" value for the given type. @note This is the default template of the zeroise() function. The template is spezialized for each supported type. The exact return value of the function depends on the type. For @c int this is 0, for @c float it's 0.0f. For a @c std::string the function returns "" and for @c Vector3 you get Vector3(0, 0, 0). */ template inline T zeroise() { // Default, raise a compiler error without including large boost header cascade. T temp{}; *********temp; // If you reach this code, you abused zeroise()! return temp; } template <> inline char zeroise() { return 0; } template <> inline unsigned char zeroise() { return 0; } template <> inline short zeroise() { return 0; } template <> inline unsigned short zeroise() { return 0; } template <> inline int zeroise() { return 0; } template <> inline unsigned int zeroise() { return 0; } template <> inline long zeroise() { return 0; } template <> inline unsigned long zeroise() { return 0; } template <> inline long long zeroise() { return 0; } template <> inline unsigned long long zeroise() { return 0; } template <> inline float zeroise() { return 0; } template <> inline double zeroise() { return 0; } template <> inline long double zeroise() { return 0; } template <> inline bool zeroise() { return 0; } template <> inline void* zeroise() { return nullptr; } template <> inline std::string zeroise() { return std::string(); } template <> inline orxonox::Radian zeroise() { return orxonox::Radian(0.0f); } template <> inline orxonox::Degree zeroise() { return orxonox::Degree(0.0f); } template <> inline orxonox::Vector2 zeroise() { return orxonox::Vector2 (0, 0) ; } template <> inline orxonox::Vector3 zeroise() { return orxonox::Vector3 (0, 0, 0) ; } template <> inline orxonox::Vector4 zeroise() { return orxonox::Vector4 (0, 0, 0, 0); } template <> inline orxonox::ColourValue zeroise() { return orxonox::ColourValue(0, 0, 0, 0); } template <> inline orxonox::Quaternion zeroise() { return orxonox::Quaternion (0, 0, 0, 0); } /** @brief Provides zero value symbols that can be returned as reference @see zeroise() */ template struct NilValue { inline operator const T&() const { return value; } static T value; }; template T NilValue::value = zeroise(); /** @brief Interpolates between two values for a time between 0 and 1. @param time The time is a value between 0 and 1 - the function returns @a start if @a time is 0, @a end if @a time is 1, and interpolates if @a time is between 0 and 1. @param start The value at @a time = 0 @param end The value at @a time = 1 @return The interpolated value at a given time */ template inline T interpolate(float time, const T& start, const T& end) { return static_cast(time * (end - start) + start); } /** @brief Interpolates smoothly between two values for a time between 0 and 1. The function starts slowly, increases faster and stops slowly again. @param time The time is a value between 0 and 1 - the function returns @a start if @a time is 0, @a end if @a time is 1, and interpolates if @a time is between 0 and 1. @param start The value at @a time = 0 @param end The value at @a time = 1 @return The interpolated value at a given time */ template inline T interpolateSmooth(float time, const T& start, const T& end) { return static_cast((-2 * (end - start) * cube(time)) + (3 * (end - start) * square(time)) + start); } namespace detail { /** Random number generator used for the functions below. Marked extern to only have one global instance. */ _UtilExport extern std::mt19937 rngen; } /** @brief Seeds the random number generator used for the functions below. */ inline void rndseed(unsigned int seed) { detail::rngen.seed(seed); } /** @brief Returns a random number between @a min and almost @a max: min <= rnd < max. @param min The minimum @param max The maximum */ inline float rnd(float min, float max) { std::uniform_real_distribution dist(min, max); return dist(detail::rngen); } /** @brief Returns a random number between 0 and almost 1: 0 <= rnd < 1. */ inline float rnd() { return rnd(0, 1); } /** @brief Returns a random number between 0 and almost @a max: 0 <= rnd < max. @param max The maximum */ inline float rnd(float max) { return rnd(0, max); } /** @brief Returns randomly 1 or -1 with equal probability. */ inline float rndsgn() { std::uniform_int_distribution<> dist; return static_cast((dist(detail::rngen) & 0x2) - 1); // dist(...) & 0x2 is either 2 or 0 } _UtilExport unsigned long getUniqueNumber(); } #endif /* _Util_Math_H__ */