1 | |
---|
2 | //Headerfile: Flocking.h |
---|
3 | |
---|
4 | #ifndef _Flocking_H__ |
---|
5 | #define _Flocking_H__ |
---|
6 | |
---|
7 | #include "util/Math.h" |
---|
8 | |
---|
9 | namespace orxonox |
---|
10 | { |
---|
11 | class Element // An element that flocks |
---|
12 | { |
---|
13 | |
---|
14 | public: |
---|
15 | Vector3 location; //!< locationvector of the element |
---|
16 | Vector3 speed; //!< speedvector of the element |
---|
17 | Vector3 acceleration; //!< accelerationvector of the element |
---|
18 | bool movable; //!< movability of the element, (false) gives the possiblity that an object can`t be moved by flocking but still gets into the calculation |
---|
19 | static int const SEPERATIONDISTANCE = 300; //!< detectionradius of seperation |
---|
20 | static int const ALIGNMENTDISTANCE = 300; //!< detectionradius of alignment |
---|
21 | static int const COHESIONDISTANCE = 5000; //!< detectionradius of cohesion |
---|
22 | static int const ANZELEMENTS = 9; //!< number of elements |
---|
23 | |
---|
24 | //! default constructor |
---|
25 | Element() { |
---|
26 | acceleration = Vector3(0,0,0); |
---|
27 | speed = Vector3(0,0,0); |
---|
28 | location = Vector3(0,0,0); |
---|
29 | movable = true; |
---|
30 | } |
---|
31 | |
---|
32 | /** constructor |
---|
33 | * @param location_ sets locationvector of the element |
---|
34 | * @param speed_ sets speedvector of the element |
---|
35 | * @param acceleration_ sets accelerationvector of the element |
---|
36 | * @param movable_ sets movability of the element |
---|
37 | */ |
---|
38 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
39 | acceleration = acceleration_; |
---|
40 | speed = speed_; |
---|
41 | location = location_; |
---|
42 | movable = movable_; |
---|
43 | } |
---|
44 | |
---|
45 | //! function to chance values of an element |
---|
46 | void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
---|
47 | acceleration = acceleration_; |
---|
48 | speed = speed_; |
---|
49 | location = location_; |
---|
50 | movable = movable_; |
---|
51 | } |
---|
52 | |
---|
53 | /** calculates the distance between the element and an other point given by temp |
---|
54 | * @param e remote object to calculate distance to |
---|
55 | */ |
---|
56 | float getDistance(Element e) { |
---|
57 | Vector3 distance = e.location - location; |
---|
58 | return distance.length(); |
---|
59 | } |
---|
60 | |
---|
61 | //! updates the data of an element |
---|
62 | void update(Element arrayOfElements[]) { |
---|
63 | if (this->movable == true) {calculateAcceleration(arrayOfElements);} //if element is movable, calculate acceleration |
---|
64 | } |
---|
65 | |
---|
66 | //! calculates the new acceleration of an element |
---|
67 | void calculateAcceleration(Element arrayOfElements[]) { |
---|
68 | acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); //acceleration consisting of flocking-functions |
---|
69 | } |
---|
70 | |
---|
71 | //! separation-function (keep elements separated, avoid crashs) |
---|
72 | Vector3 separation(Element arrayOfElements[]) { |
---|
73 | using namespace Ogre; |
---|
74 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
75 | Vector3 inverseDistance = Vector3(0,0,0); //vector pointing away from possible collisions |
---|
76 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
77 | float distance = 0; // distance to the actual element |
---|
78 | for(int i=0; i<ANZELEMENTS; i++) { //go through all elements |
---|
79 | Element actual = arrayOfElements[i]; //get the actual element |
---|
80 | distance = getDistance(actual); //get distance between this and actual |
---|
81 | if ((distance > 0) && (distance < SEPERATIONDISTANCE)) { //do only if actual is inside detectionradius |
---|
82 | inverseDistance = (0,0,0); |
---|
83 | inverseDistance = location-actual.location; //calculate the distancevector heading towards this |
---|
84 | //adaptation of the inverseDistance to the distance |
---|
85 | if ((distance < 200) && (distance >= 120)) {inverseDistance = 2*inverseDistance;} |
---|
86 | if ((distance < 120) && (distance >= 80)) {inverseDistance = 5*inverseDistance;} |
---|
87 | if ((distance < 80) && (distance >= 40)) {inverseDistance = 10*inverseDistance;} |
---|
88 | if ((distance < 40) && (distance > 0)) {inverseDistance = 10*inverseDistance;} |
---|
89 | steering = steering + inverseDistance; //add up all significant steeringvectors |
---|
90 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
91 | } |
---|
92 | } |
---|
93 | if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
---|
94 | return steering; |
---|
95 | } |
---|
96 | |
---|
97 | //! alignment-function (lead elements to the same heading) |
---|
98 | Vector3 alignment(Element arrayOfElements[]) { |
---|
99 | using namespace Ogre; |
---|
100 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
101 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
102 | float distance = 0; |
---|
103 | //go through all elements |
---|
104 | for(int i=0; i<ANZELEMENTS; i++) { //just working with 3 elements at the moment |
---|
105 | Element actual = arrayOfElements[i]; //get the actual element |
---|
106 | float distance = getDistance(actual); //get distance between this and actual |
---|
107 | if ((distance > 0) && (distance < ALIGNMENTDISTANCE)) { //check if actual element is inside detectionradius |
---|
108 | steering = steering + actual.speed; //add up all speedvectors inside the detectionradius |
---|
109 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
110 | } |
---|
111 | } |
---|
112 | if(numberOfNeighbour > 0) { steering = steering / (float)numberOfNeighbour; } //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
---|
113 | return steering; |
---|
114 | } |
---|
115 | |
---|
116 | //! cohseion-function (keep elements close to each other) |
---|
117 | Vector3 cohesion(Element arrayOfElements[]) { |
---|
118 | using namespace Ogre; |
---|
119 | Vector3 steering = Vector3(0,0,0); //steeringvector |
---|
120 | int numberOfNeighbour = 0; //number of observed neighbours |
---|
121 | float distance = 0; |
---|
122 | //go through all elements |
---|
123 | for(int i=0; i<ANZELEMENTS; i++) { //just working with 3 elements at the moment |
---|
124 | Element actual = arrayOfElements[i]; //get the actual element |
---|
125 | float distance = getDistance(actual); //get distance between this and actual |
---|
126 | if ((distance > 0) && (distance < COHESIONDISTANCE)) { //check if actual element is inside detectionradius |
---|
127 | steering = steering + actual.location; //add up all locations of elements inside the detectionradius |
---|
128 | numberOfNeighbour++; //counts the elements inside the detectionradius |
---|
129 | } |
---|
130 | } |
---|
131 | if(numberOfNeighbour > 0) { |
---|
132 | steering = steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
---|
133 | steering = steering - this->location; //transform the vector for the ship |
---|
134 | } |
---|
135 | return steering; |
---|
136 | } |
---|
137 | }; //End of class Element |
---|
138 | } |
---|
139 | |
---|
140 | #endif /* _Flocking_H__*/ |
---|