1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | ///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance |
---|
17 | ///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums |
---|
18 | ///with reproduction case |
---|
19 | //define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1 |
---|
20 | |
---|
21 | #include "btConvexConvexAlgorithm.h" |
---|
22 | |
---|
23 | //#include <stdio.h> |
---|
24 | #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h" |
---|
25 | #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" |
---|
26 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
27 | #include "BulletCollision/CollisionShapes/btConvexShape.h" |
---|
28 | #include "BulletCollision/CollisionShapes/btCapsuleShape.h" |
---|
29 | |
---|
30 | |
---|
31 | #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h" |
---|
32 | #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" |
---|
33 | #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" |
---|
34 | #include "BulletCollision/CollisionShapes/btBoxShape.h" |
---|
35 | #include "BulletCollision/CollisionDispatch/btManifoldResult.h" |
---|
36 | |
---|
37 | #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h" |
---|
38 | #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" |
---|
39 | #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" |
---|
40 | #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" |
---|
41 | |
---|
42 | |
---|
43 | |
---|
44 | #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h" |
---|
45 | #include "BulletCollision/CollisionShapes/btSphereShape.h" |
---|
46 | |
---|
47 | #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h" |
---|
48 | |
---|
49 | #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h" |
---|
50 | #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h" |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | /////////// |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | static SIMD_FORCE_INLINE void segmentsClosestPoints( |
---|
59 | btVector3& ptsVector, |
---|
60 | btVector3& offsetA, |
---|
61 | btVector3& offsetB, |
---|
62 | btScalar& tA, btScalar& tB, |
---|
63 | const btVector3& translation, |
---|
64 | const btVector3& dirA, btScalar hlenA, |
---|
65 | const btVector3& dirB, btScalar hlenB ) |
---|
66 | { |
---|
67 | // compute the parameters of the closest points on each line segment |
---|
68 | |
---|
69 | btScalar dirA_dot_dirB = btDot(dirA,dirB); |
---|
70 | btScalar dirA_dot_trans = btDot(dirA,translation); |
---|
71 | btScalar dirB_dot_trans = btDot(dirB,translation); |
---|
72 | |
---|
73 | btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB; |
---|
74 | |
---|
75 | if ( denom == 0.0f ) { |
---|
76 | tA = 0.0f; |
---|
77 | } else { |
---|
78 | tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom; |
---|
79 | if ( tA < -hlenA ) |
---|
80 | tA = -hlenA; |
---|
81 | else if ( tA > hlenA ) |
---|
82 | tA = hlenA; |
---|
83 | } |
---|
84 | |
---|
85 | tB = tA * dirA_dot_dirB - dirB_dot_trans; |
---|
86 | |
---|
87 | if ( tB < -hlenB ) { |
---|
88 | tB = -hlenB; |
---|
89 | tA = tB * dirA_dot_dirB + dirA_dot_trans; |
---|
90 | |
---|
91 | if ( tA < -hlenA ) |
---|
92 | tA = -hlenA; |
---|
93 | else if ( tA > hlenA ) |
---|
94 | tA = hlenA; |
---|
95 | } else if ( tB > hlenB ) { |
---|
96 | tB = hlenB; |
---|
97 | tA = tB * dirA_dot_dirB + dirA_dot_trans; |
---|
98 | |
---|
99 | if ( tA < -hlenA ) |
---|
100 | tA = -hlenA; |
---|
101 | else if ( tA > hlenA ) |
---|
102 | tA = hlenA; |
---|
103 | } |
---|
104 | |
---|
105 | // compute the closest points relative to segment centers. |
---|
106 | |
---|
107 | offsetA = dirA * tA; |
---|
108 | offsetB = dirB * tB; |
---|
109 | |
---|
110 | ptsVector = translation - offsetA + offsetB; |
---|
111 | } |
---|
112 | |
---|
113 | |
---|
114 | static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance( |
---|
115 | btVector3& normalOnB, |
---|
116 | btVector3& pointOnB, |
---|
117 | btScalar capsuleLengthA, |
---|
118 | btScalar capsuleRadiusA, |
---|
119 | btScalar capsuleLengthB, |
---|
120 | btScalar capsuleRadiusB, |
---|
121 | int capsuleAxisA, |
---|
122 | int capsuleAxisB, |
---|
123 | const btTransform& transformA, |
---|
124 | const btTransform& transformB, |
---|
125 | btScalar distanceThreshold ) |
---|
126 | { |
---|
127 | btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA); |
---|
128 | btVector3 translationA = transformA.getOrigin(); |
---|
129 | btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB); |
---|
130 | btVector3 translationB = transformB.getOrigin(); |
---|
131 | |
---|
132 | // translation between centers |
---|
133 | |
---|
134 | btVector3 translation = translationB - translationA; |
---|
135 | |
---|
136 | // compute the closest points of the capsule line segments |
---|
137 | |
---|
138 | btVector3 ptsVector; // the vector between the closest points |
---|
139 | |
---|
140 | btVector3 offsetA, offsetB; // offsets from segment centers to their closest points |
---|
141 | btScalar tA, tB; // parameters on line segment |
---|
142 | |
---|
143 | segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation, |
---|
144 | directionA, capsuleLengthA, directionB, capsuleLengthB ); |
---|
145 | |
---|
146 | btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB; |
---|
147 | |
---|
148 | if ( distance > distanceThreshold ) |
---|
149 | return distance; |
---|
150 | |
---|
151 | btScalar lenSqr = ptsVector.length2(); |
---|
152 | if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON)) |
---|
153 | { |
---|
154 | //degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA' |
---|
155 | btVector3 q; |
---|
156 | btPlaneSpace1(directionA,normalOnB,q); |
---|
157 | } else |
---|
158 | { |
---|
159 | // compute the contact normal |
---|
160 | normalOnB = ptsVector*-btRecipSqrt(lenSqr); |
---|
161 | } |
---|
162 | pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB; |
---|
163 | |
---|
164 | return distance; |
---|
165 | } |
---|
166 | |
---|
167 | |
---|
168 | |
---|
169 | |
---|
170 | |
---|
171 | |
---|
172 | |
---|
173 | ////////// |
---|
174 | |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver) |
---|
180 | { |
---|
181 | m_numPerturbationIterations = 0; |
---|
182 | m_minimumPointsPerturbationThreshold = 3; |
---|
183 | m_simplexSolver = simplexSolver; |
---|
184 | m_pdSolver = pdSolver; |
---|
185 | } |
---|
186 | |
---|
187 | btConvexConvexAlgorithm::CreateFunc::~CreateFunc() |
---|
188 | { |
---|
189 | } |
---|
190 | |
---|
191 | btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold) |
---|
192 | : btActivatingCollisionAlgorithm(ci,body0,body1), |
---|
193 | m_simplexSolver(simplexSolver), |
---|
194 | m_pdSolver(pdSolver), |
---|
195 | m_ownManifold (false), |
---|
196 | m_manifoldPtr(mf), |
---|
197 | m_lowLevelOfDetail(false), |
---|
198 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
199 | m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(), |
---|
200 | (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()), |
---|
201 | #endif |
---|
202 | m_numPerturbationIterations(numPerturbationIterations), |
---|
203 | m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold) |
---|
204 | { |
---|
205 | (void)body0; |
---|
206 | (void)body1; |
---|
207 | } |
---|
208 | |
---|
209 | |
---|
210 | |
---|
211 | |
---|
212 | btConvexConvexAlgorithm::~btConvexConvexAlgorithm() |
---|
213 | { |
---|
214 | if (m_ownManifold) |
---|
215 | { |
---|
216 | if (m_manifoldPtr) |
---|
217 | m_dispatcher->releaseManifold(m_manifoldPtr); |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel) |
---|
222 | { |
---|
223 | m_lowLevelOfDetail = useLowLevel; |
---|
224 | } |
---|
225 | |
---|
226 | |
---|
227 | struct btPerturbedContactResult : public btManifoldResult |
---|
228 | { |
---|
229 | btManifoldResult* m_originalManifoldResult; |
---|
230 | btTransform m_transformA; |
---|
231 | btTransform m_transformB; |
---|
232 | btTransform m_unPerturbedTransform; |
---|
233 | bool m_perturbA; |
---|
234 | btIDebugDraw* m_debugDrawer; |
---|
235 | |
---|
236 | |
---|
237 | btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer) |
---|
238 | :m_originalManifoldResult(originalResult), |
---|
239 | m_transformA(transformA), |
---|
240 | m_transformB(transformB), |
---|
241 | m_unPerturbedTransform(unPerturbedTransform), |
---|
242 | m_perturbA(perturbA), |
---|
243 | m_debugDrawer(debugDrawer) |
---|
244 | { |
---|
245 | } |
---|
246 | virtual ~ btPerturbedContactResult() |
---|
247 | { |
---|
248 | } |
---|
249 | |
---|
250 | virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth) |
---|
251 | { |
---|
252 | btVector3 endPt,startPt; |
---|
253 | btScalar newDepth; |
---|
254 | btVector3 newNormal; |
---|
255 | |
---|
256 | if (m_perturbA) |
---|
257 | { |
---|
258 | btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth; |
---|
259 | endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg); |
---|
260 | newDepth = (endPt - pointInWorld).dot(normalOnBInWorld); |
---|
261 | startPt = endPt+normalOnBInWorld*newDepth; |
---|
262 | } else |
---|
263 | { |
---|
264 | endPt = pointInWorld + normalOnBInWorld*orgDepth; |
---|
265 | startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld); |
---|
266 | newDepth = (endPt - startPt).dot(normalOnBInWorld); |
---|
267 | |
---|
268 | } |
---|
269 | |
---|
270 | //#define DEBUG_CONTACTS 1 |
---|
271 | #ifdef DEBUG_CONTACTS |
---|
272 | m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0)); |
---|
273 | m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0)); |
---|
274 | m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1)); |
---|
275 | #endif //DEBUG_CONTACTS |
---|
276 | |
---|
277 | |
---|
278 | m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth); |
---|
279 | } |
---|
280 | |
---|
281 | }; |
---|
282 | |
---|
283 | extern btScalar gContactBreakingThreshold; |
---|
284 | |
---|
285 | |
---|
286 | // |
---|
287 | // Convex-Convex collision algorithm |
---|
288 | // |
---|
289 | void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
290 | { |
---|
291 | |
---|
292 | if (!m_manifoldPtr) |
---|
293 | { |
---|
294 | //swapped? |
---|
295 | m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1); |
---|
296 | m_ownManifold = true; |
---|
297 | } |
---|
298 | resultOut->setPersistentManifold(m_manifoldPtr); |
---|
299 | |
---|
300 | //comment-out next line to test multi-contact generation |
---|
301 | //resultOut->getPersistentManifold()->clearManifold(); |
---|
302 | |
---|
303 | |
---|
304 | btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape()); |
---|
305 | btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape()); |
---|
306 | |
---|
307 | btVector3 normalOnB; |
---|
308 | btVector3 pointOnBWorld; |
---|
309 | #ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER |
---|
310 | if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)) |
---|
311 | { |
---|
312 | btCapsuleShape* capsuleA = (btCapsuleShape*) min0; |
---|
313 | btCapsuleShape* capsuleB = (btCapsuleShape*) min1; |
---|
314 | btVector3 localScalingA = capsuleA->getLocalScaling(); |
---|
315 | btVector3 localScalingB = capsuleB->getLocalScaling(); |
---|
316 | |
---|
317 | btScalar threshold = m_manifoldPtr->getContactBreakingThreshold(); |
---|
318 | |
---|
319 | btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(), |
---|
320 | capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(), |
---|
321 | body0->getWorldTransform(),body1->getWorldTransform(),threshold); |
---|
322 | |
---|
323 | if (dist<threshold) |
---|
324 | { |
---|
325 | btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON)); |
---|
326 | resultOut->addContactPoint(normalOnB,pointOnBWorld,dist); |
---|
327 | } |
---|
328 | resultOut->refreshContactPoints(); |
---|
329 | return; |
---|
330 | } |
---|
331 | #endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER |
---|
332 | |
---|
333 | |
---|
334 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
335 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
336 | { |
---|
337 | m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform()); |
---|
338 | } |
---|
339 | |
---|
340 | if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f) |
---|
341 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
342 | |
---|
343 | { |
---|
344 | |
---|
345 | |
---|
346 | btGjkPairDetector::ClosestPointInput input; |
---|
347 | |
---|
348 | btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver); |
---|
349 | //TODO: if (dispatchInfo.m_useContinuous) |
---|
350 | gjkPairDetector.setMinkowskiA(min0); |
---|
351 | gjkPairDetector.setMinkowskiB(min1); |
---|
352 | |
---|
353 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
354 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
355 | { |
---|
356 | input.m_maximumDistanceSquared = BT_LARGE_FLOAT; |
---|
357 | } else |
---|
358 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
359 | { |
---|
360 | if (dispatchInfo.m_convexMaxDistanceUseCPT) |
---|
361 | { |
---|
362 | input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold(); |
---|
363 | } else |
---|
364 | { |
---|
365 | input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold(); |
---|
366 | } |
---|
367 | input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared; |
---|
368 | } |
---|
369 | |
---|
370 | input.m_stackAlloc = dispatchInfo.m_stackAllocator; |
---|
371 | input.m_transformA = body0->getWorldTransform(); |
---|
372 | input.m_transformB = body1->getWorldTransform(); |
---|
373 | |
---|
374 | gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw); |
---|
375 | |
---|
376 | |
---|
377 | |
---|
378 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
379 | btScalar sepDist = 0.f; |
---|
380 | if (dispatchInfo.m_useConvexConservativeDistanceUtil) |
---|
381 | { |
---|
382 | sepDist = gjkPairDetector.getCachedSeparatingDistance(); |
---|
383 | if (sepDist>SIMD_EPSILON) |
---|
384 | { |
---|
385 | sepDist += dispatchInfo.m_convexConservativeDistanceThreshold; |
---|
386 | //now perturbe directions to get multiple contact points |
---|
387 | |
---|
388 | } |
---|
389 | } |
---|
390 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
391 | |
---|
392 | //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects |
---|
393 | |
---|
394 | //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points |
---|
395 | if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold) |
---|
396 | { |
---|
397 | |
---|
398 | int i; |
---|
399 | btVector3 v0,v1; |
---|
400 | btVector3 sepNormalWorldSpace; |
---|
401 | |
---|
402 | sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized(); |
---|
403 | btPlaneSpace1(sepNormalWorldSpace,v0,v1); |
---|
404 | |
---|
405 | |
---|
406 | bool perturbeA = true; |
---|
407 | const btScalar angleLimit = 0.125f * SIMD_PI; |
---|
408 | btScalar perturbeAngle; |
---|
409 | btScalar radiusA = min0->getAngularMotionDisc(); |
---|
410 | btScalar radiusB = min1->getAngularMotionDisc(); |
---|
411 | if (radiusA < radiusB) |
---|
412 | { |
---|
413 | perturbeAngle = gContactBreakingThreshold /radiusA; |
---|
414 | perturbeA = true; |
---|
415 | } else |
---|
416 | { |
---|
417 | perturbeAngle = gContactBreakingThreshold / radiusB; |
---|
418 | perturbeA = false; |
---|
419 | } |
---|
420 | if ( perturbeAngle > angleLimit ) |
---|
421 | perturbeAngle = angleLimit; |
---|
422 | |
---|
423 | btTransform unPerturbedTransform; |
---|
424 | if (perturbeA) |
---|
425 | { |
---|
426 | unPerturbedTransform = input.m_transformA; |
---|
427 | } else |
---|
428 | { |
---|
429 | unPerturbedTransform = input.m_transformB; |
---|
430 | } |
---|
431 | |
---|
432 | for ( i=0;i<m_numPerturbationIterations;i++) |
---|
433 | { |
---|
434 | if (v0.length2()>SIMD_EPSILON) |
---|
435 | { |
---|
436 | btQuaternion perturbeRot(v0,perturbeAngle); |
---|
437 | btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations)); |
---|
438 | btQuaternion rotq(sepNormalWorldSpace,iterationAngle); |
---|
439 | |
---|
440 | |
---|
441 | if (perturbeA) |
---|
442 | { |
---|
443 | input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0->getWorldTransform().getBasis()); |
---|
444 | input.m_transformB = body1->getWorldTransform(); |
---|
445 | #ifdef DEBUG_CONTACTS |
---|
446 | dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0); |
---|
447 | #endif //DEBUG_CONTACTS |
---|
448 | } else |
---|
449 | { |
---|
450 | input.m_transformA = body0->getWorldTransform(); |
---|
451 | input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1->getWorldTransform().getBasis()); |
---|
452 | #ifdef DEBUG_CONTACTS |
---|
453 | dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0); |
---|
454 | #endif |
---|
455 | } |
---|
456 | |
---|
457 | btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw); |
---|
458 | gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw); |
---|
459 | } |
---|
460 | |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | #ifdef USE_SEPDISTANCE_UTIL2 |
---|
467 | if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON)) |
---|
468 | { |
---|
469 | m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform()); |
---|
470 | } |
---|
471 | #endif //USE_SEPDISTANCE_UTIL2 |
---|
472 | |
---|
473 | |
---|
474 | } |
---|
475 | |
---|
476 | if (m_ownManifold) |
---|
477 | { |
---|
478 | resultOut->refreshContactPoints(); |
---|
479 | } |
---|
480 | |
---|
481 | } |
---|
482 | |
---|
483 | |
---|
484 | |
---|
485 | bool disableCcd = false; |
---|
486 | btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
487 | { |
---|
488 | (void)resultOut; |
---|
489 | (void)dispatchInfo; |
---|
490 | ///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold |
---|
491 | |
---|
492 | ///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold |
---|
493 | ///col0->m_worldTransform, |
---|
494 | btScalar resultFraction = btScalar(1.); |
---|
495 | |
---|
496 | |
---|
497 | btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2(); |
---|
498 | btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2(); |
---|
499 | |
---|
500 | if (squareMot0 < col0->getCcdSquareMotionThreshold() && |
---|
501 | squareMot1 < col1->getCcdSquareMotionThreshold()) |
---|
502 | return resultFraction; |
---|
503 | |
---|
504 | if (disableCcd) |
---|
505 | return btScalar(1.); |
---|
506 | |
---|
507 | |
---|
508 | //An adhoc way of testing the Continuous Collision Detection algorithms |
---|
509 | //One object is approximated as a sphere, to simplify things |
---|
510 | //Starting in penetration should report no time of impact |
---|
511 | //For proper CCD, better accuracy and handling of 'allowed' penetration should be added |
---|
512 | //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies) |
---|
513 | |
---|
514 | |
---|
515 | /// Convex0 against sphere for Convex1 |
---|
516 | { |
---|
517 | btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape()); |
---|
518 | |
---|
519 | btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation |
---|
520 | btConvexCast::CastResult result; |
---|
521 | btVoronoiSimplexSolver voronoiSimplex; |
---|
522 | //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex); |
---|
523 | ///Simplification, one object is simplified as a sphere |
---|
524 | btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex); |
---|
525 | //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0); |
---|
526 | if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), |
---|
527 | col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) |
---|
528 | { |
---|
529 | |
---|
530 | //store result.m_fraction in both bodies |
---|
531 | |
---|
532 | if (col0->getHitFraction()> result.m_fraction) |
---|
533 | col0->setHitFraction( result.m_fraction ); |
---|
534 | |
---|
535 | if (col1->getHitFraction() > result.m_fraction) |
---|
536 | col1->setHitFraction( result.m_fraction); |
---|
537 | |
---|
538 | if (resultFraction > result.m_fraction) |
---|
539 | resultFraction = result.m_fraction; |
---|
540 | |
---|
541 | } |
---|
542 | |
---|
543 | |
---|
544 | |
---|
545 | |
---|
546 | } |
---|
547 | |
---|
548 | /// Sphere (for convex0) against Convex1 |
---|
549 | { |
---|
550 | btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape()); |
---|
551 | |
---|
552 | btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation |
---|
553 | btConvexCast::CastResult result; |
---|
554 | btVoronoiSimplexSolver voronoiSimplex; |
---|
555 | //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex); |
---|
556 | ///Simplification, one object is simplified as a sphere |
---|
557 | btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex); |
---|
558 | //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0); |
---|
559 | if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(), |
---|
560 | col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result)) |
---|
561 | { |
---|
562 | |
---|
563 | //store result.m_fraction in both bodies |
---|
564 | |
---|
565 | if (col0->getHitFraction() > result.m_fraction) |
---|
566 | col0->setHitFraction( result.m_fraction); |
---|
567 | |
---|
568 | if (col1->getHitFraction() > result.m_fraction) |
---|
569 | col1->setHitFraction( result.m_fraction); |
---|
570 | |
---|
571 | if (resultFraction > result.m_fraction) |
---|
572 | resultFraction = result.m_fraction; |
---|
573 | |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | return resultFraction; |
---|
578 | |
---|
579 | } |
---|
580 | |
---|