1 | #include "btInternalEdgeUtility.h" |
---|
2 | |
---|
3 | #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" |
---|
4 | #include "BulletCollision/CollisionShapes/btTriangleShape.h" |
---|
5 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
6 | #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" |
---|
7 | #include "LinearMath/btIDebugDraw.h" |
---|
8 | |
---|
9 | |
---|
10 | //#define DEBUG_INTERNAL_EDGE |
---|
11 | |
---|
12 | |
---|
13 | #ifdef DEBUG_INTERNAL_EDGE |
---|
14 | #include <stdio.h> |
---|
15 | #endif //DEBUG_INTERNAL_EDGE |
---|
16 | |
---|
17 | |
---|
18 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
19 | static btIDebugDraw* gDebugDrawer = 0; |
---|
20 | |
---|
21 | void btSetDebugDrawer(btIDebugDraw* debugDrawer) |
---|
22 | { |
---|
23 | gDebugDrawer = debugDrawer; |
---|
24 | } |
---|
25 | |
---|
26 | static void btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color) |
---|
27 | { |
---|
28 | if (gDebugDrawer) |
---|
29 | gDebugDrawer->drawLine(from,to,color); |
---|
30 | } |
---|
31 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
32 | |
---|
33 | |
---|
34 | static int btGetHash(int partId, int triangleIndex) |
---|
35 | { |
---|
36 | int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex; |
---|
37 | return hash; |
---|
38 | } |
---|
39 | |
---|
40 | |
---|
41 | |
---|
42 | static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB) |
---|
43 | { |
---|
44 | const btVector3 refAxis0 = edgeA; |
---|
45 | const btVector3 refAxis1 = normalA; |
---|
46 | const btVector3 swingAxis = normalB; |
---|
47 | btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); |
---|
48 | return angle; |
---|
49 | } |
---|
50 | |
---|
51 | |
---|
52 | struct btConnectivityProcessor : public btTriangleCallback |
---|
53 | { |
---|
54 | int m_partIdA; |
---|
55 | int m_triangleIndexA; |
---|
56 | btVector3* m_triangleVerticesA; |
---|
57 | btTriangleInfoMap* m_triangleInfoMap; |
---|
58 | |
---|
59 | |
---|
60 | virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex) |
---|
61 | { |
---|
62 | //skip self-collisions |
---|
63 | if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex)) |
---|
64 | return; |
---|
65 | |
---|
66 | //skip duplicates (disabled for now) |
---|
67 | //if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex)) |
---|
68 | // return; |
---|
69 | |
---|
70 | //search for shared vertices and edges |
---|
71 | int numshared = 0; |
---|
72 | int sharedVertsA[3]={-1,-1,-1}; |
---|
73 | int sharedVertsB[3]={-1,-1,-1}; |
---|
74 | |
---|
75 | ///skip degenerate triangles |
---|
76 | btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2(); |
---|
77 | if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold) |
---|
78 | return; |
---|
79 | |
---|
80 | |
---|
81 | btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2(); |
---|
82 | ///skip degenerate triangles |
---|
83 | if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold) |
---|
84 | return; |
---|
85 | |
---|
86 | #if 0 |
---|
87 | printf("triangle A[0] = (%f,%f,%f)\ntriangle A[1] = (%f,%f,%f)\ntriangle A[2] = (%f,%f,%f)\n", |
---|
88 | m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(), |
---|
89 | m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(), |
---|
90 | m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ()); |
---|
91 | |
---|
92 | printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex); |
---|
93 | printf("triangle B[0] = (%f,%f,%f)\ntriangle B[1] = (%f,%f,%f)\ntriangle B[2] = (%f,%f,%f)\n", |
---|
94 | triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(), |
---|
95 | triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(), |
---|
96 | triangle[2].getX(),triangle[2].getY(),triangle[2].getZ()); |
---|
97 | #endif |
---|
98 | |
---|
99 | for (int i=0;i<3;i++) |
---|
100 | { |
---|
101 | for (int j=0;j<3;j++) |
---|
102 | { |
---|
103 | if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold) |
---|
104 | { |
---|
105 | sharedVertsA[numshared] = i; |
---|
106 | sharedVertsB[numshared] = j; |
---|
107 | numshared++; |
---|
108 | ///degenerate case |
---|
109 | if(numshared >= 3) |
---|
110 | return; |
---|
111 | } |
---|
112 | } |
---|
113 | ///degenerate case |
---|
114 | if(numshared >= 3) |
---|
115 | return; |
---|
116 | } |
---|
117 | switch (numshared) |
---|
118 | { |
---|
119 | case 0: |
---|
120 | { |
---|
121 | break; |
---|
122 | } |
---|
123 | case 1: |
---|
124 | { |
---|
125 | //shared vertex |
---|
126 | break; |
---|
127 | } |
---|
128 | case 2: |
---|
129 | { |
---|
130 | //shared edge |
---|
131 | //we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct |
---|
132 | if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2) |
---|
133 | { |
---|
134 | sharedVertsA[0] = 2; |
---|
135 | sharedVertsA[1] = 0; |
---|
136 | int tmp = sharedVertsB[1]; |
---|
137 | sharedVertsB[1] = sharedVertsB[0]; |
---|
138 | sharedVertsB[0] = tmp; |
---|
139 | } |
---|
140 | |
---|
141 | int hash = btGetHash(m_partIdA,m_triangleIndexA); |
---|
142 | |
---|
143 | btTriangleInfo* info = m_triangleInfoMap->find(hash); |
---|
144 | if (!info) |
---|
145 | { |
---|
146 | btTriangleInfo tmp; |
---|
147 | m_triangleInfoMap->insert(hash,tmp); |
---|
148 | info = m_triangleInfoMap->find(hash); |
---|
149 | } |
---|
150 | |
---|
151 | int sumvertsA = sharedVertsA[0]+sharedVertsA[1]; |
---|
152 | int otherIndexA = 3-sumvertsA; |
---|
153 | |
---|
154 | |
---|
155 | btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]); |
---|
156 | |
---|
157 | btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]); |
---|
158 | int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]); |
---|
159 | |
---|
160 | btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]); |
---|
161 | //btTriangleShape tB(triangle[0],triangle[1],triangle[2]); |
---|
162 | |
---|
163 | btVector3 normalA; |
---|
164 | btVector3 normalB; |
---|
165 | tA.calcNormal(normalA); |
---|
166 | tB.calcNormal(normalB); |
---|
167 | edge.normalize(); |
---|
168 | btVector3 edgeCrossA = edge.cross(normalA).normalize(); |
---|
169 | |
---|
170 | { |
---|
171 | btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]]; |
---|
172 | if (edgeCrossA.dot(tmp) < 0) |
---|
173 | { |
---|
174 | edgeCrossA*=-1; |
---|
175 | } |
---|
176 | } |
---|
177 | |
---|
178 | btVector3 edgeCrossB = edge.cross(normalB).normalize(); |
---|
179 | |
---|
180 | { |
---|
181 | btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]]; |
---|
182 | if (edgeCrossB.dot(tmp) < 0) |
---|
183 | { |
---|
184 | edgeCrossB*=-1; |
---|
185 | } |
---|
186 | } |
---|
187 | |
---|
188 | btScalar angle2 = 0; |
---|
189 | btScalar ang4 = 0.f; |
---|
190 | |
---|
191 | |
---|
192 | btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB); |
---|
193 | btScalar len2 = calculatedEdge.length2(); |
---|
194 | |
---|
195 | btScalar correctedAngle(0); |
---|
196 | btVector3 calculatedNormalB = normalA; |
---|
197 | bool isConvex = false; |
---|
198 | |
---|
199 | if (len2<m_triangleInfoMap->m_planarEpsilon) |
---|
200 | { |
---|
201 | angle2 = 0.f; |
---|
202 | ang4 = 0.f; |
---|
203 | } else |
---|
204 | { |
---|
205 | |
---|
206 | calculatedEdge.normalize(); |
---|
207 | btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA); |
---|
208 | calculatedNormalA.normalize(); |
---|
209 | angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB); |
---|
210 | ang4 = SIMD_PI-angle2; |
---|
211 | btScalar dotA = normalA.dot(edgeCrossB); |
---|
212 | ///@todo: check if we need some epsilon, due to floating point imprecision |
---|
213 | isConvex = (dotA<0.); |
---|
214 | |
---|
215 | correctedAngle = isConvex ? ang4 : -ang4; |
---|
216 | btQuaternion orn2(calculatedEdge,-correctedAngle); |
---|
217 | calculatedNormalB = btMatrix3x3(orn2)*normalA; |
---|
218 | |
---|
219 | |
---|
220 | } |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | //alternatively use |
---|
227 | //btVector3 calculatedNormalB2 = quatRotate(orn,normalA); |
---|
228 | |
---|
229 | |
---|
230 | switch (sumvertsA) |
---|
231 | { |
---|
232 | case 1: |
---|
233 | { |
---|
234 | btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1]; |
---|
235 | btQuaternion orn(edge,-correctedAngle); |
---|
236 | btVector3 computedNormalB = quatRotate(orn,normalA); |
---|
237 | btScalar bla = computedNormalB.dot(normalB); |
---|
238 | if (bla<0) |
---|
239 | { |
---|
240 | computedNormalB*=-1; |
---|
241 | info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB; |
---|
242 | } |
---|
243 | #ifdef DEBUG_INTERNAL_EDGE |
---|
244 | if ((computedNormalB-normalB).length()>0.0001) |
---|
245 | { |
---|
246 | printf("warning: normals not identical\n"); |
---|
247 | } |
---|
248 | #endif//DEBUG_INTERNAL_EDGE |
---|
249 | |
---|
250 | info->m_edgeV0V1Angle = -correctedAngle; |
---|
251 | |
---|
252 | if (isConvex) |
---|
253 | info->m_flags |= TRI_INFO_V0V1_CONVEX; |
---|
254 | break; |
---|
255 | } |
---|
256 | case 2: |
---|
257 | { |
---|
258 | btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0]; |
---|
259 | btQuaternion orn(edge,-correctedAngle); |
---|
260 | btVector3 computedNormalB = quatRotate(orn,normalA); |
---|
261 | if (computedNormalB.dot(normalB)<0) |
---|
262 | { |
---|
263 | computedNormalB*=-1; |
---|
264 | info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB; |
---|
265 | } |
---|
266 | |
---|
267 | #ifdef DEBUG_INTERNAL_EDGE |
---|
268 | if ((computedNormalB-normalB).length()>0.0001) |
---|
269 | { |
---|
270 | printf("warning: normals not identical\n"); |
---|
271 | } |
---|
272 | #endif //DEBUG_INTERNAL_EDGE |
---|
273 | info->m_edgeV2V0Angle = -correctedAngle; |
---|
274 | if (isConvex) |
---|
275 | info->m_flags |= TRI_INFO_V2V0_CONVEX; |
---|
276 | break; |
---|
277 | } |
---|
278 | case 3: |
---|
279 | { |
---|
280 | btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2]; |
---|
281 | btQuaternion orn(edge,-correctedAngle); |
---|
282 | btVector3 computedNormalB = quatRotate(orn,normalA); |
---|
283 | if (computedNormalB.dot(normalB)<0) |
---|
284 | { |
---|
285 | info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB; |
---|
286 | computedNormalB*=-1; |
---|
287 | } |
---|
288 | #ifdef DEBUG_INTERNAL_EDGE |
---|
289 | if ((computedNormalB-normalB).length()>0.0001) |
---|
290 | { |
---|
291 | printf("warning: normals not identical\n"); |
---|
292 | } |
---|
293 | #endif //DEBUG_INTERNAL_EDGE |
---|
294 | info->m_edgeV1V2Angle = -correctedAngle; |
---|
295 | |
---|
296 | if (isConvex) |
---|
297 | info->m_flags |= TRI_INFO_V1V2_CONVEX; |
---|
298 | break; |
---|
299 | } |
---|
300 | } |
---|
301 | |
---|
302 | break; |
---|
303 | } |
---|
304 | default: |
---|
305 | { |
---|
306 | // printf("warning: duplicate triangle\n"); |
---|
307 | } |
---|
308 | |
---|
309 | } |
---|
310 | } |
---|
311 | }; |
---|
312 | ///////////////////////////////////////////////////////// |
---|
313 | ///////////////////////////////////////////////////////// |
---|
314 | |
---|
315 | void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap) |
---|
316 | { |
---|
317 | //the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there! |
---|
318 | if (trimeshShape->getTriangleInfoMap()) |
---|
319 | return; |
---|
320 | |
---|
321 | trimeshShape->setTriangleInfoMap(triangleInfoMap); |
---|
322 | |
---|
323 | btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface(); |
---|
324 | const btVector3& meshScaling = meshInterface->getScaling(); |
---|
325 | |
---|
326 | for (int partId = 0; partId< meshInterface->getNumSubParts();partId++) |
---|
327 | { |
---|
328 | const unsigned char *vertexbase = 0; |
---|
329 | int numverts = 0; |
---|
330 | PHY_ScalarType type = PHY_INTEGER; |
---|
331 | int stride = 0; |
---|
332 | const unsigned char *indexbase = 0; |
---|
333 | int indexstride = 0; |
---|
334 | int numfaces = 0; |
---|
335 | PHY_ScalarType indicestype = PHY_INTEGER; |
---|
336 | //PHY_ScalarType indexType=0; |
---|
337 | |
---|
338 | btVector3 triangleVerts[3]; |
---|
339 | meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId); |
---|
340 | btVector3 aabbMin,aabbMax; |
---|
341 | |
---|
342 | for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++) |
---|
343 | { |
---|
344 | unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride); |
---|
345 | |
---|
346 | for (int j=2;j>=0;j--) |
---|
347 | { |
---|
348 | |
---|
349 | int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j]; |
---|
350 | if (type == PHY_FLOAT) |
---|
351 | { |
---|
352 | float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); |
---|
353 | triangleVerts[j] = btVector3( |
---|
354 | graphicsbase[0]*meshScaling.getX(), |
---|
355 | graphicsbase[1]*meshScaling.getY(), |
---|
356 | graphicsbase[2]*meshScaling.getZ()); |
---|
357 | } |
---|
358 | else |
---|
359 | { |
---|
360 | double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); |
---|
361 | triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ())); |
---|
362 | } |
---|
363 | } |
---|
364 | aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT)); |
---|
365 | aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); |
---|
366 | aabbMin.setMin(triangleVerts[0]); |
---|
367 | aabbMax.setMax(triangleVerts[0]); |
---|
368 | aabbMin.setMin(triangleVerts[1]); |
---|
369 | aabbMax.setMax(triangleVerts[1]); |
---|
370 | aabbMin.setMin(triangleVerts[2]); |
---|
371 | aabbMax.setMax(triangleVerts[2]); |
---|
372 | |
---|
373 | btConnectivityProcessor connectivityProcessor; |
---|
374 | connectivityProcessor.m_partIdA = partId; |
---|
375 | connectivityProcessor.m_triangleIndexA = triangleIndex; |
---|
376 | connectivityProcessor.m_triangleVerticesA = &triangleVerts[0]; |
---|
377 | connectivityProcessor.m_triangleInfoMap = triangleInfoMap; |
---|
378 | |
---|
379 | trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax); |
---|
380 | } |
---|
381 | |
---|
382 | } |
---|
383 | |
---|
384 | } |
---|
385 | |
---|
386 | |
---|
387 | |
---|
388 | |
---|
389 | // Given a point and a line segment (defined by two points), compute the closest point |
---|
390 | // in the line. Cap the point at the endpoints of the line segment. |
---|
391 | void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint) |
---|
392 | { |
---|
393 | btVector3 lineDelta = line1 - line0; |
---|
394 | |
---|
395 | // Handle degenerate lines |
---|
396 | if ( lineDelta.fuzzyZero()) |
---|
397 | { |
---|
398 | nearestPoint = line0; |
---|
399 | } |
---|
400 | else |
---|
401 | { |
---|
402 | btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta); |
---|
403 | |
---|
404 | // Clamp the point to conform to the segment's endpoints |
---|
405 | if ( delta < 0 ) |
---|
406 | delta = 0; |
---|
407 | else if ( delta > 1 ) |
---|
408 | delta = 1; |
---|
409 | |
---|
410 | nearestPoint = line0 + lineDelta*delta; |
---|
411 | } |
---|
412 | } |
---|
413 | |
---|
414 | |
---|
415 | |
---|
416 | |
---|
417 | bool btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal) |
---|
418 | { |
---|
419 | btVector3 tri_normal = tri_normal_org; |
---|
420 | //we only have a local triangle normal, not a local contact normal -> only normal in world space... |
---|
421 | //either compute the current angle all in local space, or all in world space |
---|
422 | |
---|
423 | btVector3 edgeCross = edge.cross(tri_normal).normalize(); |
---|
424 | btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB); |
---|
425 | |
---|
426 | if (correctedEdgeAngle<0) |
---|
427 | { |
---|
428 | if (curAngle < correctedEdgeAngle) |
---|
429 | { |
---|
430 | btScalar diffAngle = correctedEdgeAngle-curAngle; |
---|
431 | btQuaternion rotation(edge,diffAngle ); |
---|
432 | clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB; |
---|
433 | return true; |
---|
434 | } |
---|
435 | } |
---|
436 | |
---|
437 | if (correctedEdgeAngle>=0) |
---|
438 | { |
---|
439 | if (curAngle > correctedEdgeAngle) |
---|
440 | { |
---|
441 | btScalar diffAngle = correctedEdgeAngle-curAngle; |
---|
442 | btQuaternion rotation(edge,diffAngle ); |
---|
443 | clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB; |
---|
444 | return true; |
---|
445 | } |
---|
446 | } |
---|
447 | return false; |
---|
448 | } |
---|
449 | |
---|
450 | |
---|
451 | |
---|
452 | /// Changes a btManifoldPoint collision normal to the normal from the mesh. |
---|
453 | void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* colObj0,const btCollisionObject* colObj1, int partId0, int index0, int normalAdjustFlags) |
---|
454 | { |
---|
455 | //btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE); |
---|
456 | if (colObj0->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE) |
---|
457 | return; |
---|
458 | |
---|
459 | btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)colObj0->getRootCollisionShape(); |
---|
460 | btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap(); |
---|
461 | if (!triangleInfoMapPtr) |
---|
462 | return; |
---|
463 | |
---|
464 | int hash = btGetHash(partId0,index0); |
---|
465 | |
---|
466 | |
---|
467 | btTriangleInfo* info = triangleInfoMapPtr->find(hash); |
---|
468 | if (!info) |
---|
469 | return; |
---|
470 | |
---|
471 | btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f; |
---|
472 | |
---|
473 | const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0->getCollisionShape()); |
---|
474 | btVector3 v0,v1,v2; |
---|
475 | tri_shape->getVertex(0,v0); |
---|
476 | tri_shape->getVertex(1,v1); |
---|
477 | tri_shape->getVertex(2,v2); |
---|
478 | |
---|
479 | btVector3 center = (v0+v1+v2)*btScalar(1./3.); |
---|
480 | |
---|
481 | btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0); |
---|
482 | btVector3 tri_normal; |
---|
483 | tri_shape->calcNormal(tri_normal); |
---|
484 | |
---|
485 | //btScalar dot = tri_normal.dot(cp.m_normalWorldOnB); |
---|
486 | btVector3 nearest; |
---|
487 | btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest); |
---|
488 | |
---|
489 | btVector3 contact = cp.m_localPointB; |
---|
490 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
491 | const btTransform& tr = colObj0->getWorldTransform(); |
---|
492 | btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red); |
---|
493 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
494 | |
---|
495 | |
---|
496 | |
---|
497 | bool isNearEdge = false; |
---|
498 | |
---|
499 | int numConcaveEdgeHits = 0; |
---|
500 | int numConvexEdgeHits = 0; |
---|
501 | |
---|
502 | btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; |
---|
503 | localContactNormalOnB.normalize();//is this necessary? |
---|
504 | |
---|
505 | if ((info->m_edgeV0V1Angle)< SIMD_2_PI) |
---|
506 | { |
---|
507 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
508 | btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); |
---|
509 | #endif |
---|
510 | btScalar len = (contact-nearest).length(); |
---|
511 | if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) |
---|
512 | { |
---|
513 | btVector3 edge(v0-v1); |
---|
514 | isNearEdge = true; |
---|
515 | |
---|
516 | if (info->m_edgeV0V1Angle==btScalar(0)) |
---|
517 | { |
---|
518 | numConcaveEdgeHits++; |
---|
519 | } else |
---|
520 | { |
---|
521 | |
---|
522 | bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX); |
---|
523 | btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); |
---|
524 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
525 | btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); |
---|
526 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
527 | |
---|
528 | btVector3 nA = swapFactor * tri_normal; |
---|
529 | |
---|
530 | btQuaternion orn(edge,info->m_edgeV0V1Angle); |
---|
531 | btVector3 computedNormalB = quatRotate(orn,tri_normal); |
---|
532 | if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB) |
---|
533 | computedNormalB*=-1; |
---|
534 | btVector3 nB = swapFactor*computedNormalB; |
---|
535 | |
---|
536 | btScalar NdotA = localContactNormalOnB.dot(nA); |
---|
537 | btScalar NdotB = localContactNormalOnB.dot(nB); |
---|
538 | bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); |
---|
539 | |
---|
540 | #ifdef DEBUG_INTERNAL_EDGE |
---|
541 | { |
---|
542 | |
---|
543 | btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); |
---|
544 | } |
---|
545 | #endif //DEBUG_INTERNAL_EDGE |
---|
546 | |
---|
547 | |
---|
548 | if (backFacingNormal) |
---|
549 | { |
---|
550 | numConcaveEdgeHits++; |
---|
551 | } |
---|
552 | else |
---|
553 | { |
---|
554 | numConvexEdgeHits++; |
---|
555 | btVector3 clampedLocalNormal; |
---|
556 | bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal); |
---|
557 | if (isClamped) |
---|
558 | { |
---|
559 | if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) |
---|
560 | { |
---|
561 | btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; |
---|
562 | // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); |
---|
563 | cp.m_normalWorldOnB = newNormal; |
---|
564 | // Reproject collision point along normal. (what about cp.m_distance1?) |
---|
565 | cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; |
---|
566 | cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); |
---|
567 | |
---|
568 | } |
---|
569 | } |
---|
570 | } |
---|
571 | } |
---|
572 | } |
---|
573 | } |
---|
574 | |
---|
575 | btNearestPointInLineSegment(contact,v1,v2,nearest); |
---|
576 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
577 | btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green); |
---|
578 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
579 | |
---|
580 | if ((info->m_edgeV1V2Angle)< SIMD_2_PI) |
---|
581 | { |
---|
582 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
583 | btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); |
---|
584 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
585 | |
---|
586 | |
---|
587 | |
---|
588 | btScalar len = (contact-nearest).length(); |
---|
589 | if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) |
---|
590 | { |
---|
591 | isNearEdge = true; |
---|
592 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
593 | btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white); |
---|
594 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
595 | |
---|
596 | btVector3 edge(v1-v2); |
---|
597 | |
---|
598 | isNearEdge = true; |
---|
599 | |
---|
600 | if (info->m_edgeV1V2Angle == btScalar(0)) |
---|
601 | { |
---|
602 | numConcaveEdgeHits++; |
---|
603 | } else |
---|
604 | { |
---|
605 | bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0; |
---|
606 | btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); |
---|
607 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
608 | btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); |
---|
609 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
610 | |
---|
611 | btVector3 nA = swapFactor * tri_normal; |
---|
612 | |
---|
613 | btQuaternion orn(edge,info->m_edgeV1V2Angle); |
---|
614 | btVector3 computedNormalB = quatRotate(orn,tri_normal); |
---|
615 | if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB) |
---|
616 | computedNormalB*=-1; |
---|
617 | btVector3 nB = swapFactor*computedNormalB; |
---|
618 | |
---|
619 | #ifdef DEBUG_INTERNAL_EDGE |
---|
620 | { |
---|
621 | btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); |
---|
622 | } |
---|
623 | #endif //DEBUG_INTERNAL_EDGE |
---|
624 | |
---|
625 | |
---|
626 | btScalar NdotA = localContactNormalOnB.dot(nA); |
---|
627 | btScalar NdotB = localContactNormalOnB.dot(nB); |
---|
628 | bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); |
---|
629 | |
---|
630 | if (backFacingNormal) |
---|
631 | { |
---|
632 | numConcaveEdgeHits++; |
---|
633 | } |
---|
634 | else |
---|
635 | { |
---|
636 | numConvexEdgeHits++; |
---|
637 | btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; |
---|
638 | btVector3 clampedLocalNormal; |
---|
639 | bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal); |
---|
640 | if (isClamped) |
---|
641 | { |
---|
642 | if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) |
---|
643 | { |
---|
644 | btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; |
---|
645 | // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); |
---|
646 | cp.m_normalWorldOnB = newNormal; |
---|
647 | // Reproject collision point along normal. |
---|
648 | cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; |
---|
649 | cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); |
---|
650 | } |
---|
651 | } |
---|
652 | } |
---|
653 | } |
---|
654 | } |
---|
655 | } |
---|
656 | |
---|
657 | btNearestPointInLineSegment(contact,v2,v0,nearest); |
---|
658 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
659 | btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue); |
---|
660 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
661 | |
---|
662 | if ((info->m_edgeV2V0Angle)< SIMD_2_PI) |
---|
663 | { |
---|
664 | |
---|
665 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
666 | btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black); |
---|
667 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
668 | |
---|
669 | btScalar len = (contact-nearest).length(); |
---|
670 | if(len<triangleInfoMapPtr->m_edgeDistanceThreshold) |
---|
671 | { |
---|
672 | isNearEdge = true; |
---|
673 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
674 | btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white); |
---|
675 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
676 | |
---|
677 | btVector3 edge(v2-v0); |
---|
678 | |
---|
679 | if (info->m_edgeV2V0Angle==btScalar(0)) |
---|
680 | { |
---|
681 | numConcaveEdgeHits++; |
---|
682 | } else |
---|
683 | { |
---|
684 | |
---|
685 | bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0; |
---|
686 | btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1); |
---|
687 | #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
688 | btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white); |
---|
689 | #endif //BT_INTERNAL_EDGE_DEBUG_DRAW |
---|
690 | |
---|
691 | btVector3 nA = swapFactor * tri_normal; |
---|
692 | btQuaternion orn(edge,info->m_edgeV2V0Angle); |
---|
693 | btVector3 computedNormalB = quatRotate(orn,tri_normal); |
---|
694 | if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB) |
---|
695 | computedNormalB*=-1; |
---|
696 | btVector3 nB = swapFactor*computedNormalB; |
---|
697 | |
---|
698 | #ifdef DEBUG_INTERNAL_EDGE |
---|
699 | { |
---|
700 | btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red); |
---|
701 | } |
---|
702 | #endif //DEBUG_INTERNAL_EDGE |
---|
703 | |
---|
704 | btScalar NdotA = localContactNormalOnB.dot(nA); |
---|
705 | btScalar NdotB = localContactNormalOnB.dot(nB); |
---|
706 | bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon); |
---|
707 | |
---|
708 | if (backFacingNormal) |
---|
709 | { |
---|
710 | numConcaveEdgeHits++; |
---|
711 | } |
---|
712 | else |
---|
713 | { |
---|
714 | numConvexEdgeHits++; |
---|
715 | // printf("hitting convex edge\n"); |
---|
716 | |
---|
717 | |
---|
718 | btVector3 localContactNormalOnB = colObj0->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB; |
---|
719 | btVector3 clampedLocalNormal; |
---|
720 | bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal); |
---|
721 | if (isClamped) |
---|
722 | { |
---|
723 | if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0)) |
---|
724 | { |
---|
725 | btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal; |
---|
726 | // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB); |
---|
727 | cp.m_normalWorldOnB = newNormal; |
---|
728 | // Reproject collision point along normal. |
---|
729 | cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; |
---|
730 | cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); |
---|
731 | } |
---|
732 | } |
---|
733 | } |
---|
734 | } |
---|
735 | |
---|
736 | |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | #ifdef DEBUG_INTERNAL_EDGE |
---|
741 | { |
---|
742 | btVector3 color(0,1,1); |
---|
743 | btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color); |
---|
744 | } |
---|
745 | #endif //DEBUG_INTERNAL_EDGE |
---|
746 | |
---|
747 | if (isNearEdge) |
---|
748 | { |
---|
749 | |
---|
750 | if (numConcaveEdgeHits>0) |
---|
751 | { |
---|
752 | if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0) |
---|
753 | { |
---|
754 | //fix tri_normal so it pointing the same direction as the current local contact normal |
---|
755 | if (tri_normal.dot(localContactNormalOnB) < 0) |
---|
756 | { |
---|
757 | tri_normal *= -1; |
---|
758 | } |
---|
759 | cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis()*tri_normal; |
---|
760 | } else |
---|
761 | { |
---|
762 | //modify the normal to be the triangle normal (or backfacing normal) |
---|
763 | cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis() *(tri_normal *frontFacing); |
---|
764 | } |
---|
765 | |
---|
766 | |
---|
767 | // Reproject collision point along normal. |
---|
768 | cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1; |
---|
769 | cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB); |
---|
770 | } |
---|
771 | } |
---|
772 | } |
---|