[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | /* |
---|
| 17 | Added by Roman Ponomarev (rponom@gmail.com) |
---|
| 18 | April 04, 2008 |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | |
---|
[8284] | 22 | |
---|
[1963] | 23 | #include "btSliderConstraint.h" |
---|
| 24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 25 | #include "LinearMath/btTransformUtil.h" |
---|
| 26 | #include <new> |
---|
| 27 | |
---|
[8284] | 28 | #define USE_OFFSET_FOR_CONSTANT_FRAME true |
---|
[1963] | 29 | |
---|
| 30 | void btSliderConstraint::initParams() |
---|
| 31 | { |
---|
| 32 | m_lowerLinLimit = btScalar(1.0); |
---|
| 33 | m_upperLinLimit = btScalar(-1.0); |
---|
| 34 | m_lowerAngLimit = btScalar(0.); |
---|
| 35 | m_upperAngLimit = btScalar(0.); |
---|
| 36 | m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 37 | m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 38 | m_dampingDirLin = btScalar(0.); |
---|
[8284] | 39 | m_cfmDirLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 40 | m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 41 | m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 42 | m_dampingDirAng = btScalar(0.); |
---|
[8284] | 43 | m_cfmDirAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 44 | m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 45 | m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 46 | m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
[8284] | 47 | m_cfmOrthoLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 48 | m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 49 | m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 50 | m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
[8284] | 51 | m_cfmOrthoAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 52 | m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 53 | m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 54 | m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
[8284] | 55 | m_cfmLimLin = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 56 | m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 57 | m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 58 | m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
[8284] | 59 | m_cfmLimAng = SLIDER_CONSTRAINT_DEF_CFM; |
---|
[1963] | 60 | |
---|
| 61 | m_poweredLinMotor = false; |
---|
| 62 | m_targetLinMotorVelocity = btScalar(0.); |
---|
| 63 | m_maxLinMotorForce = btScalar(0.); |
---|
| 64 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
| 65 | |
---|
| 66 | m_poweredAngMotor = false; |
---|
| 67 | m_targetAngMotorVelocity = btScalar(0.); |
---|
| 68 | m_maxAngMotorForce = btScalar(0.); |
---|
| 69 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
| 70 | |
---|
[8284] | 71 | m_flags = 0; |
---|
| 72 | m_flags = 0; |
---|
[1963] | 73 | |
---|
[8284] | 74 | m_useOffsetForConstraintFrame = USE_OFFSET_FOR_CONSTANT_FRAME; |
---|
[1963] | 75 | |
---|
[8284] | 76 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
| 77 | } |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
| 84 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB), |
---|
| 85 | m_useSolveConstraintObsolete(false), |
---|
| 86 | m_frameInA(frameInA), |
---|
| 87 | m_frameInB(frameInB), |
---|
| 88 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
[1963] | 89 | { |
---|
| 90 | initParams(); |
---|
[8284] | 91 | } |
---|
[1963] | 92 | |
---|
| 93 | |
---|
[8284] | 94 | |
---|
| 95 | btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
| 96 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB), |
---|
| 97 | m_useSolveConstraintObsolete(false), |
---|
| 98 | m_frameInB(frameInB), |
---|
| 99 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
[1963] | 100 | { |
---|
[8284] | 101 | ///not providing rigidbody A means implicitly using worldspace for body A |
---|
| 102 | m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 103 | // m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin()); |
---|
| 104 | |
---|
[1963] | 105 | initParams(); |
---|
[8284] | 106 | } |
---|
[1963] | 107 | |
---|
| 108 | |
---|
[8284] | 109 | |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | void btSliderConstraint::getInfo1(btConstraintInfo1* info) |
---|
[1963] | 114 | { |
---|
[8284] | 115 | if (m_useSolveConstraintObsolete) |
---|
[2882] | 116 | { |
---|
[8284] | 117 | info->m_numConstraintRows = 0; |
---|
| 118 | info->nub = 0; |
---|
[2882] | 119 | } |
---|
[1963] | 120 | else |
---|
| 121 | { |
---|
[8284] | 122 | info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular |
---|
| 123 | info->nub = 2; |
---|
| 124 | //prepare constraint |
---|
| 125 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); |
---|
| 126 | testAngLimits(); |
---|
| 127 | testLinLimits(); |
---|
| 128 | if(getSolveLinLimit() || getPoweredLinMotor()) |
---|
| 129 | { |
---|
| 130 | info->m_numConstraintRows++; // limit 3rd linear as well |
---|
| 131 | info->nub--; |
---|
| 132 | } |
---|
| 133 | if(getSolveAngLimit() || getPoweredAngMotor()) |
---|
| 134 | { |
---|
| 135 | info->m_numConstraintRows++; // limit 3rd angular as well |
---|
| 136 | info->nub--; |
---|
| 137 | } |
---|
[1963] | 138 | } |
---|
[8284] | 139 | } |
---|
[1963] | 140 | |
---|
[8284] | 141 | void btSliderConstraint::getInfo1NonVirtual(btConstraintInfo1* info) |
---|
| 142 | { |
---|
[1963] | 143 | |
---|
[8284] | 144 | info->m_numConstraintRows = 6; // Fixed 2 linear + 2 angular + 1 limit (even if not used) |
---|
| 145 | info->nub = 0; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | void btSliderConstraint::getInfo2(btConstraintInfo2* info) |
---|
[1963] | 149 | { |
---|
[8284] | 150 | getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(), m_rbA.getLinearVelocity(),m_rbB.getLinearVelocity(), m_rbA.getInvMass(),m_rbB.getInvMass()); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | void btSliderConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB) |
---|
| 160 | { |
---|
| 161 | if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete)) |
---|
| 162 | { |
---|
| 163 | m_calculatedTransformA = transA * m_frameInA; |
---|
| 164 | m_calculatedTransformB = transB * m_frameInB; |
---|
| 165 | } |
---|
| 166 | else |
---|
| 167 | { |
---|
| 168 | m_calculatedTransformA = transB * m_frameInB; |
---|
| 169 | m_calculatedTransformB = transA * m_frameInA; |
---|
| 170 | } |
---|
[1963] | 171 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 172 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 173 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
[8284] | 174 | if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete) |
---|
| 175 | { |
---|
| 176 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
| 177 | } |
---|
| 178 | else |
---|
| 179 | { |
---|
| 180 | m_delta = m_realPivotAInW - m_realPivotBInW; |
---|
| 181 | } |
---|
[1963] | 182 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
| 183 | btVector3 normalWorld; |
---|
| 184 | int i; |
---|
| 185 | //linear part |
---|
| 186 | for(i = 0; i < 3; i++) |
---|
| 187 | { |
---|
| 188 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 189 | m_depth[i] = m_delta.dot(normalWorld); |
---|
| 190 | } |
---|
[8284] | 191 | } |
---|
| 192 | |
---|
[1963] | 193 | |
---|
| 194 | |
---|
[8284] | 195 | void btSliderConstraint::testLinLimits(void) |
---|
[1963] | 196 | { |
---|
[8284] | 197 | m_solveLinLim = false; |
---|
| 198 | m_linPos = m_depth[0]; |
---|
| 199 | if(m_lowerLinLimit <= m_upperLinLimit) |
---|
[1963] | 200 | { |
---|
[8284] | 201 | if(m_depth[0] > m_upperLinLimit) |
---|
| 202 | { |
---|
| 203 | m_depth[0] -= m_upperLinLimit; |
---|
| 204 | m_solveLinLim = true; |
---|
| 205 | } |
---|
| 206 | else if(m_depth[0] < m_lowerLinLimit) |
---|
| 207 | { |
---|
| 208 | m_depth[0] -= m_lowerLinLimit; |
---|
| 209 | m_solveLinLim = true; |
---|
| 210 | } |
---|
| 211 | else |
---|
| 212 | { |
---|
| 213 | m_depth[0] = btScalar(0.); |
---|
| 214 | } |
---|
[1963] | 215 | } |
---|
| 216 | else |
---|
| 217 | { |
---|
[8284] | 218 | m_depth[0] = btScalar(0.); |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | void btSliderConstraint::testAngLimits(void) |
---|
| 225 | { |
---|
| 226 | m_angDepth = btScalar(0.); |
---|
| 227 | m_solveAngLim = false; |
---|
| 228 | if(m_lowerAngLimit <= m_upperAngLimit) |
---|
| 229 | { |
---|
| 230 | const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1); |
---|
| 231 | const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
| 232 | const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1); |
---|
| 233 | // btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
| 234 | btScalar rot = btAtan2(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
| 235 | rot = btAdjustAngleToLimits(rot, m_lowerAngLimit, m_upperAngLimit); |
---|
| 236 | m_angPos = rot; |
---|
| 237 | if(rot < m_lowerAngLimit) |
---|
[2882] | 238 | { |
---|
[8284] | 239 | m_angDepth = rot - m_lowerAngLimit; |
---|
| 240 | m_solveAngLim = true; |
---|
| 241 | } |
---|
| 242 | else if(rot > m_upperAngLimit) |
---|
[2882] | 243 | { |
---|
[8284] | 244 | m_angDepth = rot - m_upperAngLimit; |
---|
| 245 | m_solveAngLim = true; |
---|
[2882] | 246 | } |
---|
[1963] | 247 | } |
---|
[8284] | 248 | } |
---|
[2882] | 249 | |
---|
[8284] | 250 | btVector3 btSliderConstraint::getAncorInA(void) |
---|
| 251 | { |
---|
| 252 | btVector3 ancorInA; |
---|
| 253 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis; |
---|
| 254 | ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA; |
---|
| 255 | return ancorInA; |
---|
| 256 | } |
---|
[2882] | 257 | |
---|
[8284] | 258 | |
---|
| 259 | |
---|
| 260 | btVector3 btSliderConstraint::getAncorInB(void) |
---|
[2882] | 261 | { |
---|
[8284] | 262 | btVector3 ancorInB; |
---|
| 263 | ancorInB = m_frameInB.getOrigin(); |
---|
| 264 | return ancorInB; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | |
---|
| 268 | void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB, const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass ) |
---|
| 269 | { |
---|
| 270 | const btTransform& trA = getCalculatedTransformA(); |
---|
| 271 | const btTransform& trB = getCalculatedTransformB(); |
---|
| 272 | |
---|
[2882] | 273 | btAssert(!m_useSolveConstraintObsolete); |
---|
| 274 | int i, s = info->rowskip; |
---|
[8284] | 275 | |
---|
[2882] | 276 | btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f); |
---|
[8284] | 277 | |
---|
| 278 | // difference between frames in WCS |
---|
| 279 | btVector3 ofs = trB.getOrigin() - trA.getOrigin(); |
---|
| 280 | // now get weight factors depending on masses |
---|
| 281 | btScalar miA = rbAinvMass; |
---|
| 282 | btScalar miB = rbBinvMass; |
---|
| 283 | bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); |
---|
| 284 | btScalar miS = miA + miB; |
---|
| 285 | btScalar factA, factB; |
---|
| 286 | if(miS > btScalar(0.f)) |
---|
| 287 | { |
---|
| 288 | factA = miB / miS; |
---|
| 289 | } |
---|
| 290 | else |
---|
| 291 | { |
---|
| 292 | factA = btScalar(0.5f); |
---|
| 293 | } |
---|
| 294 | factB = btScalar(1.0f) - factA; |
---|
| 295 | btVector3 ax1, p, q; |
---|
| 296 | btVector3 ax1A = trA.getBasis().getColumn(0); |
---|
| 297 | btVector3 ax1B = trB.getBasis().getColumn(0); |
---|
| 298 | if(m_useOffsetForConstraintFrame) |
---|
| 299 | { |
---|
| 300 | // get the desired direction of slider axis |
---|
| 301 | // as weighted sum of X-orthos of frameA and frameB in WCS |
---|
| 302 | ax1 = ax1A * factA + ax1B * factB; |
---|
| 303 | ax1.normalize(); |
---|
| 304 | // construct two orthos to slider axis |
---|
| 305 | btPlaneSpace1 (ax1, p, q); |
---|
| 306 | } |
---|
| 307 | else |
---|
| 308 | { // old way - use frameA |
---|
| 309 | ax1 = trA.getBasis().getColumn(0); |
---|
| 310 | // get 2 orthos to slider axis (Y, Z) |
---|
| 311 | p = trA.getBasis().getColumn(1); |
---|
| 312 | q = trA.getBasis().getColumn(2); |
---|
| 313 | } |
---|
| 314 | // make rotations around these orthos equal |
---|
[2882] | 315 | // the slider axis should be the only unconstrained |
---|
| 316 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
| 317 | // the slider axis should be equal. thus the constraint equations are |
---|
| 318 | // p*w1 - p*w2 = 0 |
---|
| 319 | // q*w1 - q*w2 = 0 |
---|
| 320 | // where p and q are unit vectors normal to the slider axis, and w1 and w2 |
---|
| 321 | // are the angular velocity vectors of the two bodies. |
---|
| 322 | info->m_J1angularAxis[0] = p[0]; |
---|
| 323 | info->m_J1angularAxis[1] = p[1]; |
---|
| 324 | info->m_J1angularAxis[2] = p[2]; |
---|
| 325 | info->m_J1angularAxis[s+0] = q[0]; |
---|
| 326 | info->m_J1angularAxis[s+1] = q[1]; |
---|
| 327 | info->m_J1angularAxis[s+2] = q[2]; |
---|
| 328 | |
---|
| 329 | info->m_J2angularAxis[0] = -p[0]; |
---|
| 330 | info->m_J2angularAxis[1] = -p[1]; |
---|
| 331 | info->m_J2angularAxis[2] = -p[2]; |
---|
| 332 | info->m_J2angularAxis[s+0] = -q[0]; |
---|
| 333 | info->m_J2angularAxis[s+1] = -q[1]; |
---|
| 334 | info->m_J2angularAxis[s+2] = -q[2]; |
---|
| 335 | // compute the right hand side of the constraint equation. set relative |
---|
| 336 | // body velocities along p and q to bring the slider back into alignment. |
---|
[8284] | 337 | // if ax1A,ax1B are the unit length slider axes as computed from bodyA and |
---|
| 338 | // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
[2882] | 339 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity |
---|
| 340 | // along u to cover angle erp*theta in one step : |
---|
| 341 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
| 342 | // = (erp*fps) * theta |
---|
| 343 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
| 344 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
| 345 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
| 346 | // theta ~= sin(theta), so |
---|
| 347 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
| 348 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
| 349 | // velocity to p and q to find the right hand side. |
---|
[8284] | 350 | // btScalar k = info->fps * info->erp * getSoftnessOrthoAng(); |
---|
| 351 | btScalar currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTANG) ? m_softnessOrthoAng : m_softnessOrthoAng * info->erp; |
---|
| 352 | btScalar k = info->fps * currERP; |
---|
| 353 | |
---|
| 354 | btVector3 u = ax1A.cross(ax1B); |
---|
[2882] | 355 | info->m_constraintError[0] = k * u.dot(p); |
---|
| 356 | info->m_constraintError[s] = k * u.dot(q); |
---|
[8284] | 357 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG) |
---|
[2882] | 358 | { |
---|
[8284] | 359 | info->cfm[0] = m_cfmOrthoAng; |
---|
| 360 | info->cfm[s] = m_cfmOrthoAng; |
---|
[2882] | 361 | } |
---|
[8284] | 362 | |
---|
| 363 | int nrow = 1; // last filled row |
---|
| 364 | int srow; |
---|
| 365 | btScalar limit_err; |
---|
| 366 | int limit; |
---|
| 367 | int powered; |
---|
| 368 | |
---|
| 369 | // next two rows. |
---|
| 370 | // we want: velA + wA x relA == velB + wB x relB ... but this would |
---|
| 371 | // result in three equations, so we project along two orthos to the slider axis |
---|
| 372 | |
---|
| 373 | btTransform bodyA_trans = transA; |
---|
| 374 | btTransform bodyB_trans = transB; |
---|
| 375 | nrow++; |
---|
| 376 | int s2 = nrow * s; |
---|
| 377 | nrow++; |
---|
| 378 | int s3 = nrow * s; |
---|
| 379 | btVector3 tmpA(0,0,0), tmpB(0,0,0), relA(0,0,0), relB(0,0,0), c(0,0,0); |
---|
| 380 | if(m_useOffsetForConstraintFrame) |
---|
[2882] | 381 | { |
---|
[8284] | 382 | // get vector from bodyB to frameB in WCS |
---|
| 383 | relB = trB.getOrigin() - bodyB_trans.getOrigin(); |
---|
| 384 | // get its projection to slider axis |
---|
| 385 | btVector3 projB = ax1 * relB.dot(ax1); |
---|
| 386 | // get vector directed from bodyB to slider axis (and orthogonal to it) |
---|
| 387 | btVector3 orthoB = relB - projB; |
---|
| 388 | // same for bodyA |
---|
| 389 | relA = trA.getOrigin() - bodyA_trans.getOrigin(); |
---|
| 390 | btVector3 projA = ax1 * relA.dot(ax1); |
---|
| 391 | btVector3 orthoA = relA - projA; |
---|
| 392 | // get desired offset between frames A and B along slider axis |
---|
| 393 | btScalar sliderOffs = m_linPos - m_depth[0]; |
---|
| 394 | // desired vector from projection of center of bodyA to projection of center of bodyB to slider axis |
---|
| 395 | btVector3 totalDist = projA + ax1 * sliderOffs - projB; |
---|
| 396 | // get offset vectors relA and relB |
---|
| 397 | relA = orthoA + totalDist * factA; |
---|
| 398 | relB = orthoB - totalDist * factB; |
---|
| 399 | // now choose average ortho to slider axis |
---|
| 400 | p = orthoB * factA + orthoA * factB; |
---|
| 401 | btScalar len2 = p.length2(); |
---|
| 402 | if(len2 > SIMD_EPSILON) |
---|
| 403 | { |
---|
| 404 | p /= btSqrt(len2); |
---|
| 405 | } |
---|
| 406 | else |
---|
| 407 | { |
---|
| 408 | p = trA.getBasis().getColumn(1); |
---|
| 409 | } |
---|
| 410 | // make one more ortho |
---|
| 411 | q = ax1.cross(p); |
---|
| 412 | // fill two rows |
---|
| 413 | tmpA = relA.cross(p); |
---|
| 414 | tmpB = relB.cross(p); |
---|
| 415 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; |
---|
| 416 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; |
---|
| 417 | tmpA = relA.cross(q); |
---|
| 418 | tmpB = relB.cross(q); |
---|
| 419 | if(hasStaticBody && getSolveAngLimit()) |
---|
| 420 | { // to make constraint between static and dynamic objects more rigid |
---|
| 421 | // remove wA (or wB) from equation if angular limit is hit |
---|
| 422 | tmpB *= factB; |
---|
| 423 | tmpA *= factA; |
---|
| 424 | } |
---|
| 425 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmpA[i]; |
---|
| 426 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i]; |
---|
| 427 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; |
---|
| 428 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; |
---|
[2882] | 429 | } |
---|
[8284] | 430 | else |
---|
| 431 | { // old way - maybe incorrect if bodies are not on the slider axis |
---|
| 432 | // see discussion "Bug in slider constraint" http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4024&start=0 |
---|
| 433 | c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin(); |
---|
| 434 | btVector3 tmp = c.cross(p); |
---|
| 435 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i]; |
---|
| 436 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i]; |
---|
| 437 | tmp = c.cross(q); |
---|
| 438 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i]; |
---|
| 439 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i]; |
---|
[2882] | 440 | |
---|
[8284] | 441 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; |
---|
| 442 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; |
---|
| 443 | } |
---|
| 444 | // compute two elements of right hand side |
---|
| 445 | |
---|
| 446 | // k = info->fps * info->erp * getSoftnessOrthoLin(); |
---|
| 447 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN) ? m_softnessOrthoLin : m_softnessOrthoLin * info->erp; |
---|
| 448 | k = info->fps * currERP; |
---|
| 449 | |
---|
| 450 | btScalar rhs = k * p.dot(ofs); |
---|
| 451 | info->m_constraintError[s2] = rhs; |
---|
| 452 | rhs = k * q.dot(ofs); |
---|
| 453 | info->m_constraintError[s3] = rhs; |
---|
| 454 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN) |
---|
| 455 | { |
---|
| 456 | info->cfm[s2] = m_cfmOrthoLin; |
---|
| 457 | info->cfm[s3] = m_cfmOrthoLin; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | // check linear limits |
---|
| 462 | limit_err = btScalar(0.0); |
---|
| 463 | limit = 0; |
---|
[2882] | 464 | if(getSolveLinLimit()) |
---|
| 465 | { |
---|
| 466 | limit_err = getLinDepth() * signFact; |
---|
| 467 | limit = (limit_err > btScalar(0.0)) ? 2 : 1; |
---|
| 468 | } |
---|
[8284] | 469 | powered = 0; |
---|
[2882] | 470 | if(getPoweredLinMotor()) |
---|
| 471 | { |
---|
| 472 | powered = 1; |
---|
| 473 | } |
---|
| 474 | // if the slider has joint limits or motor, add in the extra row |
---|
| 475 | if (limit || powered) |
---|
| 476 | { |
---|
| 477 | nrow++; |
---|
| 478 | srow = nrow * info->rowskip; |
---|
| 479 | info->m_J1linearAxis[srow+0] = ax1[0]; |
---|
| 480 | info->m_J1linearAxis[srow+1] = ax1[1]; |
---|
| 481 | info->m_J1linearAxis[srow+2] = ax1[2]; |
---|
| 482 | // linear torque decoupling step: |
---|
| 483 | // |
---|
| 484 | // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies |
---|
| 485 | // do not create a torque couple. in other words, the points that the |
---|
| 486 | // constraint force is applied at must lie along the same ax1 axis. |
---|
| 487 | // a torque couple will result in limited slider-jointed free |
---|
| 488 | // bodies from gaining angular momentum. |
---|
[8284] | 489 | if(m_useOffsetForConstraintFrame) |
---|
| 490 | { |
---|
| 491 | // this is needed only when bodyA and bodyB are both dynamic. |
---|
| 492 | if(!hasStaticBody) |
---|
| 493 | { |
---|
| 494 | tmpA = relA.cross(ax1); |
---|
| 495 | tmpB = relB.cross(ax1); |
---|
| 496 | info->m_J1angularAxis[srow+0] = tmpA[0]; |
---|
| 497 | info->m_J1angularAxis[srow+1] = tmpA[1]; |
---|
| 498 | info->m_J1angularAxis[srow+2] = tmpA[2]; |
---|
| 499 | info->m_J2angularAxis[srow+0] = -tmpB[0]; |
---|
| 500 | info->m_J2angularAxis[srow+1] = -tmpB[1]; |
---|
| 501 | info->m_J2angularAxis[srow+2] = -tmpB[2]; |
---|
| 502 | } |
---|
| 503 | } |
---|
| 504 | else |
---|
| 505 | { // The old way. May be incorrect if bodies are not on the slider axis |
---|
| 506 | btVector3 ltd; // Linear Torque Decoupling vector (a torque) |
---|
| 507 | ltd = c.cross(ax1); |
---|
| 508 | info->m_J1angularAxis[srow+0] = factA*ltd[0]; |
---|
| 509 | info->m_J1angularAxis[srow+1] = factA*ltd[1]; |
---|
| 510 | info->m_J1angularAxis[srow+2] = factA*ltd[2]; |
---|
| 511 | info->m_J2angularAxis[srow+0] = factB*ltd[0]; |
---|
| 512 | info->m_J2angularAxis[srow+1] = factB*ltd[1]; |
---|
| 513 | info->m_J2angularAxis[srow+2] = factB*ltd[2]; |
---|
| 514 | } |
---|
[2882] | 515 | // right-hand part |
---|
| 516 | btScalar lostop = getLowerLinLimit(); |
---|
| 517 | btScalar histop = getUpperLinLimit(); |
---|
| 518 | if(limit && (lostop == histop)) |
---|
| 519 | { // the joint motor is ineffective |
---|
| 520 | powered = 0; |
---|
| 521 | } |
---|
| 522 | info->m_constraintError[srow] = 0.; |
---|
| 523 | info->m_lowerLimit[srow] = 0.; |
---|
| 524 | info->m_upperLimit[srow] = 0.; |
---|
[8284] | 525 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN) ? m_softnessLimLin : info->erp; |
---|
[2882] | 526 | if(powered) |
---|
| 527 | { |
---|
[8284] | 528 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN) |
---|
| 529 | { |
---|
| 530 | info->cfm[srow] = m_cfmDirLin; |
---|
| 531 | } |
---|
[2882] | 532 | btScalar tag_vel = getTargetLinMotorVelocity(); |
---|
[8284] | 533 | btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * currERP); |
---|
[2882] | 534 | info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity(); |
---|
| 535 | info->m_lowerLimit[srow] += -getMaxLinMotorForce() * info->fps; |
---|
| 536 | info->m_upperLimit[srow] += getMaxLinMotorForce() * info->fps; |
---|
| 537 | } |
---|
| 538 | if(limit) |
---|
| 539 | { |
---|
[8284] | 540 | k = info->fps * currERP; |
---|
[2882] | 541 | info->m_constraintError[srow] += k * limit_err; |
---|
[8284] | 542 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN) |
---|
| 543 | { |
---|
| 544 | info->cfm[srow] = m_cfmLimLin; |
---|
| 545 | } |
---|
[2882] | 546 | if(lostop == histop) |
---|
| 547 | { // limited low and high simultaneously |
---|
| 548 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 549 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 550 | } |
---|
| 551 | else if(limit == 1) |
---|
| 552 | { // low limit |
---|
| 553 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 554 | info->m_upperLimit[srow] = 0; |
---|
| 555 | } |
---|
| 556 | else |
---|
| 557 | { // high limit |
---|
| 558 | info->m_lowerLimit[srow] = 0; |
---|
| 559 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 560 | } |
---|
| 561 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that) |
---|
| 562 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin()); |
---|
| 563 | if(bounce > btScalar(0.0)) |
---|
| 564 | { |
---|
[8284] | 565 | btScalar vel = linVelA.dot(ax1); |
---|
| 566 | vel -= linVelB.dot(ax1); |
---|
[2882] | 567 | vel *= signFact; |
---|
| 568 | // only apply bounce if the velocity is incoming, and if the |
---|
| 569 | // resulting c[] exceeds what we already have. |
---|
| 570 | if(limit == 1) |
---|
| 571 | { // low limit |
---|
| 572 | if(vel < 0) |
---|
| 573 | { |
---|
| 574 | btScalar newc = -bounce * vel; |
---|
| 575 | if (newc > info->m_constraintError[srow]) |
---|
| 576 | { |
---|
| 577 | info->m_constraintError[srow] = newc; |
---|
| 578 | } |
---|
| 579 | } |
---|
| 580 | } |
---|
| 581 | else |
---|
| 582 | { // high limit - all those computations are reversed |
---|
| 583 | if(vel > 0) |
---|
| 584 | { |
---|
| 585 | btScalar newc = -bounce * vel; |
---|
| 586 | if(newc < info->m_constraintError[srow]) |
---|
| 587 | { |
---|
| 588 | info->m_constraintError[srow] = newc; |
---|
| 589 | } |
---|
| 590 | } |
---|
| 591 | } |
---|
| 592 | } |
---|
| 593 | info->m_constraintError[srow] *= getSoftnessLimLin(); |
---|
| 594 | } // if(limit) |
---|
| 595 | } // if linear limit |
---|
| 596 | // check angular limits |
---|
| 597 | limit_err = btScalar(0.0); |
---|
| 598 | limit = 0; |
---|
| 599 | if(getSolveAngLimit()) |
---|
| 600 | { |
---|
| 601 | limit_err = getAngDepth(); |
---|
| 602 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
| 603 | } |
---|
| 604 | // if the slider has joint limits, add in the extra row |
---|
| 605 | powered = 0; |
---|
| 606 | if(getPoweredAngMotor()) |
---|
| 607 | { |
---|
| 608 | powered = 1; |
---|
| 609 | } |
---|
| 610 | if(limit || powered) |
---|
| 611 | { |
---|
| 612 | nrow++; |
---|
| 613 | srow = nrow * info->rowskip; |
---|
| 614 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
| 615 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
| 616 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
| 617 | |
---|
| 618 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
| 619 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
| 620 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
| 621 | |
---|
| 622 | btScalar lostop = getLowerAngLimit(); |
---|
| 623 | btScalar histop = getUpperAngLimit(); |
---|
| 624 | if(limit && (lostop == histop)) |
---|
| 625 | { // the joint motor is ineffective |
---|
| 626 | powered = 0; |
---|
| 627 | } |
---|
[8284] | 628 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMANG) ? m_softnessLimAng : info->erp; |
---|
[2882] | 629 | if(powered) |
---|
| 630 | { |
---|
[8284] | 631 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG) |
---|
| 632 | { |
---|
| 633 | info->cfm[srow] = m_cfmDirAng; |
---|
| 634 | } |
---|
| 635 | btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * currERP); |
---|
[2882] | 636 | info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity(); |
---|
| 637 | info->m_lowerLimit[srow] = -getMaxAngMotorForce() * info->fps; |
---|
| 638 | info->m_upperLimit[srow] = getMaxAngMotorForce() * info->fps; |
---|
| 639 | } |
---|
| 640 | if(limit) |
---|
| 641 | { |
---|
[8284] | 642 | k = info->fps * currERP; |
---|
[2882] | 643 | info->m_constraintError[srow] += k * limit_err; |
---|
[8284] | 644 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG) |
---|
| 645 | { |
---|
| 646 | info->cfm[srow] = m_cfmLimAng; |
---|
| 647 | } |
---|
[2882] | 648 | if(lostop == histop) |
---|
| 649 | { |
---|
| 650 | // limited low and high simultaneously |
---|
| 651 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 652 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 653 | } |
---|
| 654 | else if(limit == 1) |
---|
| 655 | { // low limit |
---|
| 656 | info->m_lowerLimit[srow] = 0; |
---|
| 657 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 658 | } |
---|
| 659 | else |
---|
| 660 | { // high limit |
---|
| 661 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 662 | info->m_upperLimit[srow] = 0; |
---|
| 663 | } |
---|
| 664 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
| 665 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng()); |
---|
| 666 | if(bounce > btScalar(0.0)) |
---|
| 667 | { |
---|
| 668 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); |
---|
| 669 | vel -= m_rbB.getAngularVelocity().dot(ax1); |
---|
| 670 | // only apply bounce if the velocity is incoming, and if the |
---|
| 671 | // resulting c[] exceeds what we already have. |
---|
| 672 | if(limit == 1) |
---|
| 673 | { // low limit |
---|
| 674 | if(vel < 0) |
---|
| 675 | { |
---|
| 676 | btScalar newc = -bounce * vel; |
---|
| 677 | if(newc > info->m_constraintError[srow]) |
---|
| 678 | { |
---|
| 679 | info->m_constraintError[srow] = newc; |
---|
| 680 | } |
---|
| 681 | } |
---|
| 682 | } |
---|
| 683 | else |
---|
| 684 | { // high limit - all those computations are reversed |
---|
| 685 | if(vel > 0) |
---|
| 686 | { |
---|
| 687 | btScalar newc = -bounce * vel; |
---|
| 688 | if(newc < info->m_constraintError[srow]) |
---|
| 689 | { |
---|
| 690 | info->m_constraintError[srow] = newc; |
---|
| 691 | } |
---|
| 692 | } |
---|
| 693 | } |
---|
| 694 | } |
---|
| 695 | info->m_constraintError[srow] *= getSoftnessLimAng(); |
---|
| 696 | } // if(limit) |
---|
| 697 | } // if angular limit or powered |
---|
[8284] | 698 | } |
---|
[2882] | 699 | |
---|
| 700 | |
---|
[8284] | 701 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). |
---|
| 702 | ///If no axis is provided, it uses the default axis for this constraint. |
---|
| 703 | void btSliderConstraint::setParam(int num, btScalar value, int axis) |
---|
[2882] | 704 | { |
---|
[8284] | 705 | switch(num) |
---|
[2882] | 706 | { |
---|
[8284] | 707 | case BT_CONSTRAINT_STOP_ERP : |
---|
| 708 | if(axis < 1) |
---|
[2882] | 709 | { |
---|
[8284] | 710 | m_softnessLimLin = value; |
---|
| 711 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMLIN; |
---|
[2882] | 712 | } |
---|
[8284] | 713 | else if(axis < 3) |
---|
| 714 | { |
---|
| 715 | m_softnessOrthoLin = value; |
---|
| 716 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTLIN; |
---|
| 717 | } |
---|
| 718 | else if(axis == 3) |
---|
| 719 | { |
---|
| 720 | m_softnessLimAng = value; |
---|
| 721 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMANG; |
---|
| 722 | } |
---|
| 723 | else if(axis < 6) |
---|
| 724 | { |
---|
| 725 | m_softnessOrthoAng = value; |
---|
| 726 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTANG; |
---|
| 727 | } |
---|
[2882] | 728 | else |
---|
| 729 | { |
---|
[8284] | 730 | btAssertConstrParams(0); |
---|
[2882] | 731 | } |
---|
[8284] | 732 | break; |
---|
| 733 | case BT_CONSTRAINT_CFM : |
---|
| 734 | if(axis < 1) |
---|
[2882] | 735 | { |
---|
[8284] | 736 | m_cfmDirLin = value; |
---|
| 737 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRLIN; |
---|
[2882] | 738 | } |
---|
[8284] | 739 | else if(axis == 3) |
---|
| 740 | { |
---|
| 741 | m_cfmDirAng = value; |
---|
| 742 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRANG; |
---|
[1963] | 743 | } |
---|
[8284] | 744 | else |
---|
[1963] | 745 | { |
---|
[8284] | 746 | btAssertConstrParams(0); |
---|
[1963] | 747 | } |
---|
[8284] | 748 | break; |
---|
| 749 | case BT_CONSTRAINT_STOP_CFM : |
---|
| 750 | if(axis < 1) |
---|
[1963] | 751 | { |
---|
[8284] | 752 | m_cfmLimLin = value; |
---|
| 753 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMLIN; |
---|
[1963] | 754 | } |
---|
[8284] | 755 | else if(axis < 3) |
---|
[1963] | 756 | { |
---|
[8284] | 757 | m_cfmOrthoLin = value; |
---|
| 758 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTLIN; |
---|
[1963] | 759 | } |
---|
[8284] | 760 | else if(axis == 3) |
---|
| 761 | { |
---|
| 762 | m_cfmLimAng = value; |
---|
| 763 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMANG; |
---|
| 764 | } |
---|
| 765 | else if(axis < 6) |
---|
| 766 | { |
---|
| 767 | m_cfmOrthoAng = value; |
---|
| 768 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTANG; |
---|
| 769 | } |
---|
[1963] | 770 | else |
---|
| 771 | { |
---|
[8284] | 772 | btAssertConstrParams(0); |
---|
[1963] | 773 | } |
---|
[8284] | 774 | break; |
---|
[1963] | 775 | } |
---|
[8284] | 776 | } |
---|
[1963] | 777 | |
---|
[8284] | 778 | ///return the local value of parameter |
---|
| 779 | btScalar btSliderConstraint::getParam(int num, int axis) const |
---|
[1963] | 780 | { |
---|
[8284] | 781 | btScalar retVal(SIMD_INFINITY); |
---|
| 782 | switch(num) |
---|
[1963] | 783 | { |
---|
[8284] | 784 | case BT_CONSTRAINT_STOP_ERP : |
---|
| 785 | if(axis < 1) |
---|
[1963] | 786 | { |
---|
[8284] | 787 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN); |
---|
| 788 | retVal = m_softnessLimLin; |
---|
| 789 | } |
---|
| 790 | else if(axis < 3) |
---|
[1963] | 791 | { |
---|
[8284] | 792 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN); |
---|
| 793 | retVal = m_softnessOrthoLin; |
---|
[1963] | 794 | } |
---|
[8284] | 795 | else if(axis == 3) |
---|
| 796 | { |
---|
| 797 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMANG); |
---|
| 798 | retVal = m_softnessLimAng; |
---|
| 799 | } |
---|
| 800 | else if(axis < 6) |
---|
| 801 | { |
---|
| 802 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTANG); |
---|
| 803 | retVal = m_softnessOrthoAng; |
---|
| 804 | } |
---|
| 805 | else |
---|
| 806 | { |
---|
| 807 | btAssertConstrParams(0); |
---|
| 808 | } |
---|
| 809 | break; |
---|
| 810 | case BT_CONSTRAINT_CFM : |
---|
| 811 | if(axis < 1) |
---|
| 812 | { |
---|
| 813 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN); |
---|
| 814 | retVal = m_cfmDirLin; |
---|
| 815 | } |
---|
| 816 | else if(axis == 3) |
---|
| 817 | { |
---|
| 818 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG); |
---|
| 819 | retVal = m_cfmDirAng; |
---|
| 820 | } |
---|
| 821 | else |
---|
| 822 | { |
---|
| 823 | btAssertConstrParams(0); |
---|
| 824 | } |
---|
| 825 | break; |
---|
| 826 | case BT_CONSTRAINT_STOP_CFM : |
---|
| 827 | if(axis < 1) |
---|
| 828 | { |
---|
| 829 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN); |
---|
| 830 | retVal = m_cfmLimLin; |
---|
| 831 | } |
---|
| 832 | else if(axis < 3) |
---|
| 833 | { |
---|
| 834 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN); |
---|
| 835 | retVal = m_cfmOrthoLin; |
---|
| 836 | } |
---|
| 837 | else if(axis == 3) |
---|
| 838 | { |
---|
| 839 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG); |
---|
| 840 | retVal = m_cfmLimAng; |
---|
| 841 | } |
---|
| 842 | else if(axis < 6) |
---|
| 843 | { |
---|
| 844 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG); |
---|
| 845 | retVal = m_cfmOrthoAng; |
---|
| 846 | } |
---|
| 847 | else |
---|
| 848 | { |
---|
| 849 | btAssertConstrParams(0); |
---|
| 850 | } |
---|
| 851 | break; |
---|
[1963] | 852 | } |
---|
[8284] | 853 | return retVal; |
---|
| 854 | } |
---|
[1963] | 855 | |
---|
| 856 | |
---|
| 857 | |
---|