1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #ifndef JACOBIAN_ENTRY_H |
---|
17 | #define JACOBIAN_ENTRY_H |
---|
18 | |
---|
19 | #include "LinearMath/btVector3.h" |
---|
20 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
21 | |
---|
22 | |
---|
23 | //notes: |
---|
24 | // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components |
---|
25 | // which makes the btJacobianEntry memory layout 16 bytes |
---|
26 | // if you only are interested in angular part, just feed massInvA and massInvB zero |
---|
27 | |
---|
28 | /// Jacobian entry is an abstraction that allows to describe constraints |
---|
29 | /// it can be used in combination with a constraint solver |
---|
30 | /// Can be used to relate the effect of an impulse to the constraint error |
---|
31 | ATTRIBUTE_ALIGNED16(class) btJacobianEntry |
---|
32 | { |
---|
33 | public: |
---|
34 | btJacobianEntry() {}; |
---|
35 | //constraint between two different rigidbodies |
---|
36 | btJacobianEntry( |
---|
37 | const btMatrix3x3& world2A, |
---|
38 | const btMatrix3x3& world2B, |
---|
39 | const btVector3& rel_pos1,const btVector3& rel_pos2, |
---|
40 | const btVector3& jointAxis, |
---|
41 | const btVector3& inertiaInvA, |
---|
42 | const btScalar massInvA, |
---|
43 | const btVector3& inertiaInvB, |
---|
44 | const btScalar massInvB) |
---|
45 | :m_linearJointAxis(jointAxis) |
---|
46 | { |
---|
47 | m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis)); |
---|
48 | m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis)); |
---|
49 | m_0MinvJt = inertiaInvA * m_aJ; |
---|
50 | m_1MinvJt = inertiaInvB * m_bJ; |
---|
51 | m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ); |
---|
52 | |
---|
53 | btAssert(m_Adiag > btScalar(0.0)); |
---|
54 | } |
---|
55 | |
---|
56 | //angular constraint between two different rigidbodies |
---|
57 | btJacobianEntry(const btVector3& jointAxis, |
---|
58 | const btMatrix3x3& world2A, |
---|
59 | const btMatrix3x3& world2B, |
---|
60 | const btVector3& inertiaInvA, |
---|
61 | const btVector3& inertiaInvB) |
---|
62 | :m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.))) |
---|
63 | { |
---|
64 | m_aJ= world2A*jointAxis; |
---|
65 | m_bJ = world2B*-jointAxis; |
---|
66 | m_0MinvJt = inertiaInvA * m_aJ; |
---|
67 | m_1MinvJt = inertiaInvB * m_bJ; |
---|
68 | m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ); |
---|
69 | |
---|
70 | btAssert(m_Adiag > btScalar(0.0)); |
---|
71 | } |
---|
72 | |
---|
73 | //angular constraint between two different rigidbodies |
---|
74 | btJacobianEntry(const btVector3& axisInA, |
---|
75 | const btVector3& axisInB, |
---|
76 | const btVector3& inertiaInvA, |
---|
77 | const btVector3& inertiaInvB) |
---|
78 | : m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.))) |
---|
79 | , m_aJ(axisInA) |
---|
80 | , m_bJ(-axisInB) |
---|
81 | { |
---|
82 | m_0MinvJt = inertiaInvA * m_aJ; |
---|
83 | m_1MinvJt = inertiaInvB * m_bJ; |
---|
84 | m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ); |
---|
85 | |
---|
86 | btAssert(m_Adiag > btScalar(0.0)); |
---|
87 | } |
---|
88 | |
---|
89 | //constraint on one rigidbody |
---|
90 | btJacobianEntry( |
---|
91 | const btMatrix3x3& world2A, |
---|
92 | const btVector3& rel_pos1,const btVector3& rel_pos2, |
---|
93 | const btVector3& jointAxis, |
---|
94 | const btVector3& inertiaInvA, |
---|
95 | const btScalar massInvA) |
---|
96 | :m_linearJointAxis(jointAxis) |
---|
97 | { |
---|
98 | m_aJ= world2A*(rel_pos1.cross(jointAxis)); |
---|
99 | m_bJ = world2A*(rel_pos2.cross(-jointAxis)); |
---|
100 | m_0MinvJt = inertiaInvA * m_aJ; |
---|
101 | m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
102 | m_Adiag = massInvA + m_0MinvJt.dot(m_aJ); |
---|
103 | |
---|
104 | btAssert(m_Adiag > btScalar(0.0)); |
---|
105 | } |
---|
106 | |
---|
107 | btScalar getDiagonal() const { return m_Adiag; } |
---|
108 | |
---|
109 | // for two constraints on the same rigidbody (for example vehicle friction) |
---|
110 | btScalar getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const |
---|
111 | { |
---|
112 | const btJacobianEntry& jacA = *this; |
---|
113 | btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis); |
---|
114 | btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ); |
---|
115 | return lin + ang; |
---|
116 | } |
---|
117 | |
---|
118 | |
---|
119 | |
---|
120 | // for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies) |
---|
121 | btScalar getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const |
---|
122 | { |
---|
123 | const btJacobianEntry& jacA = *this; |
---|
124 | btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis; |
---|
125 | btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ; |
---|
126 | btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ; |
---|
127 | btVector3 lin0 = massInvA * lin ; |
---|
128 | btVector3 lin1 = massInvB * lin; |
---|
129 | btVector3 sum = ang0+ang1+lin0+lin1; |
---|
130 | return sum[0]+sum[1]+sum[2]; |
---|
131 | } |
---|
132 | |
---|
133 | btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB) |
---|
134 | { |
---|
135 | btVector3 linrel = linvelA - linvelB; |
---|
136 | btVector3 angvela = angvelA * m_aJ; |
---|
137 | btVector3 angvelb = angvelB * m_bJ; |
---|
138 | linrel *= m_linearJointAxis; |
---|
139 | angvela += angvelb; |
---|
140 | angvela += linrel; |
---|
141 | btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2]; |
---|
142 | return rel_vel2 + SIMD_EPSILON; |
---|
143 | } |
---|
144 | //private: |
---|
145 | |
---|
146 | btVector3 m_linearJointAxis; |
---|
147 | btVector3 m_aJ; |
---|
148 | btVector3 m_bJ; |
---|
149 | btVector3 m_0MinvJt; |
---|
150 | btVector3 m_1MinvJt; |
---|
151 | //Optimization: can be stored in the w/last component of one of the vectors |
---|
152 | btScalar m_Adiag; |
---|
153 | |
---|
154 | }; |
---|
155 | |
---|
156 | #endif //JACOBIAN_ENTRY_H |
---|