1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | //#define DISABLE_BVH |
---|
17 | |
---|
18 | #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" |
---|
19 | #include "BulletCollision/CollisionShapes/btOptimizedBvh.h" |
---|
20 | #include "LinearMath/btSerializer.h" |
---|
21 | |
---|
22 | ///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization. |
---|
23 | ///Uses an interface to access the triangles to allow for sharing graphics/physics triangles. |
---|
24 | btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh) |
---|
25 | :btTriangleMeshShape(meshInterface), |
---|
26 | m_bvh(0), |
---|
27 | m_triangleInfoMap(0), |
---|
28 | m_useQuantizedAabbCompression(useQuantizedAabbCompression), |
---|
29 | m_ownsBvh(false) |
---|
30 | { |
---|
31 | m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE; |
---|
32 | //construct bvh from meshInterface |
---|
33 | #ifndef DISABLE_BVH |
---|
34 | |
---|
35 | if (buildBvh) |
---|
36 | { |
---|
37 | buildOptimizedBvh(); |
---|
38 | } |
---|
39 | |
---|
40 | #endif //DISABLE_BVH |
---|
41 | |
---|
42 | } |
---|
43 | |
---|
44 | btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh) |
---|
45 | :btTriangleMeshShape(meshInterface), |
---|
46 | m_bvh(0), |
---|
47 | m_triangleInfoMap(0), |
---|
48 | m_useQuantizedAabbCompression(useQuantizedAabbCompression), |
---|
49 | m_ownsBvh(false) |
---|
50 | { |
---|
51 | m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE; |
---|
52 | //construct bvh from meshInterface |
---|
53 | #ifndef DISABLE_BVH |
---|
54 | |
---|
55 | if (buildBvh) |
---|
56 | { |
---|
57 | void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16); |
---|
58 | m_bvh = new (mem) btOptimizedBvh(); |
---|
59 | |
---|
60 | m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax); |
---|
61 | m_ownsBvh = true; |
---|
62 | } |
---|
63 | |
---|
64 | #endif //DISABLE_BVH |
---|
65 | |
---|
66 | } |
---|
67 | |
---|
68 | void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax) |
---|
69 | { |
---|
70 | m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax ); |
---|
71 | |
---|
72 | m_localAabbMin.setMin(aabbMin); |
---|
73 | m_localAabbMax.setMax(aabbMax); |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax) |
---|
78 | { |
---|
79 | m_bvh->refit( m_meshInterface, aabbMin,aabbMax ); |
---|
80 | |
---|
81 | recalcLocalAabb(); |
---|
82 | } |
---|
83 | |
---|
84 | btBvhTriangleMeshShape::~btBvhTriangleMeshShape() |
---|
85 | { |
---|
86 | if (m_ownsBvh) |
---|
87 | { |
---|
88 | m_bvh->~btOptimizedBvh(); |
---|
89 | btAlignedFree(m_bvh); |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) |
---|
94 | { |
---|
95 | struct MyNodeOverlapCallback : public btNodeOverlapCallback |
---|
96 | { |
---|
97 | btStridingMeshInterface* m_meshInterface; |
---|
98 | btTriangleCallback* m_callback; |
---|
99 | |
---|
100 | MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) |
---|
101 | :m_meshInterface(meshInterface), |
---|
102 | m_callback(callback) |
---|
103 | { |
---|
104 | } |
---|
105 | |
---|
106 | virtual void processNode(int nodeSubPart, int nodeTriangleIndex) |
---|
107 | { |
---|
108 | btVector3 m_triangle[3]; |
---|
109 | const unsigned char *vertexbase; |
---|
110 | int numverts; |
---|
111 | PHY_ScalarType type; |
---|
112 | int stride; |
---|
113 | const unsigned char *indexbase; |
---|
114 | int indexstride; |
---|
115 | int numfaces; |
---|
116 | PHY_ScalarType indicestype; |
---|
117 | |
---|
118 | m_meshInterface->getLockedReadOnlyVertexIndexBase( |
---|
119 | &vertexbase, |
---|
120 | numverts, |
---|
121 | type, |
---|
122 | stride, |
---|
123 | &indexbase, |
---|
124 | indexstride, |
---|
125 | numfaces, |
---|
126 | indicestype, |
---|
127 | nodeSubPart); |
---|
128 | |
---|
129 | unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride); |
---|
130 | btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); |
---|
131 | |
---|
132 | const btVector3& meshScaling = m_meshInterface->getScaling(); |
---|
133 | for (int j=2;j>=0;j--) |
---|
134 | { |
---|
135 | int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j]; |
---|
136 | |
---|
137 | if (type == PHY_FLOAT) |
---|
138 | { |
---|
139 | float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); |
---|
140 | |
---|
141 | m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); |
---|
142 | } |
---|
143 | else |
---|
144 | { |
---|
145 | double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); |
---|
146 | |
---|
147 | m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ()); |
---|
148 | } |
---|
149 | } |
---|
150 | |
---|
151 | /* Perform ray vs. triangle collision here */ |
---|
152 | m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); |
---|
153 | m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); |
---|
154 | } |
---|
155 | }; |
---|
156 | |
---|
157 | MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); |
---|
158 | |
---|
159 | m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget); |
---|
160 | } |
---|
161 | |
---|
162 | void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax) |
---|
163 | { |
---|
164 | struct MyNodeOverlapCallback : public btNodeOverlapCallback |
---|
165 | { |
---|
166 | btStridingMeshInterface* m_meshInterface; |
---|
167 | btTriangleCallback* m_callback; |
---|
168 | |
---|
169 | MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) |
---|
170 | :m_meshInterface(meshInterface), |
---|
171 | m_callback(callback) |
---|
172 | { |
---|
173 | } |
---|
174 | |
---|
175 | virtual void processNode(int nodeSubPart, int nodeTriangleIndex) |
---|
176 | { |
---|
177 | btVector3 m_triangle[3]; |
---|
178 | const unsigned char *vertexbase; |
---|
179 | int numverts; |
---|
180 | PHY_ScalarType type; |
---|
181 | int stride; |
---|
182 | const unsigned char *indexbase; |
---|
183 | int indexstride; |
---|
184 | int numfaces; |
---|
185 | PHY_ScalarType indicestype; |
---|
186 | |
---|
187 | m_meshInterface->getLockedReadOnlyVertexIndexBase( |
---|
188 | &vertexbase, |
---|
189 | numverts, |
---|
190 | type, |
---|
191 | stride, |
---|
192 | &indexbase, |
---|
193 | indexstride, |
---|
194 | numfaces, |
---|
195 | indicestype, |
---|
196 | nodeSubPart); |
---|
197 | |
---|
198 | unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride); |
---|
199 | btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); |
---|
200 | |
---|
201 | const btVector3& meshScaling = m_meshInterface->getScaling(); |
---|
202 | for (int j=2;j>=0;j--) |
---|
203 | { |
---|
204 | int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j]; |
---|
205 | |
---|
206 | if (type == PHY_FLOAT) |
---|
207 | { |
---|
208 | float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); |
---|
209 | |
---|
210 | m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); |
---|
215 | |
---|
216 | m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ()); |
---|
217 | } |
---|
218 | } |
---|
219 | |
---|
220 | /* Perform ray vs. triangle collision here */ |
---|
221 | m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); |
---|
222 | m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); |
---|
223 | } |
---|
224 | }; |
---|
225 | |
---|
226 | MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); |
---|
227 | |
---|
228 | m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax); |
---|
229 | } |
---|
230 | |
---|
231 | //perform bvh tree traversal and report overlapping triangles to 'callback' |
---|
232 | void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
233 | { |
---|
234 | |
---|
235 | #ifdef DISABLE_BVH |
---|
236 | //brute force traverse all triangles |
---|
237 | btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax); |
---|
238 | #else |
---|
239 | |
---|
240 | //first get all the nodes |
---|
241 | |
---|
242 | |
---|
243 | struct MyNodeOverlapCallback : public btNodeOverlapCallback |
---|
244 | { |
---|
245 | btStridingMeshInterface* m_meshInterface; |
---|
246 | btTriangleCallback* m_callback; |
---|
247 | btVector3 m_triangle[3]; |
---|
248 | |
---|
249 | |
---|
250 | MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface) |
---|
251 | :m_meshInterface(meshInterface), |
---|
252 | m_callback(callback) |
---|
253 | { |
---|
254 | } |
---|
255 | |
---|
256 | virtual void processNode(int nodeSubPart, int nodeTriangleIndex) |
---|
257 | { |
---|
258 | const unsigned char *vertexbase; |
---|
259 | int numverts; |
---|
260 | PHY_ScalarType type; |
---|
261 | int stride; |
---|
262 | const unsigned char *indexbase; |
---|
263 | int indexstride; |
---|
264 | int numfaces; |
---|
265 | PHY_ScalarType indicestype; |
---|
266 | |
---|
267 | |
---|
268 | m_meshInterface->getLockedReadOnlyVertexIndexBase( |
---|
269 | &vertexbase, |
---|
270 | numverts, |
---|
271 | type, |
---|
272 | stride, |
---|
273 | &indexbase, |
---|
274 | indexstride, |
---|
275 | numfaces, |
---|
276 | indicestype, |
---|
277 | nodeSubPart); |
---|
278 | |
---|
279 | unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride); |
---|
280 | btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT||indicestype==PHY_UCHAR); |
---|
281 | |
---|
282 | const btVector3& meshScaling = m_meshInterface->getScaling(); |
---|
283 | for (int j=2;j>=0;j--) |
---|
284 | { |
---|
285 | |
---|
286 | int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:indicestype==PHY_INTEGER?gfxbase[j]:((unsigned char*)gfxbase)[j]; |
---|
287 | |
---|
288 | |
---|
289 | #ifdef DEBUG_TRIANGLE_MESH |
---|
290 | printf("%d ,",graphicsindex); |
---|
291 | #endif //DEBUG_TRIANGLE_MESH |
---|
292 | if (type == PHY_FLOAT) |
---|
293 | { |
---|
294 | float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); |
---|
295 | |
---|
296 | m_triangle[j] = btVector3( |
---|
297 | graphicsbase[0]*meshScaling.getX(), |
---|
298 | graphicsbase[1]*meshScaling.getY(), |
---|
299 | graphicsbase[2]*meshScaling.getZ()); |
---|
300 | } |
---|
301 | else |
---|
302 | { |
---|
303 | double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); |
---|
304 | |
---|
305 | m_triangle[j] = btVector3( |
---|
306 | btScalar(graphicsbase[0])*meshScaling.getX(), |
---|
307 | btScalar(graphicsbase[1])*meshScaling.getY(), |
---|
308 | btScalar(graphicsbase[2])*meshScaling.getZ()); |
---|
309 | } |
---|
310 | #ifdef DEBUG_TRIANGLE_MESH |
---|
311 | printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z()); |
---|
312 | #endif //DEBUG_TRIANGLE_MESH |
---|
313 | } |
---|
314 | |
---|
315 | m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex); |
---|
316 | m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart); |
---|
317 | } |
---|
318 | |
---|
319 | }; |
---|
320 | |
---|
321 | MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface); |
---|
322 | |
---|
323 | m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax); |
---|
324 | |
---|
325 | |
---|
326 | #endif//DISABLE_BVH |
---|
327 | |
---|
328 | |
---|
329 | } |
---|
330 | |
---|
331 | void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling) |
---|
332 | { |
---|
333 | if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON) |
---|
334 | { |
---|
335 | btTriangleMeshShape::setLocalScaling(scaling); |
---|
336 | buildOptimizedBvh(); |
---|
337 | } |
---|
338 | } |
---|
339 | |
---|
340 | void btBvhTriangleMeshShape::buildOptimizedBvh() |
---|
341 | { |
---|
342 | if (m_ownsBvh) |
---|
343 | { |
---|
344 | m_bvh->~btOptimizedBvh(); |
---|
345 | btAlignedFree(m_bvh); |
---|
346 | } |
---|
347 | ///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work |
---|
348 | void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16); |
---|
349 | m_bvh = new(mem) btOptimizedBvh(); |
---|
350 | //rebuild the bvh... |
---|
351 | m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax); |
---|
352 | m_ownsBvh = true; |
---|
353 | } |
---|
354 | |
---|
355 | void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling) |
---|
356 | { |
---|
357 | btAssert(!m_bvh); |
---|
358 | btAssert(!m_ownsBvh); |
---|
359 | |
---|
360 | m_bvh = bvh; |
---|
361 | m_ownsBvh = false; |
---|
362 | // update the scaling without rebuilding the bvh |
---|
363 | if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON) |
---|
364 | { |
---|
365 | btTriangleMeshShape::setLocalScaling(scaling); |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | ///fills the dataBuffer and returns the struct name (and 0 on failure) |
---|
372 | const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const |
---|
373 | { |
---|
374 | btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*) dataBuffer; |
---|
375 | |
---|
376 | btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer); |
---|
377 | |
---|
378 | m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer); |
---|
379 | |
---|
380 | trimeshData->m_collisionMargin = float(m_collisionMargin); |
---|
381 | |
---|
382 | |
---|
383 | |
---|
384 | if (m_bvh && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_BVH)) |
---|
385 | { |
---|
386 | void* chunk = serializer->findPointer(m_bvh); |
---|
387 | if (chunk) |
---|
388 | { |
---|
389 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
390 | trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)chunk; |
---|
391 | trimeshData->m_quantizedFloatBvh = 0; |
---|
392 | #else |
---|
393 | trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk; |
---|
394 | trimeshData->m_quantizedDoubleBvh= 0; |
---|
395 | #endif //BT_USE_DOUBLE_PRECISION |
---|
396 | } else |
---|
397 | { |
---|
398 | |
---|
399 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
400 | trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh); |
---|
401 | trimeshData->m_quantizedFloatBvh = 0; |
---|
402 | #else |
---|
403 | trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh); |
---|
404 | trimeshData->m_quantizedDoubleBvh= 0; |
---|
405 | #endif //BT_USE_DOUBLE_PRECISION |
---|
406 | |
---|
407 | int sz = m_bvh->calculateSerializeBufferSizeNew(); |
---|
408 | btChunk* chunk = serializer->allocate(sz,1); |
---|
409 | const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer); |
---|
410 | serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,m_bvh); |
---|
411 | } |
---|
412 | } else |
---|
413 | { |
---|
414 | trimeshData->m_quantizedFloatBvh = 0; |
---|
415 | trimeshData->m_quantizedDoubleBvh = 0; |
---|
416 | } |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | if (m_triangleInfoMap && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_TRIANGLEINFOMAP)) |
---|
421 | { |
---|
422 | void* chunk = serializer->findPointer(m_triangleInfoMap); |
---|
423 | if (chunk) |
---|
424 | { |
---|
425 | trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)chunk; |
---|
426 | } else |
---|
427 | { |
---|
428 | trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)serializer->getUniquePointer(m_triangleInfoMap); |
---|
429 | int sz = m_triangleInfoMap->calculateSerializeBufferSize(); |
---|
430 | btChunk* chunk = serializer->allocate(sz,1); |
---|
431 | const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer); |
---|
432 | serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,m_triangleInfoMap); |
---|
433 | } |
---|
434 | } else |
---|
435 | { |
---|
436 | trimeshData->m_triangleInfoMap = 0; |
---|
437 | } |
---|
438 | |
---|
439 | return "btTriangleMeshShapeData"; |
---|
440 | } |
---|
441 | |
---|
442 | void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const |
---|
443 | { |
---|
444 | if (m_bvh) |
---|
445 | { |
---|
446 | int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place |
---|
447 | btChunk* chunk = serializer->allocate(len,1); |
---|
448 | const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer); |
---|
449 | serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,(void*)m_bvh); |
---|
450 | } |
---|
451 | } |
---|
452 | |
---|
453 | void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const |
---|
454 | { |
---|
455 | if (m_triangleInfoMap) |
---|
456 | { |
---|
457 | int len = m_triangleInfoMap->calculateSerializeBufferSize(); |
---|
458 | btChunk* chunk = serializer->allocate(len,1); |
---|
459 | const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer); |
---|
460 | serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,(void*)m_triangleInfoMap); |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | |
---|