Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/mergeFS18/src/external/gmock/include/gmock/gmock-matchers.h @ 12171

Last change on this file since 12171 was 9021, checked in by landauf, 13 years ago

added google test and google mock to external libraries

  • Property svn:eol-style set to native
File size: 107.1 KB
Line 
1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers.  More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41#include <algorithm>
42#include <limits>
43#include <ostream>  // NOLINT
44#include <sstream>
45#include <string>
46#include <utility>
47#include <vector>
48
49#include "gmock/internal/gmock-internal-utils.h"
50#include "gmock/internal/gmock-port.h"
51#include "gtest/gtest.h"
52
53namespace testing {
54
55// To implement a matcher Foo for type T, define:
56//   1. a class FooMatcherImpl that implements the
57//      MatcherInterface<T> interface, and
58//   2. a factory function that creates a Matcher<T> object from a
59//      FooMatcherImpl*.
60//
61// The two-level delegation design makes it possible to allow a user
62// to write "v" instead of "Eq(v)" where a Matcher is expected, which
63// is impossible if we pass matchers by pointers.  It also eases
64// ownership management as Matcher objects can now be copied like
65// plain values.
66
67// MatchResultListener is an abstract class.  Its << operator can be
68// used by a matcher to explain why a value matches or doesn't match.
69//
70// TODO(wan@google.com): add method
71//   bool InterestedInWhy(bool result) const;
72// to indicate whether the listener is interested in why the match
73// result is 'result'.
74class MatchResultListener {
75 public:
76  // Creates a listener object with the given underlying ostream.  The
77  // listener does not own the ostream.
78  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
79  virtual ~MatchResultListener() = 0;  // Makes this class abstract.
80
81  // Streams x to the underlying ostream; does nothing if the ostream
82  // is NULL.
83  template <typename T>
84  MatchResultListener& operator<<(const T& x) {
85    if (stream_ != NULL)
86      *stream_ << x;
87    return *this;
88  }
89
90  // Returns the underlying ostream.
91  ::std::ostream* stream() { return stream_; }
92
93  // Returns true iff the listener is interested in an explanation of
94  // the match result.  A matcher's MatchAndExplain() method can use
95  // this information to avoid generating the explanation when no one
96  // intends to hear it.
97  bool IsInterested() const { return stream_ != NULL; }
98
99 private:
100  ::std::ostream* const stream_;
101
102  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
103};
104
105inline MatchResultListener::~MatchResultListener() {
106}
107
108// The implementation of a matcher.
109template <typename T>
110class MatcherInterface {
111 public:
112  virtual ~MatcherInterface() {}
113
114  // Returns true iff the matcher matches x; also explains the match
115  // result to 'listener', in the form of a non-restrictive relative
116  // clause ("which ...", "whose ...", etc) that describes x.  For
117  // example, the MatchAndExplain() method of the Pointee(...) matcher
118  // should generate an explanation like "which points to ...".
119  //
120  // You should override this method when defining a new matcher.
121  //
122  // It's the responsibility of the caller (Google Mock) to guarantee
123  // that 'listener' is not NULL.  This helps to simplify a matcher's
124  // implementation when it doesn't care about the performance, as it
125  // can talk to 'listener' without checking its validity first.
126  // However, in order to implement dummy listeners efficiently,
127  // listener->stream() may be NULL.
128  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
129
130  // Describes this matcher to an ostream.  The function should print
131  // a verb phrase that describes the property a value matching this
132  // matcher should have.  The subject of the verb phrase is the value
133  // being matched.  For example, the DescribeTo() method of the Gt(7)
134  // matcher prints "is greater than 7".
135  virtual void DescribeTo(::std::ostream* os) const = 0;
136
137  // Describes the negation of this matcher to an ostream.  For
138  // example, if the description of this matcher is "is greater than
139  // 7", the negated description could be "is not greater than 7".
140  // You are not required to override this when implementing
141  // MatcherInterface, but it is highly advised so that your matcher
142  // can produce good error messages.
143  virtual void DescribeNegationTo(::std::ostream* os) const {
144    *os << "not (";
145    DescribeTo(os);
146    *os << ")";
147  }
148};
149
150namespace internal {
151
152// A match result listener that ignores the explanation.
153class DummyMatchResultListener : public MatchResultListener {
154 public:
155  DummyMatchResultListener() : MatchResultListener(NULL) {}
156
157 private:
158  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
159};
160
161// A match result listener that forwards the explanation to a given
162// ostream.  The difference between this and MatchResultListener is
163// that the former is concrete.
164class StreamMatchResultListener : public MatchResultListener {
165 public:
166  explicit StreamMatchResultListener(::std::ostream* os)
167      : MatchResultListener(os) {}
168
169 private:
170  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
171};
172
173// A match result listener that stores the explanation in a string.
174class StringMatchResultListener : public MatchResultListener {
175 public:
176  StringMatchResultListener() : MatchResultListener(&ss_) {}
177
178  // Returns the explanation heard so far.
179  internal::string str() const { return ss_.str(); }
180
181 private:
182  ::std::stringstream ss_;
183
184  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
185};
186
187// An internal class for implementing Matcher<T>, which will derive
188// from it.  We put functionalities common to all Matcher<T>
189// specializations here to avoid code duplication.
190template <typename T>
191class MatcherBase {
192 public:
193  // Returns true iff the matcher matches x; also explains the match
194  // result to 'listener'.
195  bool MatchAndExplain(T x, MatchResultListener* listener) const {
196    return impl_->MatchAndExplain(x, listener);
197  }
198
199  // Returns true iff this matcher matches x.
200  bool Matches(T x) const {
201    DummyMatchResultListener dummy;
202    return MatchAndExplain(x, &dummy);
203  }
204
205  // Describes this matcher to an ostream.
206  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
207
208  // Describes the negation of this matcher to an ostream.
209  void DescribeNegationTo(::std::ostream* os) const {
210    impl_->DescribeNegationTo(os);
211  }
212
213  // Explains why x matches, or doesn't match, the matcher.
214  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
215    StreamMatchResultListener listener(os);
216    MatchAndExplain(x, &listener);
217  }
218
219 protected:
220  MatcherBase() {}
221
222  // Constructs a matcher from its implementation.
223  explicit MatcherBase(const MatcherInterface<T>* impl)
224      : impl_(impl) {}
225
226  virtual ~MatcherBase() {}
227
228 private:
229  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
230  // interfaces.  The former dynamically allocates a chunk of memory
231  // to hold the reference count, while the latter tracks all
232  // references using a circular linked list without allocating
233  // memory.  It has been observed that linked_ptr performs better in
234  // typical scenarios.  However, shared_ptr can out-perform
235  // linked_ptr when there are many more uses of the copy constructor
236  // than the default constructor.
237  //
238  // If performance becomes a problem, we should see if using
239  // shared_ptr helps.
240  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
241};
242
243}  // namespace internal
244
245// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
246// object that can check whether a value of type T matches.  The
247// implementation of Matcher<T> is just a linked_ptr to const
248// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
249// from Matcher!
250template <typename T>
251class Matcher : public internal::MatcherBase<T> {
252 public:
253  // Constructs a null matcher.  Needed for storing Matcher objects in STL
254  // containers.  A default-constructed matcher is not yet initialized.  You
255  // cannot use it until a valid value has been assigned to it.
256  Matcher() {}
257
258  // Constructs a matcher from its implementation.
259  explicit Matcher(const MatcherInterface<T>* impl)
260      : internal::MatcherBase<T>(impl) {}
261
262  // Implicit constructor here allows people to write
263  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
264  Matcher(T value);  // NOLINT
265};
266
267// The following two specializations allow the user to write str
268// instead of Eq(str) and "foo" instead of Eq("foo") when a string
269// matcher is expected.
270template <>
271class Matcher<const internal::string&>
272    : public internal::MatcherBase<const internal::string&> {
273 public:
274  Matcher() {}
275
276  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
277      : internal::MatcherBase<const internal::string&>(impl) {}
278
279  // Allows the user to write str instead of Eq(str) sometimes, where
280  // str is a string object.
281  Matcher(const internal::string& s);  // NOLINT
282
283  // Allows the user to write "foo" instead of Eq("foo") sometimes.
284  Matcher(const char* s);  // NOLINT
285};
286
287template <>
288class Matcher<internal::string>
289    : public internal::MatcherBase<internal::string> {
290 public:
291  Matcher() {}
292
293  explicit Matcher(const MatcherInterface<internal::string>* impl)
294      : internal::MatcherBase<internal::string>(impl) {}
295
296  // Allows the user to write str instead of Eq(str) sometimes, where
297  // str is a string object.
298  Matcher(const internal::string& s);  // NOLINT
299
300  // Allows the user to write "foo" instead of Eq("foo") sometimes.
301  Matcher(const char* s);  // NOLINT
302};
303
304// The PolymorphicMatcher class template makes it easy to implement a
305// polymorphic matcher (i.e. a matcher that can match values of more
306// than one type, e.g. Eq(n) and NotNull()).
307//
308// To define a polymorphic matcher, a user should provide an Impl
309// class that has a DescribeTo() method and a DescribeNegationTo()
310// method, and define a member function (or member function template)
311//
312//   bool MatchAndExplain(const Value& value,
313//                        MatchResultListener* listener) const;
314//
315// See the definition of NotNull() for a complete example.
316template <class Impl>
317class PolymorphicMatcher {
318 public:
319  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
320
321  // Returns a mutable reference to the underlying matcher
322  // implementation object.
323  Impl& mutable_impl() { return impl_; }
324
325  // Returns an immutable reference to the underlying matcher
326  // implementation object.
327  const Impl& impl() const { return impl_; }
328
329  template <typename T>
330  operator Matcher<T>() const {
331    return Matcher<T>(new MonomorphicImpl<T>(impl_));
332  }
333
334 private:
335  template <typename T>
336  class MonomorphicImpl : public MatcherInterface<T> {
337   public:
338    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
339
340    virtual void DescribeTo(::std::ostream* os) const {
341      impl_.DescribeTo(os);
342    }
343
344    virtual void DescribeNegationTo(::std::ostream* os) const {
345      impl_.DescribeNegationTo(os);
346    }
347
348    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
349      return impl_.MatchAndExplain(x, listener);
350    }
351
352   private:
353    const Impl impl_;
354
355    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
356  };
357
358  Impl impl_;
359
360  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
361};
362
363// Creates a matcher from its implementation.  This is easier to use
364// than the Matcher<T> constructor as it doesn't require you to
365// explicitly write the template argument, e.g.
366//
367//   MakeMatcher(foo);
368// vs
369//   Matcher<const string&>(foo);
370template <typename T>
371inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
372  return Matcher<T>(impl);
373};
374
375// Creates a polymorphic matcher from its implementation.  This is
376// easier to use than the PolymorphicMatcher<Impl> constructor as it
377// doesn't require you to explicitly write the template argument, e.g.
378//
379//   MakePolymorphicMatcher(foo);
380// vs
381//   PolymorphicMatcher<TypeOfFoo>(foo);
382template <class Impl>
383inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
384  return PolymorphicMatcher<Impl>(impl);
385}
386
387// In order to be safe and clear, casting between different matcher
388// types is done explicitly via MatcherCast<T>(m), which takes a
389// matcher m and returns a Matcher<T>.  It compiles only when T can be
390// statically converted to the argument type of m.
391template <typename T, typename M>
392Matcher<T> MatcherCast(M m);
393
394// Implements SafeMatcherCast().
395//
396// We use an intermediate class to do the actual safe casting as Nokia's
397// Symbian compiler cannot decide between
398// template <T, M> ... (M) and
399// template <T, U> ... (const Matcher<U>&)
400// for function templates but can for member function templates.
401template <typename T>
402class SafeMatcherCastImpl {
403 public:
404  // This overload handles polymorphic matchers only since monomorphic
405  // matchers are handled by the next one.
406  template <typename M>
407  static inline Matcher<T> Cast(M polymorphic_matcher) {
408    return Matcher<T>(polymorphic_matcher);
409  }
410
411  // This overload handles monomorphic matchers.
412  //
413  // In general, if type T can be implicitly converted to type U, we can
414  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
415  // contravariant): just keep a copy of the original Matcher<U>, convert the
416  // argument from type T to U, and then pass it to the underlying Matcher<U>.
417  // The only exception is when U is a reference and T is not, as the
418  // underlying Matcher<U> may be interested in the argument's address, which
419  // is not preserved in the conversion from T to U.
420  template <typename U>
421  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
422    // Enforce that T can be implicitly converted to U.
423    GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
424                          T_must_be_implicitly_convertible_to_U);
425    // Enforce that we are not converting a non-reference type T to a reference
426    // type U.
427    GTEST_COMPILE_ASSERT_(
428        internal::is_reference<T>::value || !internal::is_reference<U>::value,
429        cannot_convert_non_referentce_arg_to_reference);
430    // In case both T and U are arithmetic types, enforce that the
431    // conversion is not lossy.
432    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
433    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
434    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
435    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
436    GTEST_COMPILE_ASSERT_(
437        kTIsOther || kUIsOther ||
438        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
439        conversion_of_arithmetic_types_must_be_lossless);
440    return MatcherCast<T>(matcher);
441  }
442};
443
444template <typename T, typename M>
445inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
446  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
447}
448
449// A<T>() returns a matcher that matches any value of type T.
450template <typename T>
451Matcher<T> A();
452
453// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
454// and MUST NOT BE USED IN USER CODE!!!
455namespace internal {
456
457// If the explanation is not empty, prints it to the ostream.
458inline void PrintIfNotEmpty(const internal::string& explanation,
459                            std::ostream* os) {
460  if (explanation != "" && os != NULL) {
461    *os << ", " << explanation;
462  }
463}
464
465// Returns true if the given type name is easy to read by a human.
466// This is used to decide whether printing the type of a value might
467// be helpful.
468inline bool IsReadableTypeName(const string& type_name) {
469  // We consider a type name readable if it's short or doesn't contain
470  // a template or function type.
471  return (type_name.length() <= 20 ||
472          type_name.find_first_of("<(") == string::npos);
473}
474
475// Matches the value against the given matcher, prints the value and explains
476// the match result to the listener. Returns the match result.
477// 'listener' must not be NULL.
478// Value cannot be passed by const reference, because some matchers take a
479// non-const argument.
480template <typename Value, typename T>
481bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
482                          MatchResultListener* listener) {
483  if (!listener->IsInterested()) {
484    // If the listener is not interested, we do not need to construct the
485    // inner explanation.
486    return matcher.Matches(value);
487  }
488
489  StringMatchResultListener inner_listener;
490  const bool match = matcher.MatchAndExplain(value, &inner_listener);
491
492  UniversalPrint(value, listener->stream());
493#if GTEST_HAS_RTTI
494  const string& type_name = GetTypeName<Value>();
495  if (IsReadableTypeName(type_name))
496    *listener->stream() << " (of type " << type_name << ")";
497#endif
498  PrintIfNotEmpty(inner_listener.str(), listener->stream());
499
500  return match;
501}
502
503// An internal helper class for doing compile-time loop on a tuple's
504// fields.
505template <size_t N>
506class TuplePrefix {
507 public:
508  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
509  // iff the first N fields of matcher_tuple matches the first N
510  // fields of value_tuple, respectively.
511  template <typename MatcherTuple, typename ValueTuple>
512  static bool Matches(const MatcherTuple& matcher_tuple,
513                      const ValueTuple& value_tuple) {
514    using ::std::tr1::get;
515    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
516        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
517  }
518
519  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
520  // describes failures in matching the first N fields of matchers
521  // against the first N fields of values.  If there is no failure,
522  // nothing will be streamed to os.
523  template <typename MatcherTuple, typename ValueTuple>
524  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
525                                     const ValueTuple& values,
526                                     ::std::ostream* os) {
527    using ::std::tr1::tuple_element;
528    using ::std::tr1::get;
529
530    // First, describes failures in the first N - 1 fields.
531    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
532
533    // Then describes the failure (if any) in the (N - 1)-th (0-based)
534    // field.
535    typename tuple_element<N - 1, MatcherTuple>::type matcher =
536        get<N - 1>(matchers);
537    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
538    Value value = get<N - 1>(values);
539    StringMatchResultListener listener;
540    if (!matcher.MatchAndExplain(value, &listener)) {
541      // TODO(wan): include in the message the name of the parameter
542      // as used in MOCK_METHOD*() when possible.
543      *os << "  Expected arg #" << N - 1 << ": ";
544      get<N - 1>(matchers).DescribeTo(os);
545      *os << "\n           Actual: ";
546      // We remove the reference in type Value to prevent the
547      // universal printer from printing the address of value, which
548      // isn't interesting to the user most of the time.  The
549      // matcher's MatchAndExplain() method handles the case when
550      // the address is interesting.
551      internal::UniversalPrint(value, os);
552      PrintIfNotEmpty(listener.str(), os);
553      *os << "\n";
554    }
555  }
556};
557
558// The base case.
559template <>
560class TuplePrefix<0> {
561 public:
562  template <typename MatcherTuple, typename ValueTuple>
563  static bool Matches(const MatcherTuple& /* matcher_tuple */,
564                      const ValueTuple& /* value_tuple */) {
565    return true;
566  }
567
568  template <typename MatcherTuple, typename ValueTuple>
569  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
570                                     const ValueTuple& /* values */,
571                                     ::std::ostream* /* os */) {}
572};
573
574// TupleMatches(matcher_tuple, value_tuple) returns true iff all
575// matchers in matcher_tuple match the corresponding fields in
576// value_tuple.  It is a compiler error if matcher_tuple and
577// value_tuple have different number of fields or incompatible field
578// types.
579template <typename MatcherTuple, typename ValueTuple>
580bool TupleMatches(const MatcherTuple& matcher_tuple,
581                  const ValueTuple& value_tuple) {
582  using ::std::tr1::tuple_size;
583  // Makes sure that matcher_tuple and value_tuple have the same
584  // number of fields.
585  GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
586                        tuple_size<ValueTuple>::value,
587                        matcher_and_value_have_different_numbers_of_fields);
588  return TuplePrefix<tuple_size<ValueTuple>::value>::
589      Matches(matcher_tuple, value_tuple);
590}
591
592// Describes failures in matching matchers against values.  If there
593// is no failure, nothing will be streamed to os.
594template <typename MatcherTuple, typename ValueTuple>
595void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
596                                const ValueTuple& values,
597                                ::std::ostream* os) {
598  using ::std::tr1::tuple_size;
599  TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
600      matchers, values, os);
601}
602
603// The MatcherCastImpl class template is a helper for implementing
604// MatcherCast().  We need this helper in order to partially
605// specialize the implementation of MatcherCast() (C++ allows
606// class/struct templates to be partially specialized, but not
607// function templates.).
608
609// This general version is used when MatcherCast()'s argument is a
610// polymorphic matcher (i.e. something that can be converted to a
611// Matcher but is not one yet; for example, Eq(value)).
612template <typename T, typename M>
613class MatcherCastImpl {
614 public:
615  static Matcher<T> Cast(M polymorphic_matcher) {
616    return Matcher<T>(polymorphic_matcher);
617  }
618};
619
620// This more specialized version is used when MatcherCast()'s argument
621// is already a Matcher.  This only compiles when type T can be
622// statically converted to type U.
623template <typename T, typename U>
624class MatcherCastImpl<T, Matcher<U> > {
625 public:
626  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
627    return Matcher<T>(new Impl(source_matcher));
628  }
629
630 private:
631  class Impl : public MatcherInterface<T> {
632   public:
633    explicit Impl(const Matcher<U>& source_matcher)
634        : source_matcher_(source_matcher) {}
635
636    // We delegate the matching logic to the source matcher.
637    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
638      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
639    }
640
641    virtual void DescribeTo(::std::ostream* os) const {
642      source_matcher_.DescribeTo(os);
643    }
644
645    virtual void DescribeNegationTo(::std::ostream* os) const {
646      source_matcher_.DescribeNegationTo(os);
647    }
648
649   private:
650    const Matcher<U> source_matcher_;
651
652    GTEST_DISALLOW_ASSIGN_(Impl);
653  };
654};
655
656// This even more specialized version is used for efficiently casting
657// a matcher to its own type.
658template <typename T>
659class MatcherCastImpl<T, Matcher<T> > {
660 public:
661  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
662};
663
664// Implements A<T>().
665template <typename T>
666class AnyMatcherImpl : public MatcherInterface<T> {
667 public:
668  virtual bool MatchAndExplain(
669      T /* x */, MatchResultListener* /* listener */) const { return true; }
670  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
671  virtual void DescribeNegationTo(::std::ostream* os) const {
672    // This is mostly for completeness' safe, as it's not very useful
673    // to write Not(A<bool>()).  However we cannot completely rule out
674    // such a possibility, and it doesn't hurt to be prepared.
675    *os << "never matches";
676  }
677};
678
679// Implements _, a matcher that matches any value of any
680// type.  This is a polymorphic matcher, so we need a template type
681// conversion operator to make it appearing as a Matcher<T> for any
682// type T.
683class AnythingMatcher {
684 public:
685  template <typename T>
686  operator Matcher<T>() const { return A<T>(); }
687};
688
689// Implements a matcher that compares a given value with a
690// pre-supplied value using one of the ==, <=, <, etc, operators.  The
691// two values being compared don't have to have the same type.
692//
693// The matcher defined here is polymorphic (for example, Eq(5) can be
694// used to match an int, a short, a double, etc).  Therefore we use
695// a template type conversion operator in the implementation.
696//
697// We define this as a macro in order to eliminate duplicated source
698// code.
699//
700// The following template definition assumes that the Rhs parameter is
701// a "bare" type (i.e. neither 'const T' nor 'T&').
702#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
703    name, op, relation, negated_relation) \
704  template <typename Rhs> class name##Matcher { \
705   public: \
706    explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
707    template <typename Lhs> \
708    operator Matcher<Lhs>() const { \
709      return MakeMatcher(new Impl<Lhs>(rhs_)); \
710    } \
711   private: \
712    template <typename Lhs> \
713    class Impl : public MatcherInterface<Lhs> { \
714     public: \
715      explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
716      virtual bool MatchAndExplain(\
717          Lhs lhs, MatchResultListener* /* listener */) const { \
718        return lhs op rhs_; \
719      } \
720      virtual void DescribeTo(::std::ostream* os) const { \
721        *os << relation  " "; \
722        UniversalPrint(rhs_, os); \
723      } \
724      virtual void DescribeNegationTo(::std::ostream* os) const { \
725        *os << negated_relation  " "; \
726        UniversalPrint(rhs_, os); \
727      } \
728     private: \
729      Rhs rhs_; \
730      GTEST_DISALLOW_ASSIGN_(Impl); \
731    }; \
732    Rhs rhs_; \
733    GTEST_DISALLOW_ASSIGN_(name##Matcher); \
734  }
735
736// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
737// respectively.
738GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
739GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
740GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
741GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
742GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
743GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
744
745#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
746
747// Implements the polymorphic IsNull() matcher, which matches any raw or smart
748// pointer that is NULL.
749class IsNullMatcher {
750 public:
751  template <typename Pointer>
752  bool MatchAndExplain(const Pointer& p,
753                       MatchResultListener* /* listener */) const {
754    return GetRawPointer(p) == NULL;
755  }
756
757  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
758  void DescribeNegationTo(::std::ostream* os) const {
759    *os << "isn't NULL";
760  }
761};
762
763// Implements the polymorphic NotNull() matcher, which matches any raw or smart
764// pointer that is not NULL.
765class NotNullMatcher {
766 public:
767  template <typename Pointer>
768  bool MatchAndExplain(const Pointer& p,
769                       MatchResultListener* /* listener */) const {
770    return GetRawPointer(p) != NULL;
771  }
772
773  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
774  void DescribeNegationTo(::std::ostream* os) const {
775    *os << "is NULL";
776  }
777};
778
779// Ref(variable) matches any argument that is a reference to
780// 'variable'.  This matcher is polymorphic as it can match any
781// super type of the type of 'variable'.
782//
783// The RefMatcher template class implements Ref(variable).  It can
784// only be instantiated with a reference type.  This prevents a user
785// from mistakenly using Ref(x) to match a non-reference function
786// argument.  For example, the following will righteously cause a
787// compiler error:
788//
789//   int n;
790//   Matcher<int> m1 = Ref(n);   // This won't compile.
791//   Matcher<int&> m2 = Ref(n);  // This will compile.
792template <typename T>
793class RefMatcher;
794
795template <typename T>
796class RefMatcher<T&> {
797  // Google Mock is a generic framework and thus needs to support
798  // mocking any function types, including those that take non-const
799  // reference arguments.  Therefore the template parameter T (and
800  // Super below) can be instantiated to either a const type or a
801  // non-const type.
802 public:
803  // RefMatcher() takes a T& instead of const T&, as we want the
804  // compiler to catch using Ref(const_value) as a matcher for a
805  // non-const reference.
806  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
807
808  template <typename Super>
809  operator Matcher<Super&>() const {
810    // By passing object_ (type T&) to Impl(), which expects a Super&,
811    // we make sure that Super is a super type of T.  In particular,
812    // this catches using Ref(const_value) as a matcher for a
813    // non-const reference, as you cannot implicitly convert a const
814    // reference to a non-const reference.
815    return MakeMatcher(new Impl<Super>(object_));
816  }
817
818 private:
819  template <typename Super>
820  class Impl : public MatcherInterface<Super&> {
821   public:
822    explicit Impl(Super& x) : object_(x) {}  // NOLINT
823
824    // MatchAndExplain() takes a Super& (as opposed to const Super&)
825    // in order to match the interface MatcherInterface<Super&>.
826    virtual bool MatchAndExplain(
827        Super& x, MatchResultListener* listener) const {
828      *listener << "which is located @" << static_cast<const void*>(&x);
829      return &x == &object_;
830    }
831
832    virtual void DescribeTo(::std::ostream* os) const {
833      *os << "references the variable ";
834      UniversalPrinter<Super&>::Print(object_, os);
835    }
836
837    virtual void DescribeNegationTo(::std::ostream* os) const {
838      *os << "does not reference the variable ";
839      UniversalPrinter<Super&>::Print(object_, os);
840    }
841
842   private:
843    const Super& object_;
844
845    GTEST_DISALLOW_ASSIGN_(Impl);
846  };
847
848  T& object_;
849
850  GTEST_DISALLOW_ASSIGN_(RefMatcher);
851};
852
853// Polymorphic helper functions for narrow and wide string matchers.
854inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
855  return String::CaseInsensitiveCStringEquals(lhs, rhs);
856}
857
858inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
859                                         const wchar_t* rhs) {
860  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
861}
862
863// String comparison for narrow or wide strings that can have embedded NUL
864// characters.
865template <typename StringType>
866bool CaseInsensitiveStringEquals(const StringType& s1,
867                                 const StringType& s2) {
868  // Are the heads equal?
869  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
870    return false;
871  }
872
873  // Skip the equal heads.
874  const typename StringType::value_type nul = 0;
875  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
876
877  // Are we at the end of either s1 or s2?
878  if (i1 == StringType::npos || i2 == StringType::npos) {
879    return i1 == i2;
880  }
881
882  // Are the tails equal?
883  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
884}
885
886// String matchers.
887
888// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
889template <typename StringType>
890class StrEqualityMatcher {
891 public:
892  typedef typename StringType::const_pointer ConstCharPointer;
893
894  StrEqualityMatcher(const StringType& str, bool expect_eq,
895                     bool case_sensitive)
896      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
897
898  // When expect_eq_ is true, returns true iff s is equal to string_;
899  // otherwise returns true iff s is not equal to string_.
900  bool MatchAndExplain(ConstCharPointer s,
901                       MatchResultListener* listener) const {
902    if (s == NULL) {
903      return !expect_eq_;
904    }
905    return MatchAndExplain(StringType(s), listener);
906  }
907
908  bool MatchAndExplain(const StringType& s,
909                       MatchResultListener* /* listener */) const {
910    const bool eq = case_sensitive_ ? s == string_ :
911        CaseInsensitiveStringEquals(s, string_);
912    return expect_eq_ == eq;
913  }
914
915  void DescribeTo(::std::ostream* os) const {
916    DescribeToHelper(expect_eq_, os);
917  }
918
919  void DescribeNegationTo(::std::ostream* os) const {
920    DescribeToHelper(!expect_eq_, os);
921  }
922
923 private:
924  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
925    *os << (expect_eq ? "is " : "isn't ");
926    *os << "equal to ";
927    if (!case_sensitive_) {
928      *os << "(ignoring case) ";
929    }
930    UniversalPrint(string_, os);
931  }
932
933  const StringType string_;
934  const bool expect_eq_;
935  const bool case_sensitive_;
936
937  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
938};
939
940// Implements the polymorphic HasSubstr(substring) matcher, which
941// can be used as a Matcher<T> as long as T can be converted to a
942// string.
943template <typename StringType>
944class HasSubstrMatcher {
945 public:
946  typedef typename StringType::const_pointer ConstCharPointer;
947
948  explicit HasSubstrMatcher(const StringType& substring)
949      : substring_(substring) {}
950
951  // These overloaded methods allow HasSubstr(substring) to be used as a
952  // Matcher<T> as long as T can be converted to string.  Returns true
953  // iff s contains substring_ as a substring.
954  bool MatchAndExplain(ConstCharPointer s,
955                       MatchResultListener* listener) const {
956    return s != NULL && MatchAndExplain(StringType(s), listener);
957  }
958
959  bool MatchAndExplain(const StringType& s,
960                       MatchResultListener* /* listener */) const {
961    return s.find(substring_) != StringType::npos;
962  }
963
964  // Describes what this matcher matches.
965  void DescribeTo(::std::ostream* os) const {
966    *os << "has substring ";
967    UniversalPrint(substring_, os);
968  }
969
970  void DescribeNegationTo(::std::ostream* os) const {
971    *os << "has no substring ";
972    UniversalPrint(substring_, os);
973  }
974
975 private:
976  const StringType substring_;
977
978  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
979};
980
981// Implements the polymorphic StartsWith(substring) matcher, which
982// can be used as a Matcher<T> as long as T can be converted to a
983// string.
984template <typename StringType>
985class StartsWithMatcher {
986 public:
987  typedef typename StringType::const_pointer ConstCharPointer;
988
989  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
990  }
991
992  // These overloaded methods allow StartsWith(prefix) to be used as a
993  // Matcher<T> as long as T can be converted to string.  Returns true
994  // iff s starts with prefix_.
995  bool MatchAndExplain(ConstCharPointer s,
996                       MatchResultListener* listener) const {
997    return s != NULL && MatchAndExplain(StringType(s), listener);
998  }
999
1000  bool MatchAndExplain(const StringType& s,
1001                       MatchResultListener* /* listener */) const {
1002    return s.length() >= prefix_.length() &&
1003        s.substr(0, prefix_.length()) == prefix_;
1004  }
1005
1006  void DescribeTo(::std::ostream* os) const {
1007    *os << "starts with ";
1008    UniversalPrint(prefix_, os);
1009  }
1010
1011  void DescribeNegationTo(::std::ostream* os) const {
1012    *os << "doesn't start with ";
1013    UniversalPrint(prefix_, os);
1014  }
1015
1016 private:
1017  const StringType prefix_;
1018
1019  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1020};
1021
1022// Implements the polymorphic EndsWith(substring) matcher, which
1023// can be used as a Matcher<T> as long as T can be converted to a
1024// string.
1025template <typename StringType>
1026class EndsWithMatcher {
1027 public:
1028  typedef typename StringType::const_pointer ConstCharPointer;
1029
1030  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1031
1032  // These overloaded methods allow EndsWith(suffix) to be used as a
1033  // Matcher<T> as long as T can be converted to string.  Returns true
1034  // iff s ends with suffix_.
1035  bool MatchAndExplain(ConstCharPointer s,
1036                       MatchResultListener* listener) const {
1037    return s != NULL && MatchAndExplain(StringType(s), listener);
1038  }
1039
1040  bool MatchAndExplain(const StringType& s,
1041                       MatchResultListener* /* listener */) const {
1042    return s.length() >= suffix_.length() &&
1043        s.substr(s.length() - suffix_.length()) == suffix_;
1044  }
1045
1046  void DescribeTo(::std::ostream* os) const {
1047    *os << "ends with ";
1048    UniversalPrint(suffix_, os);
1049  }
1050
1051  void DescribeNegationTo(::std::ostream* os) const {
1052    *os << "doesn't end with ";
1053    UniversalPrint(suffix_, os);
1054  }
1055
1056 private:
1057  const StringType suffix_;
1058
1059  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1060};
1061
1062// Implements polymorphic matchers MatchesRegex(regex) and
1063// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1064// T can be converted to a string.
1065class MatchesRegexMatcher {
1066 public:
1067  MatchesRegexMatcher(const RE* regex, bool full_match)
1068      : regex_(regex), full_match_(full_match) {}
1069
1070  // These overloaded methods allow MatchesRegex(regex) to be used as
1071  // a Matcher<T> as long as T can be converted to string.  Returns
1072  // true iff s matches regular expression regex.  When full_match_ is
1073  // true, a full match is done; otherwise a partial match is done.
1074  bool MatchAndExplain(const char* s,
1075                       MatchResultListener* listener) const {
1076    return s != NULL && MatchAndExplain(internal::string(s), listener);
1077  }
1078
1079  bool MatchAndExplain(const internal::string& s,
1080                       MatchResultListener* /* listener */) const {
1081    return full_match_ ? RE::FullMatch(s, *regex_) :
1082        RE::PartialMatch(s, *regex_);
1083  }
1084
1085  void DescribeTo(::std::ostream* os) const {
1086    *os << (full_match_ ? "matches" : "contains")
1087        << " regular expression ";
1088    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1089  }
1090
1091  void DescribeNegationTo(::std::ostream* os) const {
1092    *os << "doesn't " << (full_match_ ? "match" : "contain")
1093        << " regular expression ";
1094    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1095  }
1096
1097 private:
1098  const internal::linked_ptr<const RE> regex_;
1099  const bool full_match_;
1100
1101  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1102};
1103
1104// Implements a matcher that compares the two fields of a 2-tuple
1105// using one of the ==, <=, <, etc, operators.  The two fields being
1106// compared don't have to have the same type.
1107//
1108// The matcher defined here is polymorphic (for example, Eq() can be
1109// used to match a tuple<int, short>, a tuple<const long&, double>,
1110// etc).  Therefore we use a template type conversion operator in the
1111// implementation.
1112//
1113// We define this as a macro in order to eliminate duplicated source
1114// code.
1115#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
1116  class name##2Matcher { \
1117   public: \
1118    template <typename T1, typename T2> \
1119    operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \
1120      return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \
1121    } \
1122    template <typename T1, typename T2> \
1123    operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
1124      return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \
1125    } \
1126   private: \
1127    template <typename Tuple> \
1128    class Impl : public MatcherInterface<Tuple> { \
1129     public: \
1130      virtual bool MatchAndExplain( \
1131          Tuple args, \
1132          MatchResultListener* /* listener */) const { \
1133        return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
1134      } \
1135      virtual void DescribeTo(::std::ostream* os) const { \
1136        *os << "are " relation;                                 \
1137      } \
1138      virtual void DescribeNegationTo(::std::ostream* os) const { \
1139        *os << "aren't " relation; \
1140      } \
1141    }; \
1142  }
1143
1144// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
1145GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair");
1146GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1147    Ge, >=, "a pair where the first >= the second");
1148GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1149    Gt, >, "a pair where the first > the second");
1150GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1151    Le, <=, "a pair where the first <= the second");
1152GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1153    Lt, <, "a pair where the first < the second");
1154GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair");
1155
1156#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
1157
1158// Implements the Not(...) matcher for a particular argument type T.
1159// We do not nest it inside the NotMatcher class template, as that
1160// will prevent different instantiations of NotMatcher from sharing
1161// the same NotMatcherImpl<T> class.
1162template <typename T>
1163class NotMatcherImpl : public MatcherInterface<T> {
1164 public:
1165  explicit NotMatcherImpl(const Matcher<T>& matcher)
1166      : matcher_(matcher) {}
1167
1168  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1169    return !matcher_.MatchAndExplain(x, listener);
1170  }
1171
1172  virtual void DescribeTo(::std::ostream* os) const {
1173    matcher_.DescribeNegationTo(os);
1174  }
1175
1176  virtual void DescribeNegationTo(::std::ostream* os) const {
1177    matcher_.DescribeTo(os);
1178  }
1179
1180 private:
1181  const Matcher<T> matcher_;
1182
1183  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1184};
1185
1186// Implements the Not(m) matcher, which matches a value that doesn't
1187// match matcher m.
1188template <typename InnerMatcher>
1189class NotMatcher {
1190 public:
1191  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1192
1193  // This template type conversion operator allows Not(m) to be used
1194  // to match any type m can match.
1195  template <typename T>
1196  operator Matcher<T>() const {
1197    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1198  }
1199
1200 private:
1201  InnerMatcher matcher_;
1202
1203  GTEST_DISALLOW_ASSIGN_(NotMatcher);
1204};
1205
1206// Implements the AllOf(m1, m2) matcher for a particular argument type
1207// T. We do not nest it inside the BothOfMatcher class template, as
1208// that will prevent different instantiations of BothOfMatcher from
1209// sharing the same BothOfMatcherImpl<T> class.
1210template <typename T>
1211class BothOfMatcherImpl : public MatcherInterface<T> {
1212 public:
1213  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1214      : matcher1_(matcher1), matcher2_(matcher2) {}
1215
1216  virtual void DescribeTo(::std::ostream* os) const {
1217    *os << "(";
1218    matcher1_.DescribeTo(os);
1219    *os << ") and (";
1220    matcher2_.DescribeTo(os);
1221    *os << ")";
1222  }
1223
1224  virtual void DescribeNegationTo(::std::ostream* os) const {
1225    *os << "(";
1226    matcher1_.DescribeNegationTo(os);
1227    *os << ") or (";
1228    matcher2_.DescribeNegationTo(os);
1229    *os << ")";
1230  }
1231
1232  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1233    // If either matcher1_ or matcher2_ doesn't match x, we only need
1234    // to explain why one of them fails.
1235    StringMatchResultListener listener1;
1236    if (!matcher1_.MatchAndExplain(x, &listener1)) {
1237      *listener << listener1.str();
1238      return false;
1239    }
1240
1241    StringMatchResultListener listener2;
1242    if (!matcher2_.MatchAndExplain(x, &listener2)) {
1243      *listener << listener2.str();
1244      return false;
1245    }
1246
1247    // Otherwise we need to explain why *both* of them match.
1248    const internal::string s1 = listener1.str();
1249    const internal::string s2 = listener2.str();
1250
1251    if (s1 == "") {
1252      *listener << s2;
1253    } else {
1254      *listener << s1;
1255      if (s2 != "") {
1256        *listener << ", and " << s2;
1257      }
1258    }
1259    return true;
1260  }
1261
1262 private:
1263  const Matcher<T> matcher1_;
1264  const Matcher<T> matcher2_;
1265
1266  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1267};
1268
1269// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1270// matches a value that matches all of the matchers m_1, ..., and m_n.
1271template <typename Matcher1, typename Matcher2>
1272class BothOfMatcher {
1273 public:
1274  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1275      : matcher1_(matcher1), matcher2_(matcher2) {}
1276
1277  // This template type conversion operator allows a
1278  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1279  // both Matcher1 and Matcher2 can match.
1280  template <typename T>
1281  operator Matcher<T>() const {
1282    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1283                                               SafeMatcherCast<T>(matcher2_)));
1284  }
1285
1286 private:
1287  Matcher1 matcher1_;
1288  Matcher2 matcher2_;
1289
1290  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1291};
1292
1293// Implements the AnyOf(m1, m2) matcher for a particular argument type
1294// T.  We do not nest it inside the AnyOfMatcher class template, as
1295// that will prevent different instantiations of AnyOfMatcher from
1296// sharing the same EitherOfMatcherImpl<T> class.
1297template <typename T>
1298class EitherOfMatcherImpl : public MatcherInterface<T> {
1299 public:
1300  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1301      : matcher1_(matcher1), matcher2_(matcher2) {}
1302
1303  virtual void DescribeTo(::std::ostream* os) const {
1304    *os << "(";
1305    matcher1_.DescribeTo(os);
1306    *os << ") or (";
1307    matcher2_.DescribeTo(os);
1308    *os << ")";
1309  }
1310
1311  virtual void DescribeNegationTo(::std::ostream* os) const {
1312    *os << "(";
1313    matcher1_.DescribeNegationTo(os);
1314    *os << ") and (";
1315    matcher2_.DescribeNegationTo(os);
1316    *os << ")";
1317  }
1318
1319  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1320    // If either matcher1_ or matcher2_ matches x, we just need to
1321    // explain why *one* of them matches.
1322    StringMatchResultListener listener1;
1323    if (matcher1_.MatchAndExplain(x, &listener1)) {
1324      *listener << listener1.str();
1325      return true;
1326    }
1327
1328    StringMatchResultListener listener2;
1329    if (matcher2_.MatchAndExplain(x, &listener2)) {
1330      *listener << listener2.str();
1331      return true;
1332    }
1333
1334    // Otherwise we need to explain why *both* of them fail.
1335    const internal::string s1 = listener1.str();
1336    const internal::string s2 = listener2.str();
1337
1338    if (s1 == "") {
1339      *listener << s2;
1340    } else {
1341      *listener << s1;
1342      if (s2 != "") {
1343        *listener << ", and " << s2;
1344      }
1345    }
1346    return false;
1347  }
1348
1349 private:
1350  const Matcher<T> matcher1_;
1351  const Matcher<T> matcher2_;
1352
1353  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1354};
1355
1356// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1357// matches a value that matches at least one of the matchers m_1, ...,
1358// and m_n.
1359template <typename Matcher1, typename Matcher2>
1360class EitherOfMatcher {
1361 public:
1362  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1363      : matcher1_(matcher1), matcher2_(matcher2) {}
1364
1365  // This template type conversion operator allows a
1366  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1367  // both Matcher1 and Matcher2 can match.
1368  template <typename T>
1369  operator Matcher<T>() const {
1370    return Matcher<T>(new EitherOfMatcherImpl<T>(
1371        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1372  }
1373
1374 private:
1375  Matcher1 matcher1_;
1376  Matcher2 matcher2_;
1377
1378  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1379};
1380
1381// Used for implementing Truly(pred), which turns a predicate into a
1382// matcher.
1383template <typename Predicate>
1384class TrulyMatcher {
1385 public:
1386  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1387
1388  // This method template allows Truly(pred) to be used as a matcher
1389  // for type T where T is the argument type of predicate 'pred'.  The
1390  // argument is passed by reference as the predicate may be
1391  // interested in the address of the argument.
1392  template <typename T>
1393  bool MatchAndExplain(T& x,  // NOLINT
1394                       MatchResultListener* /* listener */) const {
1395    // Without the if-statement, MSVC sometimes warns about converting
1396    // a value to bool (warning 4800).
1397    //
1398    // We cannot write 'return !!predicate_(x);' as that doesn't work
1399    // when predicate_(x) returns a class convertible to bool but
1400    // having no operator!().
1401    if (predicate_(x))
1402      return true;
1403    return false;
1404  }
1405
1406  void DescribeTo(::std::ostream* os) const {
1407    *os << "satisfies the given predicate";
1408  }
1409
1410  void DescribeNegationTo(::std::ostream* os) const {
1411    *os << "doesn't satisfy the given predicate";
1412  }
1413
1414 private:
1415  Predicate predicate_;
1416
1417  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1418};
1419
1420// Used for implementing Matches(matcher), which turns a matcher into
1421// a predicate.
1422template <typename M>
1423class MatcherAsPredicate {
1424 public:
1425  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1426
1427  // This template operator() allows Matches(m) to be used as a
1428  // predicate on type T where m is a matcher on type T.
1429  //
1430  // The argument x is passed by reference instead of by value, as
1431  // some matcher may be interested in its address (e.g. as in
1432  // Matches(Ref(n))(x)).
1433  template <typename T>
1434  bool operator()(const T& x) const {
1435    // We let matcher_ commit to a particular type here instead of
1436    // when the MatcherAsPredicate object was constructed.  This
1437    // allows us to write Matches(m) where m is a polymorphic matcher
1438    // (e.g. Eq(5)).
1439    //
1440    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1441    // compile when matcher_ has type Matcher<const T&>; if we write
1442    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1443    // when matcher_ has type Matcher<T>; if we just write
1444    // matcher_.Matches(x), it won't compile when matcher_ is
1445    // polymorphic, e.g. Eq(5).
1446    //
1447    // MatcherCast<const T&>() is necessary for making the code work
1448    // in all of the above situations.
1449    return MatcherCast<const T&>(matcher_).Matches(x);
1450  }
1451
1452 private:
1453  M matcher_;
1454
1455  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1456};
1457
1458// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1459// argument M must be a type that can be converted to a matcher.
1460template <typename M>
1461class PredicateFormatterFromMatcher {
1462 public:
1463  explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1464
1465  // This template () operator allows a PredicateFormatterFromMatcher
1466  // object to act as a predicate-formatter suitable for using with
1467  // Google Test's EXPECT_PRED_FORMAT1() macro.
1468  template <typename T>
1469  AssertionResult operator()(const char* value_text, const T& x) const {
1470    // We convert matcher_ to a Matcher<const T&> *now* instead of
1471    // when the PredicateFormatterFromMatcher object was constructed,
1472    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1473    // know which type to instantiate it to until we actually see the
1474    // type of x here.
1475    //
1476    // We write MatcherCast<const T&>(matcher_) instead of
1477    // Matcher<const T&>(matcher_), as the latter won't compile when
1478    // matcher_ has type Matcher<T> (e.g. An<int>()).
1479    const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1480    StringMatchResultListener listener;
1481    if (MatchPrintAndExplain(x, matcher, &listener))
1482      return AssertionSuccess();
1483
1484    ::std::stringstream ss;
1485    ss << "Value of: " << value_text << "\n"
1486       << "Expected: ";
1487    matcher.DescribeTo(&ss);
1488    ss << "\n  Actual: " << listener.str();
1489    return AssertionFailure() << ss.str();
1490  }
1491
1492 private:
1493  const M matcher_;
1494
1495  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1496};
1497
1498// A helper function for converting a matcher to a predicate-formatter
1499// without the user needing to explicitly write the type.  This is
1500// used for implementing ASSERT_THAT() and EXPECT_THAT().
1501template <typename M>
1502inline PredicateFormatterFromMatcher<M>
1503MakePredicateFormatterFromMatcher(const M& matcher) {
1504  return PredicateFormatterFromMatcher<M>(matcher);
1505}
1506
1507// Implements the polymorphic floating point equality matcher, which
1508// matches two float values using ULP-based approximation.  The
1509// template is meant to be instantiated with FloatType being either
1510// float or double.
1511template <typename FloatType>
1512class FloatingEqMatcher {
1513 public:
1514  // Constructor for FloatingEqMatcher.
1515  // The matcher's input will be compared with rhs.  The matcher treats two
1516  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1517  // equality comparisons between NANs will always return false.
1518  FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1519    rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1520
1521  // Implements floating point equality matcher as a Matcher<T>.
1522  template <typename T>
1523  class Impl : public MatcherInterface<T> {
1524   public:
1525    Impl(FloatType rhs, bool nan_eq_nan) :
1526      rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1527
1528    virtual bool MatchAndExplain(T value,
1529                                 MatchResultListener* /* listener */) const {
1530      const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1531
1532      // Compares NaNs first, if nan_eq_nan_ is true.
1533      if (nan_eq_nan_ && lhs.is_nan()) {
1534        return rhs.is_nan();
1535      }
1536
1537      return lhs.AlmostEquals(rhs);
1538    }
1539
1540    virtual void DescribeTo(::std::ostream* os) const {
1541      // os->precision() returns the previously set precision, which we
1542      // store to restore the ostream to its original configuration
1543      // after outputting.
1544      const ::std::streamsize old_precision = os->precision(
1545          ::std::numeric_limits<FloatType>::digits10 + 2);
1546      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1547        if (nan_eq_nan_) {
1548          *os << "is NaN";
1549        } else {
1550          *os << "never matches";
1551        }
1552      } else {
1553        *os << "is approximately " << rhs_;
1554      }
1555      os->precision(old_precision);
1556    }
1557
1558    virtual void DescribeNegationTo(::std::ostream* os) const {
1559      // As before, get original precision.
1560      const ::std::streamsize old_precision = os->precision(
1561          ::std::numeric_limits<FloatType>::digits10 + 2);
1562      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1563        if (nan_eq_nan_) {
1564          *os << "isn't NaN";
1565        } else {
1566          *os << "is anything";
1567        }
1568      } else {
1569        *os << "isn't approximately " << rhs_;
1570      }
1571      // Restore original precision.
1572      os->precision(old_precision);
1573    }
1574
1575   private:
1576    const FloatType rhs_;
1577    const bool nan_eq_nan_;
1578
1579    GTEST_DISALLOW_ASSIGN_(Impl);
1580  };
1581
1582  // The following 3 type conversion operators allow FloatEq(rhs) and
1583  // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1584  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1585  // (While Google's C++ coding style doesn't allow arguments passed
1586  // by non-const reference, we may see them in code not conforming to
1587  // the style.  Therefore Google Mock needs to support them.)
1588  operator Matcher<FloatType>() const {
1589    return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1590  }
1591
1592  operator Matcher<const FloatType&>() const {
1593    return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1594  }
1595
1596  operator Matcher<FloatType&>() const {
1597    return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1598  }
1599 private:
1600  const FloatType rhs_;
1601  const bool nan_eq_nan_;
1602
1603  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
1604};
1605
1606// Implements the Pointee(m) matcher for matching a pointer whose
1607// pointee matches matcher m.  The pointer can be either raw or smart.
1608template <typename InnerMatcher>
1609class PointeeMatcher {
1610 public:
1611  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1612
1613  // This type conversion operator template allows Pointee(m) to be
1614  // used as a matcher for any pointer type whose pointee type is
1615  // compatible with the inner matcher, where type Pointer can be
1616  // either a raw pointer or a smart pointer.
1617  //
1618  // The reason we do this instead of relying on
1619  // MakePolymorphicMatcher() is that the latter is not flexible
1620  // enough for implementing the DescribeTo() method of Pointee().
1621  template <typename Pointer>
1622  operator Matcher<Pointer>() const {
1623    return MakeMatcher(new Impl<Pointer>(matcher_));
1624  }
1625
1626 private:
1627  // The monomorphic implementation that works for a particular pointer type.
1628  template <typename Pointer>
1629  class Impl : public MatcherInterface<Pointer> {
1630   public:
1631    typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
1632        GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1633
1634    explicit Impl(const InnerMatcher& matcher)
1635        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1636
1637    virtual void DescribeTo(::std::ostream* os) const {
1638      *os << "points to a value that ";
1639      matcher_.DescribeTo(os);
1640    }
1641
1642    virtual void DescribeNegationTo(::std::ostream* os) const {
1643      *os << "does not point to a value that ";
1644      matcher_.DescribeTo(os);
1645    }
1646
1647    virtual bool MatchAndExplain(Pointer pointer,
1648                                 MatchResultListener* listener) const {
1649      if (GetRawPointer(pointer) == NULL)
1650        return false;
1651
1652      *listener << "which points to ";
1653      return MatchPrintAndExplain(*pointer, matcher_, listener);
1654    }
1655
1656   private:
1657    const Matcher<const Pointee&> matcher_;
1658
1659    GTEST_DISALLOW_ASSIGN_(Impl);
1660  };
1661
1662  const InnerMatcher matcher_;
1663
1664  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
1665};
1666
1667// Implements the Field() matcher for matching a field (i.e. member
1668// variable) of an object.
1669template <typename Class, typename FieldType>
1670class FieldMatcher {
1671 public:
1672  FieldMatcher(FieldType Class::*field,
1673               const Matcher<const FieldType&>& matcher)
1674      : field_(field), matcher_(matcher) {}
1675
1676  void DescribeTo(::std::ostream* os) const {
1677    *os << "is an object whose given field ";
1678    matcher_.DescribeTo(os);
1679  }
1680
1681  void DescribeNegationTo(::std::ostream* os) const {
1682    *os << "is an object whose given field ";
1683    matcher_.DescribeNegationTo(os);
1684  }
1685
1686  template <typename T>
1687  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
1688    return MatchAndExplainImpl(
1689        typename ::testing::internal::
1690            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1691        value, listener);
1692  }
1693
1694 private:
1695  // The first argument of MatchAndExplainImpl() is needed to help
1696  // Symbian's C++ compiler choose which overload to use.  Its type is
1697  // true_type iff the Field() matcher is used to match a pointer.
1698  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1699                           MatchResultListener* listener) const {
1700    *listener << "whose given field is ";
1701    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
1702  }
1703
1704  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1705                           MatchResultListener* listener) const {
1706    if (p == NULL)
1707      return false;
1708
1709    *listener << "which points to an object ";
1710    // Since *p has a field, it must be a class/struct/union type and
1711    // thus cannot be a pointer.  Therefore we pass false_type() as
1712    // the first argument.
1713    return MatchAndExplainImpl(false_type(), *p, listener);
1714  }
1715
1716  const FieldType Class::*field_;
1717  const Matcher<const FieldType&> matcher_;
1718
1719  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
1720};
1721
1722// Implements the Property() matcher for matching a property
1723// (i.e. return value of a getter method) of an object.
1724template <typename Class, typename PropertyType>
1725class PropertyMatcher {
1726 public:
1727  // The property may have a reference type, so 'const PropertyType&'
1728  // may cause double references and fail to compile.  That's why we
1729  // need GTEST_REFERENCE_TO_CONST, which works regardless of
1730  // PropertyType being a reference or not.
1731  typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1732
1733  PropertyMatcher(PropertyType (Class::*property)() const,
1734                  const Matcher<RefToConstProperty>& matcher)
1735      : property_(property), matcher_(matcher) {}
1736
1737  void DescribeTo(::std::ostream* os) const {
1738    *os << "is an object whose given property ";
1739    matcher_.DescribeTo(os);
1740  }
1741
1742  void DescribeNegationTo(::std::ostream* os) const {
1743    *os << "is an object whose given property ";
1744    matcher_.DescribeNegationTo(os);
1745  }
1746
1747  template <typename T>
1748  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
1749    return MatchAndExplainImpl(
1750        typename ::testing::internal::
1751            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1752        value, listener);
1753  }
1754
1755 private:
1756  // The first argument of MatchAndExplainImpl() is needed to help
1757  // Symbian's C++ compiler choose which overload to use.  Its type is
1758  // true_type iff the Property() matcher is used to match a pointer.
1759  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1760                           MatchResultListener* listener) const {
1761    *listener << "whose given property is ";
1762    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
1763    // which takes a non-const reference as argument.
1764    RefToConstProperty result = (obj.*property_)();
1765    return MatchPrintAndExplain(result, matcher_, listener);
1766  }
1767
1768  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1769                           MatchResultListener* listener) const {
1770    if (p == NULL)
1771      return false;
1772
1773    *listener << "which points to an object ";
1774    // Since *p has a property method, it must be a class/struct/union
1775    // type and thus cannot be a pointer.  Therefore we pass
1776    // false_type() as the first argument.
1777    return MatchAndExplainImpl(false_type(), *p, listener);
1778  }
1779
1780  PropertyType (Class::*property_)() const;
1781  const Matcher<RefToConstProperty> matcher_;
1782
1783  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
1784};
1785
1786// Type traits specifying various features of different functors for ResultOf.
1787// The default template specifies features for functor objects.
1788// Functor classes have to typedef argument_type and result_type
1789// to be compatible with ResultOf.
1790template <typename Functor>
1791struct CallableTraits {
1792  typedef typename Functor::result_type ResultType;
1793  typedef Functor StorageType;
1794
1795  static void CheckIsValid(Functor /* functor */) {}
1796  template <typename T>
1797  static ResultType Invoke(Functor f, T arg) { return f(arg); }
1798};
1799
1800// Specialization for function pointers.
1801template <typename ArgType, typename ResType>
1802struct CallableTraits<ResType(*)(ArgType)> {
1803  typedef ResType ResultType;
1804  typedef ResType(*StorageType)(ArgType);
1805
1806  static void CheckIsValid(ResType(*f)(ArgType)) {
1807    GTEST_CHECK_(f != NULL)
1808        << "NULL function pointer is passed into ResultOf().";
1809  }
1810  template <typename T>
1811  static ResType Invoke(ResType(*f)(ArgType), T arg) {
1812    return (*f)(arg);
1813  }
1814};
1815
1816// Implements the ResultOf() matcher for matching a return value of a
1817// unary function of an object.
1818template <typename Callable>
1819class ResultOfMatcher {
1820 public:
1821  typedef typename CallableTraits<Callable>::ResultType ResultType;
1822
1823  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1824      : callable_(callable), matcher_(matcher) {
1825    CallableTraits<Callable>::CheckIsValid(callable_);
1826  }
1827
1828  template <typename T>
1829  operator Matcher<T>() const {
1830    return Matcher<T>(new Impl<T>(callable_, matcher_));
1831  }
1832
1833 private:
1834  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1835
1836  template <typename T>
1837  class Impl : public MatcherInterface<T> {
1838   public:
1839    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1840        : callable_(callable), matcher_(matcher) {}
1841
1842    virtual void DescribeTo(::std::ostream* os) const {
1843      *os << "is mapped by the given callable to a value that ";
1844      matcher_.DescribeTo(os);
1845    }
1846
1847    virtual void DescribeNegationTo(::std::ostream* os) const {
1848      *os << "is mapped by the given callable to a value that ";
1849      matcher_.DescribeNegationTo(os);
1850    }
1851
1852    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
1853      *listener << "which is mapped by the given callable to ";
1854      // Cannot pass the return value (for example, int) to
1855      // MatchPrintAndExplain, which takes a non-const reference as argument.
1856      ResultType result =
1857          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
1858      return MatchPrintAndExplain(result, matcher_, listener);
1859    }
1860
1861   private:
1862    // Functors often define operator() as non-const method even though
1863    // they are actualy stateless. But we need to use them even when
1864    // 'this' is a const pointer. It's the user's responsibility not to
1865    // use stateful callables with ResultOf(), which does't guarantee
1866    // how many times the callable will be invoked.
1867    mutable CallableStorageType callable_;
1868    const Matcher<ResultType> matcher_;
1869
1870    GTEST_DISALLOW_ASSIGN_(Impl);
1871  };  // class Impl
1872
1873  const CallableStorageType callable_;
1874  const Matcher<ResultType> matcher_;
1875
1876  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
1877};
1878
1879// Implements an equality matcher for any STL-style container whose elements
1880// support ==. This matcher is like Eq(), but its failure explanations provide
1881// more detailed information that is useful when the container is used as a set.
1882// The failure message reports elements that are in one of the operands but not
1883// the other. The failure messages do not report duplicate or out-of-order
1884// elements in the containers (which don't properly matter to sets, but can
1885// occur if the containers are vectors or lists, for example).
1886//
1887// Uses the container's const_iterator, value_type, operator ==,
1888// begin(), and end().
1889template <typename Container>
1890class ContainerEqMatcher {
1891 public:
1892  typedef internal::StlContainerView<Container> View;
1893  typedef typename View::type StlContainer;
1894  typedef typename View::const_reference StlContainerReference;
1895
1896  // We make a copy of rhs in case the elements in it are modified
1897  // after this matcher is created.
1898  explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1899    // Makes sure the user doesn't instantiate this class template
1900    // with a const or reference type.
1901    (void)testing::StaticAssertTypeEq<Container,
1902        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
1903  }
1904
1905  void DescribeTo(::std::ostream* os) const {
1906    *os << "equals ";
1907    UniversalPrint(rhs_, os);
1908  }
1909  void DescribeNegationTo(::std::ostream* os) const {
1910    *os << "does not equal ";
1911    UniversalPrint(rhs_, os);
1912  }
1913
1914  template <typename LhsContainer>
1915  bool MatchAndExplain(const LhsContainer& lhs,
1916                       MatchResultListener* listener) const {
1917    // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1918    // that causes LhsContainer to be a const type sometimes.
1919    typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
1920        LhsView;
1921    typedef typename LhsView::type LhsStlContainer;
1922    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1923    if (lhs_stl_container == rhs_)
1924      return true;
1925
1926    ::std::ostream* const os = listener->stream();
1927    if (os != NULL) {
1928      // Something is different. Check for extra values first.
1929      bool printed_header = false;
1930      for (typename LhsStlContainer::const_iterator it =
1931               lhs_stl_container.begin();
1932           it != lhs_stl_container.end(); ++it) {
1933        if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1934            rhs_.end()) {
1935          if (printed_header) {
1936            *os << ", ";
1937          } else {
1938            *os << "which has these unexpected elements: ";
1939            printed_header = true;
1940          }
1941          UniversalPrint(*it, os);
1942        }
1943      }
1944
1945      // Now check for missing values.
1946      bool printed_header2 = false;
1947      for (typename StlContainer::const_iterator it = rhs_.begin();
1948           it != rhs_.end(); ++it) {
1949        if (internal::ArrayAwareFind(
1950                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1951            lhs_stl_container.end()) {
1952          if (printed_header2) {
1953            *os << ", ";
1954          } else {
1955            *os << (printed_header ? ",\nand" : "which")
1956                << " doesn't have these expected elements: ";
1957            printed_header2 = true;
1958          }
1959          UniversalPrint(*it, os);
1960        }
1961      }
1962    }
1963
1964    return false;
1965  }
1966
1967 private:
1968  const StlContainer rhs_;
1969
1970  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
1971};
1972
1973// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
1974// must be able to be safely cast to Matcher<tuple<const T1&, const
1975// T2&> >, where T1 and T2 are the types of elements in the LHS
1976// container and the RHS container respectively.
1977template <typename TupleMatcher, typename RhsContainer>
1978class PointwiseMatcher {
1979 public:
1980  typedef internal::StlContainerView<RhsContainer> RhsView;
1981  typedef typename RhsView::type RhsStlContainer;
1982  typedef typename RhsStlContainer::value_type RhsValue;
1983
1984  // Like ContainerEq, we make a copy of rhs in case the elements in
1985  // it are modified after this matcher is created.
1986  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
1987      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
1988    // Makes sure the user doesn't instantiate this class template
1989    // with a const or reference type.
1990    (void)testing::StaticAssertTypeEq<RhsContainer,
1991        GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
1992  }
1993
1994  template <typename LhsContainer>
1995  operator Matcher<LhsContainer>() const {
1996    return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
1997  }
1998
1999  template <typename LhsContainer>
2000  class Impl : public MatcherInterface<LhsContainer> {
2001   public:
2002    typedef internal::StlContainerView<
2003         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2004    typedef typename LhsView::type LhsStlContainer;
2005    typedef typename LhsView::const_reference LhsStlContainerReference;
2006    typedef typename LhsStlContainer::value_type LhsValue;
2007    // We pass the LHS value and the RHS value to the inner matcher by
2008    // reference, as they may be expensive to copy.  We must use tuple
2009    // instead of pair here, as a pair cannot hold references (C++ 98,
2010    // 20.2.2 [lib.pairs]).
2011    typedef std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2012
2013    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2014        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2015        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2016          rhs_(rhs) {}
2017
2018    virtual void DescribeTo(::std::ostream* os) const {
2019      *os << "contains " << rhs_.size()
2020          << " values, where each value and its corresponding value in ";
2021      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2022      *os << " ";
2023      mono_tuple_matcher_.DescribeTo(os);
2024    }
2025    virtual void DescribeNegationTo(::std::ostream* os) const {
2026      *os << "doesn't contain exactly " << rhs_.size()
2027          << " values, or contains a value x at some index i"
2028          << " where x and the i-th value of ";
2029      UniversalPrint(rhs_, os);
2030      *os << " ";
2031      mono_tuple_matcher_.DescribeNegationTo(os);
2032    }
2033
2034    virtual bool MatchAndExplain(LhsContainer lhs,
2035                                 MatchResultListener* listener) const {
2036      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2037      const size_t actual_size = lhs_stl_container.size();
2038      if (actual_size != rhs_.size()) {
2039        *listener << "which contains " << actual_size << " values";
2040        return false;
2041      }
2042
2043      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2044      typename RhsStlContainer::const_iterator right = rhs_.begin();
2045      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2046        const InnerMatcherArg value_pair(*left, *right);
2047
2048        if (listener->IsInterested()) {
2049          StringMatchResultListener inner_listener;
2050          if (!mono_tuple_matcher_.MatchAndExplain(
2051                  value_pair, &inner_listener)) {
2052            *listener << "where the value pair (";
2053            UniversalPrint(*left, listener->stream());
2054            *listener << ", ";
2055            UniversalPrint(*right, listener->stream());
2056            *listener << ") at index #" << i << " don't match";
2057            PrintIfNotEmpty(inner_listener.str(), listener->stream());
2058            return false;
2059          }
2060        } else {
2061          if (!mono_tuple_matcher_.Matches(value_pair))
2062            return false;
2063        }
2064      }
2065
2066      return true;
2067    }
2068
2069   private:
2070    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2071    const RhsStlContainer rhs_;
2072
2073    GTEST_DISALLOW_ASSIGN_(Impl);
2074  };
2075
2076 private:
2077  const TupleMatcher tuple_matcher_;
2078  const RhsStlContainer rhs_;
2079
2080  GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
2081};
2082
2083// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2084template <typename Container>
2085class QuantifierMatcherImpl : public MatcherInterface<Container> {
2086 public:
2087  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2088  typedef StlContainerView<RawContainer> View;
2089  typedef typename View::type StlContainer;
2090  typedef typename View::const_reference StlContainerReference;
2091  typedef typename StlContainer::value_type Element;
2092
2093  template <typename InnerMatcher>
2094  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2095      : inner_matcher_(
2096           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2097
2098  // Checks whether:
2099  // * All elements in the container match, if all_elements_should_match.
2100  // * Any element in the container matches, if !all_elements_should_match.
2101  bool MatchAndExplainImpl(bool all_elements_should_match,
2102                           Container container,
2103                           MatchResultListener* listener) const {
2104    StlContainerReference stl_container = View::ConstReference(container);
2105    size_t i = 0;
2106    for (typename StlContainer::const_iterator it = stl_container.begin();
2107         it != stl_container.end(); ++it, ++i) {
2108      StringMatchResultListener inner_listener;
2109      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2110
2111      if (matches != all_elements_should_match) {
2112        *listener << "whose element #" << i
2113                  << (matches ? " matches" : " doesn't match");
2114        PrintIfNotEmpty(inner_listener.str(), listener->stream());
2115        return !all_elements_should_match;
2116      }
2117    }
2118    return all_elements_should_match;
2119  }
2120
2121 protected:
2122  const Matcher<const Element&> inner_matcher_;
2123
2124  GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
2125};
2126
2127// Implements Contains(element_matcher) for the given argument type Container.
2128// Symmetric to EachMatcherImpl.
2129template <typename Container>
2130class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2131 public:
2132  template <typename InnerMatcher>
2133  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2134      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2135
2136  // Describes what this matcher does.
2137  virtual void DescribeTo(::std::ostream* os) const {
2138    *os << "contains at least one element that ";
2139    this->inner_matcher_.DescribeTo(os);
2140  }
2141
2142  virtual void DescribeNegationTo(::std::ostream* os) const {
2143    *os << "doesn't contain any element that ";
2144    this->inner_matcher_.DescribeTo(os);
2145  }
2146
2147  virtual bool MatchAndExplain(Container container,
2148                               MatchResultListener* listener) const {
2149    return this->MatchAndExplainImpl(false, container, listener);
2150  }
2151
2152 private:
2153  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
2154};
2155
2156// Implements Each(element_matcher) for the given argument type Container.
2157// Symmetric to ContainsMatcherImpl.
2158template <typename Container>
2159class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2160 public:
2161  template <typename InnerMatcher>
2162  explicit EachMatcherImpl(InnerMatcher inner_matcher)
2163      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2164
2165  // Describes what this matcher does.
2166  virtual void DescribeTo(::std::ostream* os) const {
2167    *os << "only contains elements that ";
2168    this->inner_matcher_.DescribeTo(os);
2169  }
2170
2171  virtual void DescribeNegationTo(::std::ostream* os) const {
2172    *os << "contains some element that ";
2173    this->inner_matcher_.DescribeNegationTo(os);
2174  }
2175
2176  virtual bool MatchAndExplain(Container container,
2177                               MatchResultListener* listener) const {
2178    return this->MatchAndExplainImpl(true, container, listener);
2179  }
2180
2181 private:
2182  GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
2183};
2184
2185// Implements polymorphic Contains(element_matcher).
2186template <typename M>
2187class ContainsMatcher {
2188 public:
2189  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2190
2191  template <typename Container>
2192  operator Matcher<Container>() const {
2193    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2194  }
2195
2196 private:
2197  const M inner_matcher_;
2198
2199  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2200};
2201
2202// Implements polymorphic Each(element_matcher).
2203template <typename M>
2204class EachMatcher {
2205 public:
2206  explicit EachMatcher(M m) : inner_matcher_(m) {}
2207
2208  template <typename Container>
2209  operator Matcher<Container>() const {
2210    return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
2211  }
2212
2213 private:
2214  const M inner_matcher_;
2215
2216  GTEST_DISALLOW_ASSIGN_(EachMatcher);
2217};
2218
2219// Implements Key(inner_matcher) for the given argument pair type.
2220// Key(inner_matcher) matches an std::pair whose 'first' field matches
2221// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2222// std::map that contains at least one element whose key is >= 5.
2223template <typename PairType>
2224class KeyMatcherImpl : public MatcherInterface<PairType> {
2225 public:
2226  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2227  typedef typename RawPairType::first_type KeyType;
2228
2229  template <typename InnerMatcher>
2230  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2231      : inner_matcher_(
2232          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2233  }
2234
2235  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2236  virtual bool MatchAndExplain(PairType key_value,
2237                               MatchResultListener* listener) const {
2238    StringMatchResultListener inner_listener;
2239    const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2240                                                      &inner_listener);
2241    const internal::string explanation = inner_listener.str();
2242    if (explanation != "") {
2243      *listener << "whose first field is a value " << explanation;
2244    }
2245    return match;
2246  }
2247
2248  // Describes what this matcher does.
2249  virtual void DescribeTo(::std::ostream* os) const {
2250    *os << "has a key that ";
2251    inner_matcher_.DescribeTo(os);
2252  }
2253
2254  // Describes what the negation of this matcher does.
2255  virtual void DescribeNegationTo(::std::ostream* os) const {
2256    *os << "doesn't have a key that ";
2257    inner_matcher_.DescribeTo(os);
2258  }
2259
2260 private:
2261  const Matcher<const KeyType&> inner_matcher_;
2262
2263  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2264};
2265
2266// Implements polymorphic Key(matcher_for_key).
2267template <typename M>
2268class KeyMatcher {
2269 public:
2270  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2271
2272  template <typename PairType>
2273  operator Matcher<PairType>() const {
2274    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2275  }
2276
2277 private:
2278  const M matcher_for_key_;
2279
2280  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2281};
2282
2283// Implements Pair(first_matcher, second_matcher) for the given argument pair
2284// type with its two matchers. See Pair() function below.
2285template <typename PairType>
2286class PairMatcherImpl : public MatcherInterface<PairType> {
2287 public:
2288  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2289  typedef typename RawPairType::first_type FirstType;
2290  typedef typename RawPairType::second_type SecondType;
2291
2292  template <typename FirstMatcher, typename SecondMatcher>
2293  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2294      : first_matcher_(
2295            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2296        second_matcher_(
2297            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2298  }
2299
2300  // Describes what this matcher does.
2301  virtual void DescribeTo(::std::ostream* os) const {
2302    *os << "has a first field that ";
2303    first_matcher_.DescribeTo(os);
2304    *os << ", and has a second field that ";
2305    second_matcher_.DescribeTo(os);
2306  }
2307
2308  // Describes what the negation of this matcher does.
2309  virtual void DescribeNegationTo(::std::ostream* os) const {
2310    *os << "has a first field that ";
2311    first_matcher_.DescribeNegationTo(os);
2312    *os << ", or has a second field that ";
2313    second_matcher_.DescribeNegationTo(os);
2314  }
2315
2316  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
2317  // matches second_matcher.
2318  virtual bool MatchAndExplain(PairType a_pair,
2319                               MatchResultListener* listener) const {
2320    if (!listener->IsInterested()) {
2321      // If the listener is not interested, we don't need to construct the
2322      // explanation.
2323      return first_matcher_.Matches(a_pair.first) &&
2324             second_matcher_.Matches(a_pair.second);
2325    }
2326    StringMatchResultListener first_inner_listener;
2327    if (!first_matcher_.MatchAndExplain(a_pair.first,
2328                                        &first_inner_listener)) {
2329      *listener << "whose first field does not match";
2330      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2331      return false;
2332    }
2333    StringMatchResultListener second_inner_listener;
2334    if (!second_matcher_.MatchAndExplain(a_pair.second,
2335                                         &second_inner_listener)) {
2336      *listener << "whose second field does not match";
2337      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2338      return false;
2339    }
2340    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2341                   listener);
2342    return true;
2343  }
2344
2345 private:
2346  void ExplainSuccess(const internal::string& first_explanation,
2347                      const internal::string& second_explanation,
2348                      MatchResultListener* listener) const {
2349    *listener << "whose both fields match";
2350    if (first_explanation != "") {
2351      *listener << ", where the first field is a value " << first_explanation;
2352    }
2353    if (second_explanation != "") {
2354      *listener << ", ";
2355      if (first_explanation != "") {
2356        *listener << "and ";
2357      } else {
2358        *listener << "where ";
2359      }
2360      *listener << "the second field is a value " << second_explanation;
2361    }
2362  }
2363
2364  const Matcher<const FirstType&> first_matcher_;
2365  const Matcher<const SecondType&> second_matcher_;
2366
2367  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
2368};
2369
2370// Implements polymorphic Pair(first_matcher, second_matcher).
2371template <typename FirstMatcher, typename SecondMatcher>
2372class PairMatcher {
2373 public:
2374  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2375      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2376
2377  template <typename PairType>
2378  operator Matcher<PairType> () const {
2379    return MakeMatcher(
2380        new PairMatcherImpl<PairType>(
2381            first_matcher_, second_matcher_));
2382  }
2383
2384 private:
2385  const FirstMatcher first_matcher_;
2386  const SecondMatcher second_matcher_;
2387
2388  GTEST_DISALLOW_ASSIGN_(PairMatcher);
2389};
2390
2391// Implements ElementsAre() and ElementsAreArray().
2392template <typename Container>
2393class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2394 public:
2395  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2396  typedef internal::StlContainerView<RawContainer> View;
2397  typedef typename View::type StlContainer;
2398  typedef typename View::const_reference StlContainerReference;
2399  typedef typename StlContainer::value_type Element;
2400
2401  // Constructs the matcher from a sequence of element values or
2402  // element matchers.
2403  template <typename InputIter>
2404  ElementsAreMatcherImpl(InputIter first, size_t a_count) {
2405    matchers_.reserve(a_count);
2406    InputIter it = first;
2407    for (size_t i = 0; i != a_count; ++i, ++it) {
2408      matchers_.push_back(MatcherCast<const Element&>(*it));
2409    }
2410  }
2411
2412  // Describes what this matcher does.
2413  virtual void DescribeTo(::std::ostream* os) const {
2414    if (count() == 0) {
2415      *os << "is empty";
2416    } else if (count() == 1) {
2417      *os << "has 1 element that ";
2418      matchers_[0].DescribeTo(os);
2419    } else {
2420      *os << "has " << Elements(count()) << " where\n";
2421      for (size_t i = 0; i != count(); ++i) {
2422        *os << "element #" << i << " ";
2423        matchers_[i].DescribeTo(os);
2424        if (i + 1 < count()) {
2425          *os << ",\n";
2426        }
2427      }
2428    }
2429  }
2430
2431  // Describes what the negation of this matcher does.
2432  virtual void DescribeNegationTo(::std::ostream* os) const {
2433    if (count() == 0) {
2434      *os << "isn't empty";
2435      return;
2436    }
2437
2438    *os << "doesn't have " << Elements(count()) << ", or\n";
2439    for (size_t i = 0; i != count(); ++i) {
2440      *os << "element #" << i << " ";
2441      matchers_[i].DescribeNegationTo(os);
2442      if (i + 1 < count()) {
2443        *os << ", or\n";
2444      }
2445    }
2446  }
2447
2448  virtual bool MatchAndExplain(Container container,
2449                               MatchResultListener* listener) const {
2450    StlContainerReference stl_container = View::ConstReference(container);
2451    const size_t actual_count = stl_container.size();
2452    if (actual_count != count()) {
2453      // The element count doesn't match.  If the container is empty,
2454      // there's no need to explain anything as Google Mock already
2455      // prints the empty container.  Otherwise we just need to show
2456      // how many elements there actually are.
2457      if (actual_count != 0) {
2458        *listener << "which has " << Elements(actual_count);
2459      }
2460      return false;
2461    }
2462
2463    typename StlContainer::const_iterator it = stl_container.begin();
2464    // explanations[i] is the explanation of the element at index i.
2465    std::vector<internal::string> explanations(count());
2466    for (size_t i = 0; i != count();  ++it, ++i) {
2467      StringMatchResultListener s;
2468      if (matchers_[i].MatchAndExplain(*it, &s)) {
2469        explanations[i] = s.str();
2470      } else {
2471        // The container has the right size but the i-th element
2472        // doesn't match its expectation.
2473        *listener << "whose element #" << i << " doesn't match";
2474        PrintIfNotEmpty(s.str(), listener->stream());
2475        return false;
2476      }
2477    }
2478
2479    // Every element matches its expectation.  We need to explain why
2480    // (the obvious ones can be skipped).
2481    bool reason_printed = false;
2482    for (size_t i = 0; i != count(); ++i) {
2483      const internal::string& s = explanations[i];
2484      if (!s.empty()) {
2485        if (reason_printed) {
2486          *listener << ",\nand ";
2487        }
2488        *listener << "whose element #" << i << " matches, " << s;
2489        reason_printed = true;
2490      }
2491    }
2492
2493    return true;
2494  }
2495
2496 private:
2497  static Message Elements(size_t count) {
2498    return Message() << count << (count == 1 ? " element" : " elements");
2499  }
2500
2501  size_t count() const { return matchers_.size(); }
2502  std::vector<Matcher<const Element&> > matchers_;
2503
2504  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
2505};
2506
2507// Implements ElementsAre() of 0 arguments.
2508class ElementsAreMatcher0 {
2509 public:
2510  ElementsAreMatcher0() {}
2511
2512  template <typename Container>
2513  operator Matcher<Container>() const {
2514    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2515    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2516        Element;
2517
2518    const Matcher<const Element&>* const matchers = NULL;
2519    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2520  }
2521};
2522
2523// Implements ElementsAreArray().
2524template <typename T>
2525class ElementsAreArrayMatcher {
2526 public:
2527  ElementsAreArrayMatcher(const T* first, size_t count) :
2528      first_(first), count_(count) {}
2529
2530  template <typename Container>
2531  operator Matcher<Container>() const {
2532    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2533    typedef typename internal::StlContainerView<RawContainer>::type::value_type
2534        Element;
2535
2536    return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2537  }
2538
2539 private:
2540  const T* const first_;
2541  const size_t count_;
2542
2543  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
2544};
2545
2546// Returns the description for a matcher defined using the MATCHER*()
2547// macro where the user-supplied description string is "", if
2548// 'negation' is false; otherwise returns the description of the
2549// negation of the matcher.  'param_values' contains a list of strings
2550// that are the print-out of the matcher's parameters.
2551string FormatMatcherDescription(bool negation, const char* matcher_name,
2552                                const Strings& param_values);
2553
2554}  // namespace internal
2555
2556// Implements MatcherCast().
2557template <typename T, typename M>
2558inline Matcher<T> MatcherCast(M matcher) {
2559  return internal::MatcherCastImpl<T, M>::Cast(matcher);
2560}
2561
2562// _ is a matcher that matches anything of any type.
2563//
2564// This definition is fine as:
2565//
2566//   1. The C++ standard permits using the name _ in a namespace that
2567//      is not the global namespace or ::std.
2568//   2. The AnythingMatcher class has no data member or constructor,
2569//      so it's OK to create global variables of this type.
2570//   3. c-style has approved of using _ in this case.
2571const internal::AnythingMatcher _ = {};
2572// Creates a matcher that matches any value of the given type T.
2573template <typename T>
2574inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2575
2576// Creates a matcher that matches any value of the given type T.
2577template <typename T>
2578inline Matcher<T> An() { return A<T>(); }
2579
2580// Creates a polymorphic matcher that matches anything equal to x.
2581// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2582// wouldn't compile.
2583template <typename T>
2584inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2585
2586// Constructs a Matcher<T> from a 'value' of type T.  The constructed
2587// matcher matches any value that's equal to 'value'.
2588template <typename T>
2589Matcher<T>::Matcher(T value) { *this = Eq(value); }
2590
2591// Creates a monomorphic matcher that matches anything with type Lhs
2592// and equal to rhs.  A user may need to use this instead of Eq(...)
2593// in order to resolve an overloading ambiguity.
2594//
2595// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2596// or Matcher<T>(x), but more readable than the latter.
2597//
2598// We could define similar monomorphic matchers for other comparison
2599// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2600// it yet as those are used much less than Eq() in practice.  A user
2601// can always write Matcher<T>(Lt(5)) to be explicit about the type,
2602// for example.
2603template <typename Lhs, typename Rhs>
2604inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2605
2606// Creates a polymorphic matcher that matches anything >= x.
2607template <typename Rhs>
2608inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2609  return internal::GeMatcher<Rhs>(x);
2610}
2611
2612// Creates a polymorphic matcher that matches anything > x.
2613template <typename Rhs>
2614inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2615  return internal::GtMatcher<Rhs>(x);
2616}
2617
2618// Creates a polymorphic matcher that matches anything <= x.
2619template <typename Rhs>
2620inline internal::LeMatcher<Rhs> Le(Rhs x) {
2621  return internal::LeMatcher<Rhs>(x);
2622}
2623
2624// Creates a polymorphic matcher that matches anything < x.
2625template <typename Rhs>
2626inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2627  return internal::LtMatcher<Rhs>(x);
2628}
2629
2630// Creates a polymorphic matcher that matches anything != x.
2631template <typename Rhs>
2632inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2633  return internal::NeMatcher<Rhs>(x);
2634}
2635
2636// Creates a polymorphic matcher that matches any NULL pointer.
2637inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2638  return MakePolymorphicMatcher(internal::IsNullMatcher());
2639}
2640
2641// Creates a polymorphic matcher that matches any non-NULL pointer.
2642// This is convenient as Not(NULL) doesn't compile (the compiler
2643// thinks that that expression is comparing a pointer with an integer).
2644inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2645  return MakePolymorphicMatcher(internal::NotNullMatcher());
2646}
2647
2648// Creates a polymorphic matcher that matches any argument that
2649// references variable x.
2650template <typename T>
2651inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
2652  return internal::RefMatcher<T&>(x);
2653}
2654
2655// Creates a matcher that matches any double argument approximately
2656// equal to rhs, where two NANs are considered unequal.
2657inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2658  return internal::FloatingEqMatcher<double>(rhs, false);
2659}
2660
2661// Creates a matcher that matches any double argument approximately
2662// equal to rhs, including NaN values when rhs is NaN.
2663inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2664  return internal::FloatingEqMatcher<double>(rhs, true);
2665}
2666
2667// Creates a matcher that matches any float argument approximately
2668// equal to rhs, where two NANs are considered unequal.
2669inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2670  return internal::FloatingEqMatcher<float>(rhs, false);
2671}
2672
2673// Creates a matcher that matches any double argument approximately
2674// equal to rhs, including NaN values when rhs is NaN.
2675inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2676  return internal::FloatingEqMatcher<float>(rhs, true);
2677}
2678
2679// Creates a matcher that matches a pointer (raw or smart) that points
2680// to a value that matches inner_matcher.
2681template <typename InnerMatcher>
2682inline internal::PointeeMatcher<InnerMatcher> Pointee(
2683    const InnerMatcher& inner_matcher) {
2684  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2685}
2686
2687// Creates a matcher that matches an object whose given field matches
2688// 'matcher'.  For example,
2689//   Field(&Foo::number, Ge(5))
2690// matches a Foo object x iff x.number >= 5.
2691template <typename Class, typename FieldType, typename FieldMatcher>
2692inline PolymorphicMatcher<
2693  internal::FieldMatcher<Class, FieldType> > Field(
2694    FieldType Class::*field, const FieldMatcher& matcher) {
2695  return MakePolymorphicMatcher(
2696      internal::FieldMatcher<Class, FieldType>(
2697          field, MatcherCast<const FieldType&>(matcher)));
2698  // The call to MatcherCast() is required for supporting inner
2699  // matchers of compatible types.  For example, it allows
2700  //   Field(&Foo::bar, m)
2701  // to compile where bar is an int32 and m is a matcher for int64.
2702}
2703
2704// Creates a matcher that matches an object whose given property
2705// matches 'matcher'.  For example,
2706//   Property(&Foo::str, StartsWith("hi"))
2707// matches a Foo object x iff x.str() starts with "hi".
2708template <typename Class, typename PropertyType, typename PropertyMatcher>
2709inline PolymorphicMatcher<
2710  internal::PropertyMatcher<Class, PropertyType> > Property(
2711    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2712  return MakePolymorphicMatcher(
2713      internal::PropertyMatcher<Class, PropertyType>(
2714          property,
2715          MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
2716  // The call to MatcherCast() is required for supporting inner
2717  // matchers of compatible types.  For example, it allows
2718  //   Property(&Foo::bar, m)
2719  // to compile where bar() returns an int32 and m is a matcher for int64.
2720}
2721
2722// Creates a matcher that matches an object iff the result of applying
2723// a callable to x matches 'matcher'.
2724// For example,
2725//   ResultOf(f, StartsWith("hi"))
2726// matches a Foo object x iff f(x) starts with "hi".
2727// callable parameter can be a function, function pointer, or a functor.
2728// Callable has to satisfy the following conditions:
2729//   * It is required to keep no state affecting the results of
2730//     the calls on it and make no assumptions about how many calls
2731//     will be made. Any state it keeps must be protected from the
2732//     concurrent access.
2733//   * If it is a function object, it has to define type result_type.
2734//     We recommend deriving your functor classes from std::unary_function.
2735template <typename Callable, typename ResultOfMatcher>
2736internal::ResultOfMatcher<Callable> ResultOf(
2737    Callable callable, const ResultOfMatcher& matcher) {
2738  return internal::ResultOfMatcher<Callable>(
2739          callable,
2740          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2741              matcher));
2742  // The call to MatcherCast() is required for supporting inner
2743  // matchers of compatible types.  For example, it allows
2744  //   ResultOf(Function, m)
2745  // to compile where Function() returns an int32 and m is a matcher for int64.
2746}
2747
2748// String matchers.
2749
2750// Matches a string equal to str.
2751inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2752    StrEq(const internal::string& str) {
2753  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2754      str, true, true));
2755}
2756
2757// Matches a string not equal to str.
2758inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2759    StrNe(const internal::string& str) {
2760  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2761      str, false, true));
2762}
2763
2764// Matches a string equal to str, ignoring case.
2765inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2766    StrCaseEq(const internal::string& str) {
2767  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2768      str, true, false));
2769}
2770
2771// Matches a string not equal to str, ignoring case.
2772inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2773    StrCaseNe(const internal::string& str) {
2774  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2775      str, false, false));
2776}
2777
2778// Creates a matcher that matches any string, std::string, or C string
2779// that contains the given substring.
2780inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2781    HasSubstr(const internal::string& substring) {
2782  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2783      substring));
2784}
2785
2786// Matches a string that starts with 'prefix' (case-sensitive).
2787inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2788    StartsWith(const internal::string& prefix) {
2789  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2790      prefix));
2791}
2792
2793// Matches a string that ends with 'suffix' (case-sensitive).
2794inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2795    EndsWith(const internal::string& suffix) {
2796  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2797      suffix));
2798}
2799
2800// Matches a string that fully matches regular expression 'regex'.
2801// The matcher takes ownership of 'regex'.
2802inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2803    const internal::RE* regex) {
2804  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2805}
2806inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2807    const internal::string& regex) {
2808  return MatchesRegex(new internal::RE(regex));
2809}
2810
2811// Matches a string that contains regular expression 'regex'.
2812// The matcher takes ownership of 'regex'.
2813inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2814    const internal::RE* regex) {
2815  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2816}
2817inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2818    const internal::string& regex) {
2819  return ContainsRegex(new internal::RE(regex));
2820}
2821
2822#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2823// Wide string matchers.
2824
2825// Matches a string equal to str.
2826inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2827    StrEq(const internal::wstring& str) {
2828  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2829      str, true, true));
2830}
2831
2832// Matches a string not equal to str.
2833inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2834    StrNe(const internal::wstring& str) {
2835  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2836      str, false, true));
2837}
2838
2839// Matches a string equal to str, ignoring case.
2840inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2841    StrCaseEq(const internal::wstring& str) {
2842  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2843      str, true, false));
2844}
2845
2846// Matches a string not equal to str, ignoring case.
2847inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2848    StrCaseNe(const internal::wstring& str) {
2849  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2850      str, false, false));
2851}
2852
2853// Creates a matcher that matches any wstring, std::wstring, or C wide string
2854// that contains the given substring.
2855inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2856    HasSubstr(const internal::wstring& substring) {
2857  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2858      substring));
2859}
2860
2861// Matches a string that starts with 'prefix' (case-sensitive).
2862inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2863    StartsWith(const internal::wstring& prefix) {
2864  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2865      prefix));
2866}
2867
2868// Matches a string that ends with 'suffix' (case-sensitive).
2869inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2870    EndsWith(const internal::wstring& suffix) {
2871  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2872      suffix));
2873}
2874
2875#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2876
2877// Creates a polymorphic matcher that matches a 2-tuple where the
2878// first field == the second field.
2879inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2880
2881// Creates a polymorphic matcher that matches a 2-tuple where the
2882// first field >= the second field.
2883inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2884
2885// Creates a polymorphic matcher that matches a 2-tuple where the
2886// first field > the second field.
2887inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2888
2889// Creates a polymorphic matcher that matches a 2-tuple where the
2890// first field <= the second field.
2891inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2892
2893// Creates a polymorphic matcher that matches a 2-tuple where the
2894// first field < the second field.
2895inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2896
2897// Creates a polymorphic matcher that matches a 2-tuple where the
2898// first field != the second field.
2899inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2900
2901// Creates a matcher that matches any value of type T that m doesn't
2902// match.
2903template <typename InnerMatcher>
2904inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2905  return internal::NotMatcher<InnerMatcher>(m);
2906}
2907
2908// Returns a matcher that matches anything that satisfies the given
2909// predicate.  The predicate can be any unary function or functor
2910// whose return type can be implicitly converted to bool.
2911template <typename Predicate>
2912inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2913Truly(Predicate pred) {
2914  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2915}
2916
2917// Returns a matcher that matches an equal container.
2918// This matcher behaves like Eq(), but in the event of mismatch lists the
2919// values that are included in one container but not the other. (Duplicate
2920// values and order differences are not explained.)
2921template <typename Container>
2922inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
2923                            GTEST_REMOVE_CONST_(Container)> >
2924    ContainerEq(const Container& rhs) {
2925  // This following line is for working around a bug in MSVC 8.0,
2926  // which causes Container to be a const type sometimes.
2927  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
2928  return MakePolymorphicMatcher(
2929      internal::ContainerEqMatcher<RawContainer>(rhs));
2930}
2931
2932// Matches an STL-style container or a native array that contains the
2933// same number of elements as in rhs, where its i-th element and rhs's
2934// i-th element (as a pair) satisfy the given pair matcher, for all i.
2935// TupleMatcher must be able to be safely cast to Matcher<tuple<const
2936// T1&, const T2&> >, where T1 and T2 are the types of elements in the
2937// LHS container and the RHS container respectively.
2938template <typename TupleMatcher, typename Container>
2939inline internal::PointwiseMatcher<TupleMatcher,
2940                                  GTEST_REMOVE_CONST_(Container)>
2941Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
2942  // This following line is for working around a bug in MSVC 8.0,
2943  // which causes Container to be a const type sometimes.
2944  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
2945  return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
2946      tuple_matcher, rhs);
2947}
2948
2949// Matches an STL-style container or a native array that contains at
2950// least one element matching the given value or matcher.
2951//
2952// Examples:
2953//   ::std::set<int> page_ids;
2954//   page_ids.insert(3);
2955//   page_ids.insert(1);
2956//   EXPECT_THAT(page_ids, Contains(1));
2957//   EXPECT_THAT(page_ids, Contains(Gt(2)));
2958//   EXPECT_THAT(page_ids, Not(Contains(4)));
2959//
2960//   ::std::map<int, size_t> page_lengths;
2961//   page_lengths[1] = 100;
2962//   EXPECT_THAT(page_lengths,
2963//               Contains(::std::pair<const int, size_t>(1, 100)));
2964//
2965//   const char* user_ids[] = { "joe", "mike", "tom" };
2966//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
2967template <typename M>
2968inline internal::ContainsMatcher<M> Contains(M matcher) {
2969  return internal::ContainsMatcher<M>(matcher);
2970}
2971
2972// Matches an STL-style container or a native array that contains only
2973// elements matching the given value or matcher.
2974//
2975// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
2976// the messages are different.
2977//
2978// Examples:
2979//   ::std::set<int> page_ids;
2980//   // Each(m) matches an empty container, regardless of what m is.
2981//   EXPECT_THAT(page_ids, Each(Eq(1)));
2982//   EXPECT_THAT(page_ids, Each(Eq(77)));
2983//
2984//   page_ids.insert(3);
2985//   EXPECT_THAT(page_ids, Each(Gt(0)));
2986//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
2987//   page_ids.insert(1);
2988//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
2989//
2990//   ::std::map<int, size_t> page_lengths;
2991//   page_lengths[1] = 100;
2992//   page_lengths[2] = 200;
2993//   page_lengths[3] = 300;
2994//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
2995//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
2996//
2997//   const char* user_ids[] = { "joe", "mike", "tom" };
2998//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
2999template <typename M>
3000inline internal::EachMatcher<M> Each(M matcher) {
3001  return internal::EachMatcher<M>(matcher);
3002}
3003
3004// Key(inner_matcher) matches an std::pair whose 'first' field matches
3005// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
3006// std::map that contains at least one element whose key is >= 5.
3007template <typename M>
3008inline internal::KeyMatcher<M> Key(M inner_matcher) {
3009  return internal::KeyMatcher<M>(inner_matcher);
3010}
3011
3012// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
3013// matches first_matcher and whose 'second' field matches second_matcher.  For
3014// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
3015// to match a std::map<int, string> that contains exactly one element whose key
3016// is >= 5 and whose value equals "foo".
3017template <typename FirstMatcher, typename SecondMatcher>
3018inline internal::PairMatcher<FirstMatcher, SecondMatcher>
3019Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
3020  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
3021      first_matcher, second_matcher);
3022}
3023
3024// Returns a predicate that is satisfied by anything that matches the
3025// given matcher.
3026template <typename M>
3027inline internal::MatcherAsPredicate<M> Matches(M matcher) {
3028  return internal::MatcherAsPredicate<M>(matcher);
3029}
3030
3031// Returns true iff the value matches the matcher.
3032template <typename T, typename M>
3033inline bool Value(const T& value, M matcher) {
3034  return testing::Matches(matcher)(value);
3035}
3036
3037// Matches the value against the given matcher and explains the match
3038// result to listener.
3039template <typename T, typename M>
3040inline bool ExplainMatchResult(
3041    M matcher, const T& value, MatchResultListener* listener) {
3042  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
3043}
3044
3045// AllArgs(m) is a synonym of m.  This is useful in
3046//
3047//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
3048//
3049// which is easier to read than
3050//
3051//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
3052template <typename InnerMatcher>
3053inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
3054
3055// These macros allow using matchers to check values in Google Test
3056// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
3057// succeed iff the value matches the matcher.  If the assertion fails,
3058// the value and the description of the matcher will be printed.
3059#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
3060    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3061#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
3062    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3063
3064}  // namespace testing
3065
3066#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
Note: See TracBrowser for help on using the repository browser.