1 | |
---|
2 | /* |
---|
3 | ----------------------------------------------------------------------------- |
---|
4 | This source file is part of GIMPACT Library. |
---|
5 | |
---|
6 | For the latest info, see http://gimpact.sourceforge.net/ |
---|
7 | |
---|
8 | Copyright (c) 2006 Francisco Leon. C.C. 80087371. |
---|
9 | email: projectileman@yahoo.com |
---|
10 | |
---|
11 | This library is free software; you can redistribute it and/or |
---|
12 | modify it under the terms of EITHER: |
---|
13 | (1) The GNU Lesser General Public License as published by the Free |
---|
14 | Software Foundation; either version 2.1 of the License, or (at |
---|
15 | your option) any later version. The text of the GNU Lesser |
---|
16 | General Public License is included with this library in the |
---|
17 | file GIMPACT-LICENSE-LGPL.TXT. |
---|
18 | (2) The BSD-style license that is included with this library in |
---|
19 | the file GIMPACT-LICENSE-BSD.TXT. |
---|
20 | |
---|
21 | This library is distributed in the hope that it will be useful, |
---|
22 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
23 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files |
---|
24 | GIMPACT-LICENSE-LGPL.TXT and GIMPACT-LICENSE-BSD.TXT for more details. |
---|
25 | |
---|
26 | ----------------------------------------------------------------------------- |
---|
27 | */ |
---|
28 | |
---|
29 | |
---|
30 | #include "GIMPACT/gim_boxpruning.h" |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | //! Allocate memory for all aabb set. |
---|
35 | void gim_aabbset_alloc(GIM_AABB_SET * aabbset, GUINT count) |
---|
36 | { |
---|
37 | aabbset->m_count = count; |
---|
38 | aabbset->m_boxes = (aabb3f *)gim_alloc(sizeof(aabb3f)*count); |
---|
39 | |
---|
40 | if(count<GIM_MIN_SORTED_BIPARTITE_PRUNING_BOXES) |
---|
41 | { |
---|
42 | aabbset->m_maxcoords = 0; |
---|
43 | aabbset->m_sorted_mincoords = 0; |
---|
44 | } |
---|
45 | else |
---|
46 | { |
---|
47 | aabbset->m_maxcoords = (GUINT *)gim_alloc(sizeof(GUINT)*aabbset->m_count ); |
---|
48 | aabbset->m_sorted_mincoords = (GIM_RSORT_TOKEN *)gim_alloc(sizeof(GIM_RSORT_TOKEN)*aabbset->m_count); |
---|
49 | } |
---|
50 | aabbset->m_shared = 0; |
---|
51 | INVALIDATE_AABB(aabbset->m_global_bound); |
---|
52 | } |
---|
53 | |
---|
54 | //! Destroys the aabb set. |
---|
55 | void gim_aabbset_destroy(GIM_AABB_SET * aabbset) |
---|
56 | { |
---|
57 | aabbset->m_count = 0; |
---|
58 | if(aabbset->m_shared==0) |
---|
59 | { |
---|
60 | gim_free(aabbset->m_boxes,0); |
---|
61 | gim_free(aabbset->m_maxcoords,0); |
---|
62 | gim_free(aabbset->m_sorted_mincoords,0); |
---|
63 | } |
---|
64 | aabbset->m_boxes = 0; |
---|
65 | aabbset->m_sorted_mincoords = 0; |
---|
66 | aabbset->m_maxcoords = 0; |
---|
67 | } |
---|
68 | |
---|
69 | void gim_aabbset_calc_global_bound(GIM_AABB_SET * aabbset) |
---|
70 | { |
---|
71 | aabb3f * paabb = aabbset->m_boxes; |
---|
72 | aabb3f * globalbox = &aabbset->m_global_bound; |
---|
73 | AABB_COPY((*globalbox),(*paabb)); |
---|
74 | |
---|
75 | GUINT count = aabbset->m_count-1; |
---|
76 | paabb++; |
---|
77 | while(count) |
---|
78 | { |
---|
79 | MERGEBOXES(*globalbox,*paabb) |
---|
80 | paabb++; |
---|
81 | count--; |
---|
82 | } |
---|
83 | } |
---|
84 | |
---|
85 | |
---|
86 | //! Sorts the boxes for box prunning. |
---|
87 | /*! |
---|
88 | 1) find the integer representation of the aabb coords |
---|
89 | 2) Sorts the min coords |
---|
90 | 3) Calcs the global bound |
---|
91 | \pre aabbset must be allocated. And the boxes must be already set. |
---|
92 | \param aabbset |
---|
93 | \param calc_global_bound If 1 , calcs the global bound |
---|
94 | \post If aabbset->m_sorted_mincoords == 0, then it allocs the sorted coordinates |
---|
95 | */ |
---|
96 | void gim_aabbset_sort(GIM_AABB_SET * aabbset, char calc_global_bound) |
---|
97 | { |
---|
98 | if(aabbset->m_sorted_mincoords == 0) |
---|
99 | {//allocate |
---|
100 | aabbset->m_maxcoords = (GUINT *)gim_alloc(sizeof(GUINT)*aabbset->m_count ); |
---|
101 | aabbset->m_sorted_mincoords = (GIM_RSORT_TOKEN *)gim_alloc(sizeof(GIM_RSORT_TOKEN)*aabbset->m_count); |
---|
102 | } |
---|
103 | |
---|
104 | GUINT i, count = aabbset->m_count; |
---|
105 | aabb3f * paabb = aabbset->m_boxes; |
---|
106 | GUINT * maxcoords = aabbset->m_maxcoords; |
---|
107 | GIM_RSORT_TOKEN * sorted_tokens = aabbset->m_sorted_mincoords; |
---|
108 | |
---|
109 | if(count<860)//Calibrated on a Pentium IV |
---|
110 | { |
---|
111 | //Sort by quick sort |
---|
112 | //Calculate keys |
---|
113 | for(i=0;i<count;i++) |
---|
114 | { |
---|
115 | GIM_CONVERT_VEC3F_GUINT_XZ_UPPER(paabb[i].maxX,paabb[i].maxZ,maxcoords[i]); |
---|
116 | GIM_CONVERT_VEC3F_GUINT_XZ(paabb[i].minX,paabb[i].minZ,sorted_tokens[i].m_key); |
---|
117 | sorted_tokens[i].m_value = i; |
---|
118 | } |
---|
119 | GIM_QUICK_SORT_ARRAY(GIM_RSORT_TOKEN , sorted_tokens, count, RSORT_TOKEN_COMPARATOR,GIM_DEF_EXCHANGE_MACRO); |
---|
120 | } |
---|
121 | else |
---|
122 | { |
---|
123 | //Sort by radix sort |
---|
124 | GIM_RSORT_TOKEN * unsorted = (GIM_RSORT_TOKEN *)gim_alloc(sizeof(GIM_RSORT_TOKEN )*count); |
---|
125 | //Calculate keys |
---|
126 | for(i=0;i<count;i++) |
---|
127 | { |
---|
128 | GIM_CONVERT_VEC3F_GUINT_XZ_UPPER(paabb[i].maxX,paabb[i].maxZ,maxcoords[i]); |
---|
129 | GIM_CONVERT_VEC3F_GUINT_XZ(paabb[i].minX,paabb[i].minZ,unsorted[i].m_key); |
---|
130 | unsorted[i].m_value = i; |
---|
131 | } |
---|
132 | GIM_RADIX_SORT_RTOKENS(unsorted,sorted_tokens,count); |
---|
133 | gim_free(unsorted,0); |
---|
134 | } |
---|
135 | |
---|
136 | if(calc_global_bound) gim_aabbset_calc_global_bound(aabbset); |
---|
137 | } |
---|
138 | |
---|
139 | //utility macros |
---|
140 | |
---|
141 | /*#define PUSH_PAIR(i,j,pairset)\ |
---|
142 | {\ |
---|
143 | GIM_PAIR _pair={i,j};\ |
---|
144 | GIM_DYNARRAY_PUSH_ITEM(GIM_PAIR,pairset,_pair);\ |
---|
145 | }*/ |
---|
146 | |
---|
147 | #define PUSH_PAIR(i,j,pairset)\ |
---|
148 | {\ |
---|
149 | GIM_DYNARRAY_PUSH_EMPTY(GIM_PAIR,pairset);\ |
---|
150 | GIM_PAIR * _pair = GIM_DYNARRAY_POINTER(GIM_PAIR,pairset) + (pairset).m_size - 1;\ |
---|
151 | _pair->m_index1 = i;\ |
---|
152 | _pair->m_index2 = j;\ |
---|
153 | } |
---|
154 | |
---|
155 | #define PUSH_PAIR_INV(i,j,pairset)\ |
---|
156 | {\ |
---|
157 | GIM_DYNARRAY_PUSH_EMPTY(GIM_PAIR,pairset);\ |
---|
158 | GIM_PAIR * _pair = GIM_DYNARRAY_POINTER(GIM_PAIR,pairset) + (pairset).m_size - 1;\ |
---|
159 | _pair->m_index1 = j;\ |
---|
160 | _pair->m_index2 = i;\ |
---|
161 | } |
---|
162 | |
---|
163 | #define FIND_OVERLAPPING_FOWARD(\ |
---|
164 | curr_index,\ |
---|
165 | test_count,\ |
---|
166 | test_aabb,\ |
---|
167 | max_coord_uint,\ |
---|
168 | sorted_tokens,\ |
---|
169 | aabbarray,\ |
---|
170 | pairset,\ |
---|
171 | push_pair_macro)\ |
---|
172 | {\ |
---|
173 | GUINT _i = test_count;\ |
---|
174 | char _intersected;\ |
---|
175 | GIM_RSORT_TOKEN * _psorted_tokens = sorted_tokens;\ |
---|
176 | while(max_coord_uint >= _psorted_tokens->m_key && _i>0)\ |
---|
177 | {\ |
---|
178 | AABBCOLLISION(_intersected,test_aabb,aabbarray[_psorted_tokens->m_value]);\ |
---|
179 | if(_intersected)\ |
---|
180 | {\ |
---|
181 | push_pair_macro(curr_index, _psorted_tokens->m_value,pairset);\ |
---|
182 | }\ |
---|
183 | _psorted_tokens++;\ |
---|
184 | _i--;\ |
---|
185 | }\ |
---|
186 | } |
---|
187 | |
---|
188 | //! log(N) Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set. |
---|
189 | /*! |
---|
190 | \pre aabbset must be allocated and sorted, the boxes must be already set. |
---|
191 | \param aabbset Must be sorted. Global bound isn't required |
---|
192 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
193 | */ |
---|
194 | void gim_aabbset_self_intersections_sorted(GIM_AABB_SET * aabbset, GDYNAMIC_ARRAY * collision_pairs) |
---|
195 | { |
---|
196 | collision_pairs->m_size = 0; |
---|
197 | GUINT count = aabbset->m_count; |
---|
198 | aabb3f * paabb = aabbset->m_boxes; |
---|
199 | GUINT * maxcoords = aabbset->m_maxcoords; |
---|
200 | GIM_RSORT_TOKEN * sorted_tokens = aabbset->m_sorted_mincoords; |
---|
201 | aabb3f test_aabb; |
---|
202 | while(count>1) |
---|
203 | { |
---|
204 | ///current cache variables |
---|
205 | GUINT curr_index = sorted_tokens->m_value; |
---|
206 | GUINT max_coord_uint = maxcoords[curr_index]; |
---|
207 | AABB_COPY(test_aabb,paabb[curr_index]); |
---|
208 | |
---|
209 | ///next pairs |
---|
210 | sorted_tokens++; |
---|
211 | count--; |
---|
212 | FIND_OVERLAPPING_FOWARD( curr_index, count, test_aabb, max_coord_uint, sorted_tokens , paabb, (*collision_pairs),PUSH_PAIR); |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | //! NxN Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set. |
---|
217 | /*! |
---|
218 | \pre aabbset must be allocated, the boxes must be already set. |
---|
219 | \param aabbset Global bound isn't required. Doen't need to be sorted. |
---|
220 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
221 | */ |
---|
222 | void gim_aabbset_self_intersections_brute_force(GIM_AABB_SET * aabbset, GDYNAMIC_ARRAY * collision_pairs) |
---|
223 | { |
---|
224 | collision_pairs->m_size = 0; |
---|
225 | GUINT i,j; |
---|
226 | GUINT count = aabbset->m_count; |
---|
227 | aabb3f * paabb = aabbset->m_boxes; |
---|
228 | char intersected; |
---|
229 | for (i=0;i< count-1 ;i++ ) |
---|
230 | { |
---|
231 | for (j=i+1;j<count ;j++ ) |
---|
232 | { |
---|
233 | AABBCOLLISION(intersected,paabb[i],paabb[j]); |
---|
234 | if(intersected) |
---|
235 | { |
---|
236 | PUSH_PAIR(i,j,(*collision_pairs)); |
---|
237 | } |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | //! log(N) Bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set. |
---|
243 | /*! |
---|
244 | \pre aabbset1 and aabbset2 must be allocated and sorted, the boxes must be already set. |
---|
245 | \param aabbset1 Must be sorted, Global bound is required. |
---|
246 | \param aabbset2 Must be sorted, Global bound is required. |
---|
247 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
248 | */ |
---|
249 | void gim_aabbset_bipartite_intersections_sorted(GIM_AABB_SET * aabbset1, GIM_AABB_SET * aabbset2, GDYNAMIC_ARRAY * collision_pairs) |
---|
250 | { |
---|
251 | char intersected; |
---|
252 | collision_pairs->m_size = 0; |
---|
253 | |
---|
254 | AABBCOLLISION(intersected,aabbset1->m_global_bound,aabbset2->m_global_bound); |
---|
255 | if(intersected == 0) return; |
---|
256 | |
---|
257 | GUINT count1 = aabbset1->m_count; |
---|
258 | aabb3f * paabb1 = aabbset1->m_boxes; |
---|
259 | GUINT * maxcoords1 = aabbset1->m_maxcoords; |
---|
260 | GIM_RSORT_TOKEN * sorted_tokens1 = aabbset1->m_sorted_mincoords; |
---|
261 | |
---|
262 | GUINT count2 = aabbset2->m_count; |
---|
263 | aabb3f * paabb2 = aabbset2->m_boxes; |
---|
264 | GUINT * maxcoords2 = aabbset2->m_maxcoords; |
---|
265 | GIM_RSORT_TOKEN * sorted_tokens2 = aabbset2->m_sorted_mincoords; |
---|
266 | |
---|
267 | GUINT curr_index; |
---|
268 | |
---|
269 | GUINT max_coord_uint; |
---|
270 | aabb3f test_aabb; |
---|
271 | |
---|
272 | //Classify boxes |
---|
273 | //Find Set intersection |
---|
274 | aabb3f int_abbb; |
---|
275 | BOXINTERSECTION(aabbset1->m_global_bound,aabbset2->m_global_bound, int_abbb); |
---|
276 | |
---|
277 | //Clasify set 1 |
---|
278 | GIM_RSORT_TOKEN * classified_tokens1 = (GIM_RSORT_TOKEN *) gim_alloc(sizeof(GIM_RSORT_TOKEN)*count1); |
---|
279 | GUINT i,classified_count1 = 0,classified_count2 = 0; |
---|
280 | |
---|
281 | |
---|
282 | for (i=0;i<count1;i++ ) |
---|
283 | { |
---|
284 | curr_index = sorted_tokens1[i].m_value; |
---|
285 | AABBCOLLISION(intersected,paabb1[curr_index],int_abbb); |
---|
286 | if(intersected) |
---|
287 | { |
---|
288 | classified_tokens1[classified_count1] = sorted_tokens1[i]; |
---|
289 | classified_count1++; |
---|
290 | } |
---|
291 | } |
---|
292 | |
---|
293 | if(classified_count1==0) |
---|
294 | { |
---|
295 | gim_free(classified_tokens1 ,0); |
---|
296 | return; // no pairs |
---|
297 | } |
---|
298 | |
---|
299 | //Clasify set 2 |
---|
300 | GIM_RSORT_TOKEN * classified_tokens2 = (GIM_RSORT_TOKEN *) gim_alloc(sizeof(GIM_RSORT_TOKEN)*count2); |
---|
301 | |
---|
302 | for (i=0;i<count2;i++ ) |
---|
303 | { |
---|
304 | curr_index = sorted_tokens2[i].m_value; |
---|
305 | AABBCOLLISION(intersected,paabb2[curr_index],int_abbb); |
---|
306 | if(intersected) |
---|
307 | { |
---|
308 | classified_tokens2[classified_count2] = sorted_tokens2[i]; |
---|
309 | classified_count2++; |
---|
310 | } |
---|
311 | } |
---|
312 | |
---|
313 | if(classified_count2==0) |
---|
314 | { |
---|
315 | gim_free(classified_tokens1 ,0); |
---|
316 | gim_free(classified_tokens2 ,0); |
---|
317 | return; // no pairs |
---|
318 | } |
---|
319 | |
---|
320 | sorted_tokens1 = classified_tokens1; |
---|
321 | sorted_tokens2 = classified_tokens2; |
---|
322 | |
---|
323 | while(classified_count1>0&&classified_count2>0) |
---|
324 | { |
---|
325 | if(sorted_tokens1->m_key <= sorted_tokens2->m_key) |
---|
326 | { |
---|
327 | ///current cache variables |
---|
328 | curr_index = sorted_tokens1->m_value; |
---|
329 | max_coord_uint = maxcoords1[curr_index]; |
---|
330 | AABB_COPY(test_aabb,paabb1[curr_index]); |
---|
331 | ///next pairs |
---|
332 | sorted_tokens1++; |
---|
333 | classified_count1--; |
---|
334 | FIND_OVERLAPPING_FOWARD( curr_index, classified_count2, test_aabb, max_coord_uint, sorted_tokens2 , paabb2, (*collision_pairs), PUSH_PAIR); |
---|
335 | } |
---|
336 | else ///Switch test |
---|
337 | { |
---|
338 | ///current cache variables |
---|
339 | curr_index = sorted_tokens2->m_value; |
---|
340 | max_coord_uint = maxcoords2[curr_index]; |
---|
341 | AABB_COPY(test_aabb,paabb2[curr_index]); |
---|
342 | ///next pairs |
---|
343 | sorted_tokens2++; |
---|
344 | classified_count2--; |
---|
345 | FIND_OVERLAPPING_FOWARD( curr_index, classified_count1, test_aabb, max_coord_uint, sorted_tokens1 , paabb1, (*collision_pairs), PUSH_PAIR_INV ); |
---|
346 | } |
---|
347 | } |
---|
348 | gim_free(classified_tokens1 ,0); |
---|
349 | gim_free(classified_tokens2 ,0); |
---|
350 | } |
---|
351 | |
---|
352 | //! NxM Bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set. |
---|
353 | /*! |
---|
354 | \pre aabbset1 and aabbset2 must be allocated and sorted, the boxes must be already set. |
---|
355 | \param aabbset1 Must be sorted, Global bound is required. |
---|
356 | \param aabbset2 Must be sorted, Global bound is required. |
---|
357 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
358 | */ |
---|
359 | void gim_aabbset_bipartite_intersections_brute_force(GIM_AABB_SET * aabbset1,GIM_AABB_SET * aabbset2, GDYNAMIC_ARRAY * collision_pairs) |
---|
360 | { |
---|
361 | char intersected; |
---|
362 | collision_pairs->m_size = 0; |
---|
363 | AABBCOLLISION(intersected,aabbset1->m_global_bound,aabbset2->m_global_bound); |
---|
364 | if(intersected == 0) return; |
---|
365 | |
---|
366 | aabb3f int_abbb; |
---|
367 | //Find Set intersection |
---|
368 | BOXINTERSECTION(aabbset1->m_global_bound,aabbset2->m_global_bound, int_abbb); |
---|
369 | //Clasify set 1 |
---|
370 | GUINT i,j; |
---|
371 | GUINT classified_count = 0; |
---|
372 | |
---|
373 | GUINT count = aabbset1->m_count; |
---|
374 | aabb3f * paabb1 = aabbset1->m_boxes; |
---|
375 | aabb3f * paabb2 = aabbset2->m_boxes; |
---|
376 | |
---|
377 | GUINT * classified = (GUINT *) gim_alloc(sizeof(GUINT)*count); |
---|
378 | |
---|
379 | for (i=0;i<count;i++ ) |
---|
380 | { |
---|
381 | AABBCOLLISION(intersected,paabb1[i],int_abbb); |
---|
382 | if(intersected) |
---|
383 | { |
---|
384 | classified[classified_count] = i; |
---|
385 | classified_count++; |
---|
386 | } |
---|
387 | } |
---|
388 | |
---|
389 | if(classified_count==0) return; // no pairs |
---|
390 | |
---|
391 | //intesect set2 |
---|
392 | count = aabbset2->m_count; |
---|
393 | for (i=0;i<count;i++) |
---|
394 | { |
---|
395 | AABBCOLLISION(intersected,paabb2[i],int_abbb); |
---|
396 | if(intersected) |
---|
397 | { |
---|
398 | for (j=0;j<classified_count;j++) |
---|
399 | { |
---|
400 | AABBCOLLISION(intersected,paabb2[i],paabb1[classified[j]]); |
---|
401 | if(intersected) |
---|
402 | { |
---|
403 | PUSH_PAIR(classified[j],i,(*collision_pairs)); |
---|
404 | } |
---|
405 | } |
---|
406 | } |
---|
407 | } |
---|
408 | gim_free(classified,0); |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | //! Initalizes the set. Sort Boxes if needed. |
---|
413 | /*! |
---|
414 | \pre aabbset must be allocated. And the boxes must be already set. |
---|
415 | \post If the set has less of GIM_MIN_SORTED_BIPARTITE_PRUNING_BOXES boxes, only calcs the global box, |
---|
416 | else it Sorts the entire set( Only applicable for large sets) |
---|
417 | */ |
---|
418 | void gim_aabbset_update(GIM_AABB_SET * aabbset) |
---|
419 | { |
---|
420 | if(aabbset->m_count < GIM_MIN_SORTED_BIPARTITE_PRUNING_BOXES) |
---|
421 | {//Brute force approach |
---|
422 | gim_aabbset_calc_global_bound(aabbset); |
---|
423 | } |
---|
424 | else |
---|
425 | {//Sorted force approach |
---|
426 | gim_aabbset_sort(aabbset,1); |
---|
427 | } |
---|
428 | } |
---|
429 | |
---|
430 | //! Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set. |
---|
431 | /*! |
---|
432 | This function sorts the set and then it calls to gim_aabbset_self_intersections_brute_force or gim_aabbset_self_intersections_sorted. |
---|
433 | |
---|
434 | \param aabbset Set of boxes. Sorting isn't required. |
---|
435 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
436 | \pre aabbset must be allocated and initialized. |
---|
437 | \post If aabbset->m_count >= GIM_MIN_SORTED_PRUNING_BOXES, then it calls to gim_aabbset_sort and then to gim_aabbset_self_intersections_sorted. |
---|
438 | */ |
---|
439 | void gim_aabbset_self_intersections(GIM_AABB_SET * aabbset, GDYNAMIC_ARRAY * collision_pairs) |
---|
440 | { |
---|
441 | if(aabbset->m_count < GIM_MIN_SORTED_PRUNING_BOXES) |
---|
442 | {//Brute force approach |
---|
443 | gim_aabbset_self_intersections_brute_force(aabbset,collision_pairs); |
---|
444 | } |
---|
445 | else |
---|
446 | {//Sorted force approach |
---|
447 | gim_aabbset_sort(aabbset,0); |
---|
448 | gim_aabbset_self_intersections_sorted(aabbset,collision_pairs); |
---|
449 | } |
---|
450 | } |
---|
451 | |
---|
452 | //! Collides two sets. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set. |
---|
453 | /*! |
---|
454 | \pre aabbset1 and aabbset2 must be allocated and updated. See . |
---|
455 | \param aabbset1 Must be sorted, Global bound is required. |
---|
456 | \param aabbset2 Must be sorted, Global bound is required. |
---|
457 | \param collision_pairs Array of GIM_PAIR elements. Must be initialized before (Reserve size ~ 100) |
---|
458 | */ |
---|
459 | void gim_aabbset_bipartite_intersections(GIM_AABB_SET * aabbset1, GIM_AABB_SET * aabbset2, GDYNAMIC_ARRAY * collision_pairs) |
---|
460 | { |
---|
461 | if(aabbset1->m_sorted_mincoords == 0||aabbset2->m_sorted_mincoords == 0) |
---|
462 | {//Brute force approach |
---|
463 | gim_aabbset_bipartite_intersections_brute_force(aabbset1,aabbset2,collision_pairs); |
---|
464 | } |
---|
465 | else |
---|
466 | {//Sorted force approach |
---|
467 | gim_aabbset_bipartite_intersections_sorted(aabbset1,aabbset2,collision_pairs); |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | void gim_aabbset_box_collision(aabb3f *test_aabb, GIM_AABB_SET * aabbset, GDYNAMIC_ARRAY * collided) |
---|
472 | { |
---|
473 | collided->m_size = 0; |
---|
474 | char intersected; |
---|
475 | AABBCOLLISION(intersected,aabbset->m_global_bound,(*test_aabb)); |
---|
476 | if(intersected == 0) return; |
---|
477 | |
---|
478 | GUINT i; |
---|
479 | GUINT count = aabbset->m_count; |
---|
480 | aabb3f * paabb = aabbset->m_boxes; |
---|
481 | aabb3f _testaabb; |
---|
482 | AABB_COPY(_testaabb,*test_aabb); |
---|
483 | |
---|
484 | for (i=0;i< count;i++ ) |
---|
485 | { |
---|
486 | AABBCOLLISION(intersected,paabb[i],_testaabb); |
---|
487 | if(intersected) |
---|
488 | { |
---|
489 | GIM_DYNARRAY_PUSH_ITEM(GUINT,(*collided),i); |
---|
490 | } |
---|
491 | } |
---|
492 | } |
---|
493 | |
---|
494 | void gim_aabbset_ray_collision(vec3f vorigin,vec3f vdir, GREAL tmax, GIM_AABB_SET * aabbset, GDYNAMIC_ARRAY * collided) |
---|
495 | { |
---|
496 | collided->m_size = 0; |
---|
497 | char intersected; |
---|
498 | GREAL tparam = 0; |
---|
499 | BOX_INTERSECTS_RAY(aabbset->m_global_bound, vorigin, vdir, tparam, tmax,intersected); |
---|
500 | if(intersected==0) return; |
---|
501 | |
---|
502 | GUINT i; |
---|
503 | GUINT count = aabbset->m_count; |
---|
504 | aabb3f * paabb = aabbset->m_boxes; |
---|
505 | |
---|
506 | for (i=0;i< count;i++ ) |
---|
507 | { |
---|
508 | BOX_INTERSECTS_RAY(paabb[i], vorigin, vdir, tparam, tmax,intersected); |
---|
509 | if(intersected) |
---|
510 | { |
---|
511 | GIM_DYNARRAY_PUSH_ITEM(GUINT,(*collided),i); |
---|
512 | } |
---|
513 | } |
---|
514 | } |
---|