1 | |
---|
2 | //! This macro quickly finds the min & max values among 3 variables |
---|
3 | #define FINDMINMAX(x0, x1, x2, min, max) \ |
---|
4 | min = max = x0; \ |
---|
5 | if(x1<min) min=x1; \ |
---|
6 | if(x1>max) max=x1; \ |
---|
7 | if(x2<min) min=x2; \ |
---|
8 | if(x2>max) max=x2; |
---|
9 | |
---|
10 | //! TO BE DOCUMENTED |
---|
11 | inline_ BOOL planeBoxOverlap(const Point& normal, const float d, const Point& maxbox) |
---|
12 | { |
---|
13 | Point vmin, vmax; |
---|
14 | for(udword q=0;q<=2;q++) |
---|
15 | { |
---|
16 | if(normal[q]>0.0f) { vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; } |
---|
17 | else { vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; } |
---|
18 | } |
---|
19 | if((normal|vmin)+d>0.0f) return FALSE; |
---|
20 | if((normal|vmax)+d>=0.0f) return TRUE; |
---|
21 | |
---|
22 | return FALSE; |
---|
23 | } |
---|
24 | |
---|
25 | //! TO BE DOCUMENTED |
---|
26 | #define AXISTEST_X01(a, b, fa, fb) \ |
---|
27 | min = a*v0.y - b*v0.z; \ |
---|
28 | max = a*v2.y - b*v2.z; \ |
---|
29 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
30 | rad = fa * extents.y + fb * extents.z; \ |
---|
31 | if(min>rad || max<-rad) return FALSE; |
---|
32 | |
---|
33 | //! TO BE DOCUMENTED |
---|
34 | #define AXISTEST_X2(a, b, fa, fb) \ |
---|
35 | min = a*v0.y - b*v0.z; \ |
---|
36 | max = a*v1.y - b*v1.z; \ |
---|
37 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
38 | rad = fa * extents.y + fb * extents.z; \ |
---|
39 | if(min>rad || max<-rad) return FALSE; |
---|
40 | |
---|
41 | //! TO BE DOCUMENTED |
---|
42 | #define AXISTEST_Y02(a, b, fa, fb) \ |
---|
43 | min = b*v0.z - a*v0.x; \ |
---|
44 | max = b*v2.z - a*v2.x; \ |
---|
45 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
46 | rad = fa * extents.x + fb * extents.z; \ |
---|
47 | if(min>rad || max<-rad) return FALSE; |
---|
48 | |
---|
49 | //! TO BE DOCUMENTED |
---|
50 | #define AXISTEST_Y1(a, b, fa, fb) \ |
---|
51 | min = b*v0.z - a*v0.x; \ |
---|
52 | max = b*v1.z - a*v1.x; \ |
---|
53 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
54 | rad = fa * extents.x + fb * extents.z; \ |
---|
55 | if(min>rad || max<-rad) return FALSE; |
---|
56 | |
---|
57 | //! TO BE DOCUMENTED |
---|
58 | #define AXISTEST_Z12(a, b, fa, fb) \ |
---|
59 | min = a*v1.x - b*v1.y; \ |
---|
60 | max = a*v2.x - b*v2.y; \ |
---|
61 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
62 | rad = fa * extents.x + fb * extents.y; \ |
---|
63 | if(min>rad || max<-rad) return FALSE; |
---|
64 | |
---|
65 | //! TO BE DOCUMENTED |
---|
66 | #define AXISTEST_Z0(a, b, fa, fb) \ |
---|
67 | min = a*v0.x - b*v0.y; \ |
---|
68 | max = a*v1.x - b*v1.y; \ |
---|
69 | if(min>max) {const float tmp=max; max=min; min=tmp; } \ |
---|
70 | rad = fa * extents.x + fb * extents.y; \ |
---|
71 | if(min>rad || max<-rad) return FALSE; |
---|
72 | |
---|
73 | // compute triangle edges |
---|
74 | // - edges lazy evaluated to take advantage of early exits |
---|
75 | // - fabs precomputed (half less work, possible since extents are always >0) |
---|
76 | // - customized macros to take advantage of the null component |
---|
77 | // - axis vector discarded, possibly saves useless movs |
---|
78 | #define IMPLEMENT_CLASS3_TESTS \ |
---|
79 | float rad; \ |
---|
80 | float min, max; \ |
---|
81 | \ |
---|
82 | const float fey0 = fabsf(e0.y); \ |
---|
83 | const float fez0 = fabsf(e0.z); \ |
---|
84 | AXISTEST_X01(e0.z, e0.y, fez0, fey0); \ |
---|
85 | const float fex0 = fabsf(e0.x); \ |
---|
86 | AXISTEST_Y02(e0.z, e0.x, fez0, fex0); \ |
---|
87 | AXISTEST_Z12(e0.y, e0.x, fey0, fex0); \ |
---|
88 | \ |
---|
89 | const float fey1 = fabsf(e1.y); \ |
---|
90 | const float fez1 = fabsf(e1.z); \ |
---|
91 | AXISTEST_X01(e1.z, e1.y, fez1, fey1); \ |
---|
92 | const float fex1 = fabsf(e1.x); \ |
---|
93 | AXISTEST_Y02(e1.z, e1.x, fez1, fex1); \ |
---|
94 | AXISTEST_Z0(e1.y, e1.x, fey1, fex1); \ |
---|
95 | \ |
---|
96 | const Point e2 = mLeafVerts[0] - mLeafVerts[2]; \ |
---|
97 | const float fey2 = fabsf(e2.y); \ |
---|
98 | const float fez2 = fabsf(e2.z); \ |
---|
99 | AXISTEST_X2(e2.z, e2.y, fez2, fey2); \ |
---|
100 | const float fex2 = fabsf(e2.x); \ |
---|
101 | AXISTEST_Y1(e2.z, e2.x, fez2, fex2); \ |
---|
102 | AXISTEST_Z12(e2.y, e2.x, fey2, fex2); |
---|
103 | |
---|
104 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
105 | /** |
---|
106 | * Triangle-Box overlap test using the separating axis theorem. |
---|
107 | * This is the code from Tomas Möller, a bit optimized: |
---|
108 | * - with some more lazy evaluation (faster path on PC) |
---|
109 | * - with a tiny bit of assembly |
---|
110 | * - with "SAT-lite" applied if needed |
---|
111 | * - and perhaps with some more minor modifs... |
---|
112 | * |
---|
113 | * \param center [in] box center |
---|
114 | * \param extents [in] box extents |
---|
115 | * \return true if triangle & box overlap |
---|
116 | */ |
---|
117 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
118 | inline_ BOOL AABBTreeCollider::TriBoxOverlap(const Point& center, const Point& extents) |
---|
119 | { |
---|
120 | // Stats |
---|
121 | mNbBVPrimTests++; |
---|
122 | |
---|
123 | // use separating axis theorem to test overlap between triangle and box |
---|
124 | // need to test for overlap in these directions: |
---|
125 | // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle |
---|
126 | // we do not even need to test these) |
---|
127 | // 2) normal of the triangle |
---|
128 | // 3) crossproduct(edge from tri, {x,y,z}-directin) |
---|
129 | // this gives 3x3=9 more tests |
---|
130 | |
---|
131 | // move everything so that the boxcenter is in (0,0,0) |
---|
132 | Point v0, v1, v2; |
---|
133 | v0.x = mLeafVerts[0].x - center.x; |
---|
134 | v1.x = mLeafVerts[1].x - center.x; |
---|
135 | v2.x = mLeafVerts[2].x - center.x; |
---|
136 | |
---|
137 | // First, test overlap in the {x,y,z}-directions |
---|
138 | #ifdef OPC_USE_FCOMI |
---|
139 | // find min, max of the triangle in x-direction, and test for overlap in X |
---|
140 | if(FCMin3(v0.x, v1.x, v2.x)>extents.x) return FALSE; |
---|
141 | if(FCMax3(v0.x, v1.x, v2.x)<-extents.x) return FALSE; |
---|
142 | |
---|
143 | // same for Y |
---|
144 | v0.y = mLeafVerts[0].y - center.y; |
---|
145 | v1.y = mLeafVerts[1].y - center.y; |
---|
146 | v2.y = mLeafVerts[2].y - center.y; |
---|
147 | |
---|
148 | if(FCMin3(v0.y, v1.y, v2.y)>extents.y) return FALSE; |
---|
149 | if(FCMax3(v0.y, v1.y, v2.y)<-extents.y) return FALSE; |
---|
150 | |
---|
151 | // same for Z |
---|
152 | v0.z = mLeafVerts[0].z - center.z; |
---|
153 | v1.z = mLeafVerts[1].z - center.z; |
---|
154 | v2.z = mLeafVerts[2].z - center.z; |
---|
155 | |
---|
156 | if(FCMin3(v0.z, v1.z, v2.z)>extents.z) return FALSE; |
---|
157 | if(FCMax3(v0.z, v1.z, v2.z)<-extents.z) return FALSE; |
---|
158 | #else |
---|
159 | float min,max; |
---|
160 | // Find min, max of the triangle in x-direction, and test for overlap in X |
---|
161 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); |
---|
162 | if(min>extents.x || max<-extents.x) return FALSE; |
---|
163 | |
---|
164 | // Same for Y |
---|
165 | v0.y = mLeafVerts[0].y - center.y; |
---|
166 | v1.y = mLeafVerts[1].y - center.y; |
---|
167 | v2.y = mLeafVerts[2].y - center.y; |
---|
168 | |
---|
169 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); |
---|
170 | if(min>extents.y || max<-extents.y) return FALSE; |
---|
171 | |
---|
172 | // Same for Z |
---|
173 | v0.z = mLeafVerts[0].z - center.z; |
---|
174 | v1.z = mLeafVerts[1].z - center.z; |
---|
175 | v2.z = mLeafVerts[2].z - center.z; |
---|
176 | |
---|
177 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); |
---|
178 | if(min>extents.z || max<-extents.z) return FALSE; |
---|
179 | #endif |
---|
180 | // 2) Test if the box intersects the plane of the triangle |
---|
181 | // compute plane equation of triangle: normal*x+d=0 |
---|
182 | // ### could be precomputed since we use the same leaf triangle several times |
---|
183 | const Point e0 = v1 - v0; |
---|
184 | const Point e1 = v2 - v1; |
---|
185 | const Point normal = e0 ^ e1; |
---|
186 | const float d = -normal|v0; |
---|
187 | if(!planeBoxOverlap(normal, d, extents)) return FALSE; |
---|
188 | |
---|
189 | // 3) "Class III" tests |
---|
190 | if(mFullPrimBoxTest) |
---|
191 | { |
---|
192 | IMPLEMENT_CLASS3_TESTS |
---|
193 | } |
---|
194 | return TRUE; |
---|
195 | } |
---|
196 | |
---|
197 | //! A dedicated version where the box is constant |
---|
198 | inline_ BOOL OBBCollider::TriBoxOverlap() |
---|
199 | { |
---|
200 | // Stats |
---|
201 | mNbVolumePrimTests++; |
---|
202 | |
---|
203 | // Hook |
---|
204 | const Point& extents = mBoxExtents; |
---|
205 | const Point& v0 = mLeafVerts[0]; |
---|
206 | const Point& v1 = mLeafVerts[1]; |
---|
207 | const Point& v2 = mLeafVerts[2]; |
---|
208 | |
---|
209 | // use separating axis theorem to test overlap between triangle and box |
---|
210 | // need to test for overlap in these directions: |
---|
211 | // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle |
---|
212 | // we do not even need to test these) |
---|
213 | // 2) normal of the triangle |
---|
214 | // 3) crossproduct(edge from tri, {x,y,z}-directin) |
---|
215 | // this gives 3x3=9 more tests |
---|
216 | |
---|
217 | // Box center is already in (0,0,0) |
---|
218 | |
---|
219 | // First, test overlap in the {x,y,z}-directions |
---|
220 | #ifdef OPC_USE_FCOMI |
---|
221 | // find min, max of the triangle in x-direction, and test for overlap in X |
---|
222 | if(FCMin3(v0.x, v1.x, v2.x)>mBoxExtents.x) return FALSE; |
---|
223 | if(FCMax3(v0.x, v1.x, v2.x)<-mBoxExtents.x) return FALSE; |
---|
224 | |
---|
225 | if(FCMin3(v0.y, v1.y, v2.y)>mBoxExtents.y) return FALSE; |
---|
226 | if(FCMax3(v0.y, v1.y, v2.y)<-mBoxExtents.y) return FALSE; |
---|
227 | |
---|
228 | if(FCMin3(v0.z, v1.z, v2.z)>mBoxExtents.z) return FALSE; |
---|
229 | if(FCMax3(v0.z, v1.z, v2.z)<-mBoxExtents.z) return FALSE; |
---|
230 | #else |
---|
231 | float min,max; |
---|
232 | // Find min, max of the triangle in x-direction, and test for overlap in X |
---|
233 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); |
---|
234 | if(min>mBoxExtents.x || max<-mBoxExtents.x) return FALSE; |
---|
235 | |
---|
236 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); |
---|
237 | if(min>mBoxExtents.y || max<-mBoxExtents.y) return FALSE; |
---|
238 | |
---|
239 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); |
---|
240 | if(min>mBoxExtents.z || max<-mBoxExtents.z) return FALSE; |
---|
241 | #endif |
---|
242 | // 2) Test if the box intersects the plane of the triangle |
---|
243 | // compute plane equation of triangle: normal*x+d=0 |
---|
244 | // ### could be precomputed since we use the same leaf triangle several times |
---|
245 | const Point e0 = v1 - v0; |
---|
246 | const Point e1 = v2 - v1; |
---|
247 | const Point normal = e0 ^ e1; |
---|
248 | const float d = -normal|v0; |
---|
249 | if(!planeBoxOverlap(normal, d, mBoxExtents)) return FALSE; |
---|
250 | |
---|
251 | // 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV) |
---|
252 | { |
---|
253 | IMPLEMENT_CLASS3_TESTS |
---|
254 | } |
---|
255 | return TRUE; |
---|
256 | } |
---|
257 | |
---|
258 | //! ...and another one, jeez |
---|
259 | inline_ BOOL AABBCollider::TriBoxOverlap() |
---|
260 | { |
---|
261 | // Stats |
---|
262 | mNbVolumePrimTests++; |
---|
263 | |
---|
264 | // Hook |
---|
265 | const Point& center = mBox.mCenter; |
---|
266 | const Point& extents = mBox.mExtents; |
---|
267 | |
---|
268 | // use separating axis theorem to test overlap between triangle and box |
---|
269 | // need to test for overlap in these directions: |
---|
270 | // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle |
---|
271 | // we do not even need to test these) |
---|
272 | // 2) normal of the triangle |
---|
273 | // 3) crossproduct(edge from tri, {x,y,z}-directin) |
---|
274 | // this gives 3x3=9 more tests |
---|
275 | |
---|
276 | // move everything so that the boxcenter is in (0,0,0) |
---|
277 | Point v0, v1, v2; |
---|
278 | v0.x = mLeafVerts[0].x - center.x; |
---|
279 | v1.x = mLeafVerts[1].x - center.x; |
---|
280 | v2.x = mLeafVerts[2].x - center.x; |
---|
281 | |
---|
282 | // First, test overlap in the {x,y,z}-directions |
---|
283 | #ifdef OPC_USE_FCOMI |
---|
284 | // find min, max of the triangle in x-direction, and test for overlap in X |
---|
285 | if(FCMin3(v0.x, v1.x, v2.x)>extents.x) return FALSE; |
---|
286 | if(FCMax3(v0.x, v1.x, v2.x)<-extents.x) return FALSE; |
---|
287 | |
---|
288 | // same for Y |
---|
289 | v0.y = mLeafVerts[0].y - center.y; |
---|
290 | v1.y = mLeafVerts[1].y - center.y; |
---|
291 | v2.y = mLeafVerts[2].y - center.y; |
---|
292 | |
---|
293 | if(FCMin3(v0.y, v1.y, v2.y)>extents.y) return FALSE; |
---|
294 | if(FCMax3(v0.y, v1.y, v2.y)<-extents.y) return FALSE; |
---|
295 | |
---|
296 | // same for Z |
---|
297 | v0.z = mLeafVerts[0].z - center.z; |
---|
298 | v1.z = mLeafVerts[1].z - center.z; |
---|
299 | v2.z = mLeafVerts[2].z - center.z; |
---|
300 | |
---|
301 | if(FCMin3(v0.z, v1.z, v2.z)>extents.z) return FALSE; |
---|
302 | if(FCMax3(v0.z, v1.z, v2.z)<-extents.z) return FALSE; |
---|
303 | #else |
---|
304 | float min,max; |
---|
305 | // Find min, max of the triangle in x-direction, and test for overlap in X |
---|
306 | FINDMINMAX(v0.x, v1.x, v2.x, min, max); |
---|
307 | if(min>extents.x || max<-extents.x) return FALSE; |
---|
308 | |
---|
309 | // Same for Y |
---|
310 | v0.y = mLeafVerts[0].y - center.y; |
---|
311 | v1.y = mLeafVerts[1].y - center.y; |
---|
312 | v2.y = mLeafVerts[2].y - center.y; |
---|
313 | |
---|
314 | FINDMINMAX(v0.y, v1.y, v2.y, min, max); |
---|
315 | if(min>extents.y || max<-extents.y) return FALSE; |
---|
316 | |
---|
317 | // Same for Z |
---|
318 | v0.z = mLeafVerts[0].z - center.z; |
---|
319 | v1.z = mLeafVerts[1].z - center.z; |
---|
320 | v2.z = mLeafVerts[2].z - center.z; |
---|
321 | |
---|
322 | FINDMINMAX(v0.z, v1.z, v2.z, min, max); |
---|
323 | if(min>extents.z || max<-extents.z) return FALSE; |
---|
324 | #endif |
---|
325 | // 2) Test if the box intersects the plane of the triangle |
---|
326 | // compute plane equation of triangle: normal*x+d=0 |
---|
327 | // ### could be precomputed since we use the same leaf triangle several times |
---|
328 | const Point e0 = v1 - v0; |
---|
329 | const Point e1 = v2 - v1; |
---|
330 | const Point normal = e0 ^ e1; |
---|
331 | const float d = -normal|v0; |
---|
332 | if(!planeBoxOverlap(normal, d, extents)) return FALSE; |
---|
333 | |
---|
334 | // 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV) |
---|
335 | { |
---|
336 | IMPLEMENT_CLASS3_TESTS |
---|
337 | } |
---|
338 | return TRUE; |
---|
339 | } |
---|