1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | * The b2CollidePolygons routines are Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | ///btBox2dBox2dCollisionAlgorithm, with modified b2CollidePolygons routines from the Box2D library. |
---|
17 | ///The modifications include: switching from b2Vec to btVector3, redefinition of b2Dot, b2Cross |
---|
18 | |
---|
19 | #include "btBox2dBox2dCollisionAlgorithm.h" |
---|
20 | #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" |
---|
21 | #include "BulletCollision/CollisionShapes/btBoxShape.h" |
---|
22 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
23 | #include "BulletCollision/CollisionDispatch/btBoxBoxDetector.h" |
---|
24 | #include "BulletCollision/CollisionShapes/btBox2dShape.h" |
---|
25 | |
---|
26 | #define USE_PERSISTENT_CONTACTS 1 |
---|
27 | |
---|
28 | btBox2dBox2dCollisionAlgorithm::btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* obj0,btCollisionObject* obj1) |
---|
29 | : btActivatingCollisionAlgorithm(ci,obj0,obj1), |
---|
30 | m_ownManifold(false), |
---|
31 | m_manifoldPtr(mf) |
---|
32 | { |
---|
33 | if (!m_manifoldPtr && m_dispatcher->needsCollision(obj0,obj1)) |
---|
34 | { |
---|
35 | m_manifoldPtr = m_dispatcher->getNewManifold(obj0,obj1); |
---|
36 | m_ownManifold = true; |
---|
37 | } |
---|
38 | } |
---|
39 | |
---|
40 | btBox2dBox2dCollisionAlgorithm::~btBox2dBox2dCollisionAlgorithm() |
---|
41 | { |
---|
42 | |
---|
43 | if (m_ownManifold) |
---|
44 | { |
---|
45 | if (m_manifoldPtr) |
---|
46 | m_dispatcher->releaseManifold(m_manifoldPtr); |
---|
47 | } |
---|
48 | |
---|
49 | } |
---|
50 | |
---|
51 | |
---|
52 | void b2CollidePolygons(btManifoldResult* manifold, const btBox2dShape* polyA, const btTransform& xfA, const btBox2dShape* polyB, const btTransform& xfB); |
---|
53 | |
---|
54 | //#include <stdio.h> |
---|
55 | void btBox2dBox2dCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
56 | { |
---|
57 | if (!m_manifoldPtr) |
---|
58 | return; |
---|
59 | |
---|
60 | btCollisionObject* col0 = body0; |
---|
61 | btCollisionObject* col1 = body1; |
---|
62 | btBox2dShape* box0 = (btBox2dShape*)col0->getCollisionShape(); |
---|
63 | btBox2dShape* box1 = (btBox2dShape*)col1->getCollisionShape(); |
---|
64 | |
---|
65 | resultOut->setPersistentManifold(m_manifoldPtr); |
---|
66 | |
---|
67 | b2CollidePolygons(resultOut,box0,col0->getWorldTransform(),box1,col1->getWorldTransform()); |
---|
68 | |
---|
69 | // refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added |
---|
70 | if (m_ownManifold) |
---|
71 | { |
---|
72 | resultOut->refreshContactPoints(); |
---|
73 | } |
---|
74 | |
---|
75 | } |
---|
76 | |
---|
77 | btScalar btBox2dBox2dCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* /*body0*/,btCollisionObject* /*body1*/,const btDispatcherInfo& /*dispatchInfo*/,btManifoldResult* /*resultOut*/) |
---|
78 | { |
---|
79 | //not yet |
---|
80 | return 1.f; |
---|
81 | } |
---|
82 | |
---|
83 | |
---|
84 | struct ClipVertex |
---|
85 | { |
---|
86 | btVector3 v; |
---|
87 | int id; |
---|
88 | //b2ContactID id; |
---|
89 | //b2ContactID id; |
---|
90 | }; |
---|
91 | |
---|
92 | #define b2Dot(a,b) (a).dot(b) |
---|
93 | #define b2Mul(a,b) (a)*(b) |
---|
94 | #define b2MulT(a,b) (a).transpose()*(b) |
---|
95 | #define b2Cross(a,b) (a).cross(b) |
---|
96 | #define btCrossS(a,s) btVector3(s * a.getY(), -s * a.getX(),0.f) |
---|
97 | |
---|
98 | int b2_maxManifoldPoints =2; |
---|
99 | |
---|
100 | static int ClipSegmentToLine(ClipVertex vOut[2], ClipVertex vIn[2], |
---|
101 | const btVector3& normal, btScalar offset) |
---|
102 | { |
---|
103 | // Start with no output points |
---|
104 | int numOut = 0; |
---|
105 | |
---|
106 | // Calculate the distance of end points to the line |
---|
107 | btScalar distance0 = b2Dot(normal, vIn[0].v) - offset; |
---|
108 | btScalar distance1 = b2Dot(normal, vIn[1].v) - offset; |
---|
109 | |
---|
110 | // If the points are behind the plane |
---|
111 | if (distance0 <= 0.0f) vOut[numOut++] = vIn[0]; |
---|
112 | if (distance1 <= 0.0f) vOut[numOut++] = vIn[1]; |
---|
113 | |
---|
114 | // If the points are on different sides of the plane |
---|
115 | if (distance0 * distance1 < 0.0f) |
---|
116 | { |
---|
117 | // Find intersection point of edge and plane |
---|
118 | btScalar interp = distance0 / (distance0 - distance1); |
---|
119 | vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v); |
---|
120 | if (distance0 > 0.0f) |
---|
121 | { |
---|
122 | vOut[numOut].id = vIn[0].id; |
---|
123 | } |
---|
124 | else |
---|
125 | { |
---|
126 | vOut[numOut].id = vIn[1].id; |
---|
127 | } |
---|
128 | ++numOut; |
---|
129 | } |
---|
130 | |
---|
131 | return numOut; |
---|
132 | } |
---|
133 | |
---|
134 | // Find the separation between poly1 and poly2 for a give edge normal on poly1. |
---|
135 | static btScalar EdgeSeparation(const btBox2dShape* poly1, const btTransform& xf1, int edge1, |
---|
136 | const btBox2dShape* poly2, const btTransform& xf2) |
---|
137 | { |
---|
138 | const btVector3* vertices1 = poly1->getVertices(); |
---|
139 | const btVector3* normals1 = poly1->getNormals(); |
---|
140 | |
---|
141 | int count2 = poly2->getVertexCount(); |
---|
142 | const btVector3* vertices2 = poly2->getVertices(); |
---|
143 | |
---|
144 | btAssert(0 <= edge1 && edge1 < poly1->getVertexCount()); |
---|
145 | |
---|
146 | // Convert normal from poly1's frame into poly2's frame. |
---|
147 | btVector3 normal1World = b2Mul(xf1.getBasis(), normals1[edge1]); |
---|
148 | btVector3 normal1 = b2MulT(xf2.getBasis(), normal1World); |
---|
149 | |
---|
150 | // Find support vertex on poly2 for -normal. |
---|
151 | int index = 0; |
---|
152 | btScalar minDot = BT_LARGE_FLOAT; |
---|
153 | |
---|
154 | for (int i = 0; i < count2; ++i) |
---|
155 | { |
---|
156 | btScalar dot = b2Dot(vertices2[i], normal1); |
---|
157 | if (dot < minDot) |
---|
158 | { |
---|
159 | minDot = dot; |
---|
160 | index = i; |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | btVector3 v1 = b2Mul(xf1, vertices1[edge1]); |
---|
165 | btVector3 v2 = b2Mul(xf2, vertices2[index]); |
---|
166 | btScalar separation = b2Dot(v2 - v1, normal1World); |
---|
167 | return separation; |
---|
168 | } |
---|
169 | |
---|
170 | // Find the max separation between poly1 and poly2 using edge normals from poly1. |
---|
171 | static btScalar FindMaxSeparation(int* edgeIndex, |
---|
172 | const btBox2dShape* poly1, const btTransform& xf1, |
---|
173 | const btBox2dShape* poly2, const btTransform& xf2) |
---|
174 | { |
---|
175 | int count1 = poly1->getVertexCount(); |
---|
176 | const btVector3* normals1 = poly1->getNormals(); |
---|
177 | |
---|
178 | // Vector pointing from the centroid of poly1 to the centroid of poly2. |
---|
179 | btVector3 d = b2Mul(xf2, poly2->getCentroid()) - b2Mul(xf1, poly1->getCentroid()); |
---|
180 | btVector3 dLocal1 = b2MulT(xf1.getBasis(), d); |
---|
181 | |
---|
182 | // Find edge normal on poly1 that has the largest projection onto d. |
---|
183 | int edge = 0; |
---|
184 | btScalar maxDot = -BT_LARGE_FLOAT; |
---|
185 | for (int i = 0; i < count1; ++i) |
---|
186 | { |
---|
187 | btScalar dot = b2Dot(normals1[i], dLocal1); |
---|
188 | if (dot > maxDot) |
---|
189 | { |
---|
190 | maxDot = dot; |
---|
191 | edge = i; |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | // Get the separation for the edge normal. |
---|
196 | btScalar s = EdgeSeparation(poly1, xf1, edge, poly2, xf2); |
---|
197 | if (s > 0.0f) |
---|
198 | { |
---|
199 | return s; |
---|
200 | } |
---|
201 | |
---|
202 | // Check the separation for the previous edge normal. |
---|
203 | int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1; |
---|
204 | btScalar sPrev = EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2); |
---|
205 | if (sPrev > 0.0f) |
---|
206 | { |
---|
207 | return sPrev; |
---|
208 | } |
---|
209 | |
---|
210 | // Check the separation for the next edge normal. |
---|
211 | int nextEdge = edge + 1 < count1 ? edge + 1 : 0; |
---|
212 | btScalar sNext = EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2); |
---|
213 | if (sNext > 0.0f) |
---|
214 | { |
---|
215 | return sNext; |
---|
216 | } |
---|
217 | |
---|
218 | // Find the best edge and the search direction. |
---|
219 | int bestEdge; |
---|
220 | btScalar bestSeparation; |
---|
221 | int increment; |
---|
222 | if (sPrev > s && sPrev > sNext) |
---|
223 | { |
---|
224 | increment = -1; |
---|
225 | bestEdge = prevEdge; |
---|
226 | bestSeparation = sPrev; |
---|
227 | } |
---|
228 | else if (sNext > s) |
---|
229 | { |
---|
230 | increment = 1; |
---|
231 | bestEdge = nextEdge; |
---|
232 | bestSeparation = sNext; |
---|
233 | } |
---|
234 | else |
---|
235 | { |
---|
236 | *edgeIndex = edge; |
---|
237 | return s; |
---|
238 | } |
---|
239 | |
---|
240 | // Perform a local search for the best edge normal. |
---|
241 | for ( ; ; ) |
---|
242 | { |
---|
243 | if (increment == -1) |
---|
244 | edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1; |
---|
245 | else |
---|
246 | edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0; |
---|
247 | |
---|
248 | s = EdgeSeparation(poly1, xf1, edge, poly2, xf2); |
---|
249 | if (s > 0.0f) |
---|
250 | { |
---|
251 | return s; |
---|
252 | } |
---|
253 | |
---|
254 | if (s > bestSeparation) |
---|
255 | { |
---|
256 | bestEdge = edge; |
---|
257 | bestSeparation = s; |
---|
258 | } |
---|
259 | else |
---|
260 | { |
---|
261 | break; |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | *edgeIndex = bestEdge; |
---|
266 | return bestSeparation; |
---|
267 | } |
---|
268 | |
---|
269 | static void FindIncidentEdge(ClipVertex c[2], |
---|
270 | const btBox2dShape* poly1, const btTransform& xf1, int edge1, |
---|
271 | const btBox2dShape* poly2, const btTransform& xf2) |
---|
272 | { |
---|
273 | const btVector3* normals1 = poly1->getNormals(); |
---|
274 | |
---|
275 | int count2 = poly2->getVertexCount(); |
---|
276 | const btVector3* vertices2 = poly2->getVertices(); |
---|
277 | const btVector3* normals2 = poly2->getNormals(); |
---|
278 | |
---|
279 | btAssert(0 <= edge1 && edge1 < poly1->getVertexCount()); |
---|
280 | |
---|
281 | // Get the normal of the reference edge in poly2's frame. |
---|
282 | btVector3 normal1 = b2MulT(xf2.getBasis(), b2Mul(xf1.getBasis(), normals1[edge1])); |
---|
283 | |
---|
284 | // Find the incident edge on poly2. |
---|
285 | int index = 0; |
---|
286 | btScalar minDot = BT_LARGE_FLOAT; |
---|
287 | for (int i = 0; i < count2; ++i) |
---|
288 | { |
---|
289 | btScalar dot = b2Dot(normal1, normals2[i]); |
---|
290 | if (dot < minDot) |
---|
291 | { |
---|
292 | minDot = dot; |
---|
293 | index = i; |
---|
294 | } |
---|
295 | } |
---|
296 | |
---|
297 | // Build the clip vertices for the incident edge. |
---|
298 | int i1 = index; |
---|
299 | int i2 = i1 + 1 < count2 ? i1 + 1 : 0; |
---|
300 | |
---|
301 | c[0].v = b2Mul(xf2, vertices2[i1]); |
---|
302 | // c[0].id.features.referenceEdge = (unsigned char)edge1; |
---|
303 | // c[0].id.features.incidentEdge = (unsigned char)i1; |
---|
304 | // c[0].id.features.incidentVertex = 0; |
---|
305 | |
---|
306 | c[1].v = b2Mul(xf2, vertices2[i2]); |
---|
307 | // c[1].id.features.referenceEdge = (unsigned char)edge1; |
---|
308 | // c[1].id.features.incidentEdge = (unsigned char)i2; |
---|
309 | // c[1].id.features.incidentVertex = 1; |
---|
310 | } |
---|
311 | |
---|
312 | // Find edge normal of max separation on A - return if separating axis is found |
---|
313 | // Find edge normal of max separation on B - return if separation axis is found |
---|
314 | // Choose reference edge as min(minA, minB) |
---|
315 | // Find incident edge |
---|
316 | // Clip |
---|
317 | |
---|
318 | // The normal points from 1 to 2 |
---|
319 | void b2CollidePolygons(btManifoldResult* manifold, |
---|
320 | const btBox2dShape* polyA, const btTransform& xfA, |
---|
321 | const btBox2dShape* polyB, const btTransform& xfB) |
---|
322 | { |
---|
323 | |
---|
324 | int edgeA = 0; |
---|
325 | btScalar separationA = FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB); |
---|
326 | if (separationA > 0.0f) |
---|
327 | return; |
---|
328 | |
---|
329 | int edgeB = 0; |
---|
330 | btScalar separationB = FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA); |
---|
331 | if (separationB > 0.0f) |
---|
332 | return; |
---|
333 | |
---|
334 | const btBox2dShape* poly1; // reference poly |
---|
335 | const btBox2dShape* poly2; // incident poly |
---|
336 | btTransform xf1, xf2; |
---|
337 | int edge1; // reference edge |
---|
338 | unsigned char flip; |
---|
339 | const btScalar k_relativeTol = 0.98f; |
---|
340 | const btScalar k_absoluteTol = 0.001f; |
---|
341 | |
---|
342 | // TODO_ERIN use "radius" of poly for absolute tolerance. |
---|
343 | if (separationB > k_relativeTol * separationA + k_absoluteTol) |
---|
344 | { |
---|
345 | poly1 = polyB; |
---|
346 | poly2 = polyA; |
---|
347 | xf1 = xfB; |
---|
348 | xf2 = xfA; |
---|
349 | edge1 = edgeB; |
---|
350 | flip = 1; |
---|
351 | } |
---|
352 | else |
---|
353 | { |
---|
354 | poly1 = polyA; |
---|
355 | poly2 = polyB; |
---|
356 | xf1 = xfA; |
---|
357 | xf2 = xfB; |
---|
358 | edge1 = edgeA; |
---|
359 | flip = 0; |
---|
360 | } |
---|
361 | |
---|
362 | ClipVertex incidentEdge[2]; |
---|
363 | FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2); |
---|
364 | |
---|
365 | int count1 = poly1->getVertexCount(); |
---|
366 | const btVector3* vertices1 = poly1->getVertices(); |
---|
367 | |
---|
368 | btVector3 v11 = vertices1[edge1]; |
---|
369 | btVector3 v12 = edge1 + 1 < count1 ? vertices1[edge1+1] : vertices1[0]; |
---|
370 | |
---|
371 | btVector3 dv = v12 - v11; |
---|
372 | btVector3 sideNormal = b2Mul(xf1.getBasis(), v12 - v11); |
---|
373 | sideNormal.normalize(); |
---|
374 | btVector3 frontNormal = btCrossS(sideNormal, 1.0f); |
---|
375 | |
---|
376 | |
---|
377 | v11 = b2Mul(xf1, v11); |
---|
378 | v12 = b2Mul(xf1, v12); |
---|
379 | |
---|
380 | btScalar frontOffset = b2Dot(frontNormal, v11); |
---|
381 | btScalar sideOffset1 = -b2Dot(sideNormal, v11); |
---|
382 | btScalar sideOffset2 = b2Dot(sideNormal, v12); |
---|
383 | |
---|
384 | // Clip incident edge against extruded edge1 side edges. |
---|
385 | ClipVertex clipPoints1[2]; |
---|
386 | clipPoints1[0].v.setValue(0,0,0); |
---|
387 | clipPoints1[1].v.setValue(0,0,0); |
---|
388 | |
---|
389 | ClipVertex clipPoints2[2]; |
---|
390 | clipPoints2[0].v.setValue(0,0,0); |
---|
391 | clipPoints2[1].v.setValue(0,0,0); |
---|
392 | |
---|
393 | |
---|
394 | int np; |
---|
395 | |
---|
396 | // Clip to box side 1 |
---|
397 | np = ClipSegmentToLine(clipPoints1, incidentEdge, -sideNormal, sideOffset1); |
---|
398 | |
---|
399 | if (np < 2) |
---|
400 | return; |
---|
401 | |
---|
402 | // Clip to negative box side 1 |
---|
403 | np = ClipSegmentToLine(clipPoints2, clipPoints1, sideNormal, sideOffset2); |
---|
404 | |
---|
405 | if (np < 2) |
---|
406 | { |
---|
407 | return; |
---|
408 | } |
---|
409 | |
---|
410 | // Now clipPoints2 contains the clipped points. |
---|
411 | btVector3 manifoldNormal = flip ? -frontNormal : frontNormal; |
---|
412 | |
---|
413 | int pointCount = 0; |
---|
414 | for (int i = 0; i < b2_maxManifoldPoints; ++i) |
---|
415 | { |
---|
416 | btScalar separation = b2Dot(frontNormal, clipPoints2[i].v) - frontOffset; |
---|
417 | |
---|
418 | if (separation <= 0.0f) |
---|
419 | { |
---|
420 | |
---|
421 | //b2ManifoldPoint* cp = manifold->points + pointCount; |
---|
422 | //btScalar separation = separation; |
---|
423 | //cp->localPoint1 = b2MulT(xfA, clipPoints2[i].v); |
---|
424 | //cp->localPoint2 = b2MulT(xfB, clipPoints2[i].v); |
---|
425 | |
---|
426 | manifold->addContactPoint(-manifoldNormal,clipPoints2[i].v,separation); |
---|
427 | |
---|
428 | // cp->id = clipPoints2[i].id; |
---|
429 | // cp->id.features.flip = flip; |
---|
430 | ++pointCount; |
---|
431 | } |
---|
432 | } |
---|
433 | |
---|
434 | // manifold->pointCount = pointCount;} |
---|
435 | } |
---|