1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "btQuantizedBvh.h" |
---|
17 | |
---|
18 | #include "LinearMath/btAabbUtil2.h" |
---|
19 | #include "LinearMath/btIDebugDraw.h" |
---|
20 | |
---|
21 | |
---|
22 | btQuantizedBvh::btQuantizedBvh() : m_useQuantization(false), |
---|
23 | //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) |
---|
24 | m_traversalMode(TRAVERSAL_STACKLESS) |
---|
25 | //m_traversalMode(TRAVERSAL_RECURSIVE) |
---|
26 | ,m_subtreeHeaderCount(0) //PCK: add this line |
---|
27 | { |
---|
28 | |
---|
29 | } |
---|
30 | |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | |
---|
35 | void btQuantizedBvh::buildInternal() |
---|
36 | { |
---|
37 | ///assumes that caller filled in the m_quantizedLeafNodes |
---|
38 | m_useQuantization = true; |
---|
39 | int numLeafNodes = 0; |
---|
40 | |
---|
41 | if (m_useQuantization) |
---|
42 | { |
---|
43 | //now we have an array of leafnodes in m_leafNodes |
---|
44 | numLeafNodes = m_quantizedLeafNodes.size(); |
---|
45 | |
---|
46 | m_quantizedContiguousNodes.resize(2*numLeafNodes); |
---|
47 | |
---|
48 | } |
---|
49 | |
---|
50 | m_curNodeIndex = 0; |
---|
51 | |
---|
52 | buildTree(0,numLeafNodes); |
---|
53 | |
---|
54 | ///if the entire tree is small then subtree size, we need to create a header info for the tree |
---|
55 | if(m_useQuantization && !m_SubtreeHeaders.size()) |
---|
56 | { |
---|
57 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
58 | subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); |
---|
59 | subtree.m_rootNodeIndex = 0; |
---|
60 | subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); |
---|
61 | } |
---|
62 | |
---|
63 | //PCK: update the copy of the size |
---|
64 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
65 | |
---|
66 | //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary |
---|
67 | m_quantizedLeafNodes.clear(); |
---|
68 | m_leafNodes.clear(); |
---|
69 | } |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | ///just for debugging, to visualize the individual patches/subtrees |
---|
74 | #ifdef DEBUG_PATCH_COLORS |
---|
75 | btVector3 color[4]= |
---|
76 | { |
---|
77 | btVector3(255,0,0), |
---|
78 | btVector3(0,255,0), |
---|
79 | btVector3(0,0,255), |
---|
80 | btVector3(0,255,255) |
---|
81 | }; |
---|
82 | #endif //DEBUG_PATCH_COLORS |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) |
---|
87 | { |
---|
88 | //enlarge the AABB to avoid division by zero when initializing the quantization values |
---|
89 | btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); |
---|
90 | m_bvhAabbMin = bvhAabbMin - clampValue; |
---|
91 | m_bvhAabbMax = bvhAabbMax + clampValue; |
---|
92 | btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; |
---|
93 | m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; |
---|
94 | m_useQuantization = true; |
---|
95 | } |
---|
96 | |
---|
97 | |
---|
98 | |
---|
99 | |
---|
100 | btQuantizedBvh::~btQuantizedBvh() |
---|
101 | { |
---|
102 | } |
---|
103 | |
---|
104 | #ifdef DEBUG_TREE_BUILDING |
---|
105 | int gStackDepth = 0; |
---|
106 | int gMaxStackDepth = 0; |
---|
107 | #endif //DEBUG_TREE_BUILDING |
---|
108 | |
---|
109 | void btQuantizedBvh::buildTree (int startIndex,int endIndex) |
---|
110 | { |
---|
111 | #ifdef DEBUG_TREE_BUILDING |
---|
112 | gStackDepth++; |
---|
113 | if (gStackDepth > gMaxStackDepth) |
---|
114 | gMaxStackDepth = gStackDepth; |
---|
115 | #endif //DEBUG_TREE_BUILDING |
---|
116 | |
---|
117 | |
---|
118 | int splitAxis, splitIndex, i; |
---|
119 | int numIndices =endIndex-startIndex; |
---|
120 | int curIndex = m_curNodeIndex; |
---|
121 | |
---|
122 | assert(numIndices>0); |
---|
123 | |
---|
124 | if (numIndices==1) |
---|
125 | { |
---|
126 | #ifdef DEBUG_TREE_BUILDING |
---|
127 | gStackDepth--; |
---|
128 | #endif //DEBUG_TREE_BUILDING |
---|
129 | |
---|
130 | assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); |
---|
131 | |
---|
132 | m_curNodeIndex++; |
---|
133 | return; |
---|
134 | } |
---|
135 | //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. |
---|
136 | |
---|
137 | splitAxis = calcSplittingAxis(startIndex,endIndex); |
---|
138 | |
---|
139 | splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); |
---|
140 | |
---|
141 | int internalNodeIndex = m_curNodeIndex; |
---|
142 | |
---|
143 | setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin); |
---|
144 | setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax); |
---|
145 | |
---|
146 | for (i=startIndex;i<endIndex;i++) |
---|
147 | { |
---|
148 | mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); |
---|
149 | } |
---|
150 | |
---|
151 | m_curNodeIndex++; |
---|
152 | |
---|
153 | |
---|
154 | //internalNode->m_escapeIndex; |
---|
155 | |
---|
156 | int leftChildNodexIndex = m_curNodeIndex; |
---|
157 | |
---|
158 | //build left child tree |
---|
159 | buildTree(startIndex,splitIndex); |
---|
160 | |
---|
161 | int rightChildNodexIndex = m_curNodeIndex; |
---|
162 | //build right child tree |
---|
163 | buildTree(splitIndex,endIndex); |
---|
164 | |
---|
165 | #ifdef DEBUG_TREE_BUILDING |
---|
166 | gStackDepth--; |
---|
167 | #endif //DEBUG_TREE_BUILDING |
---|
168 | |
---|
169 | int escapeIndex = m_curNodeIndex - curIndex; |
---|
170 | |
---|
171 | if (m_useQuantization) |
---|
172 | { |
---|
173 | //escapeIndex is the number of nodes of this subtree |
---|
174 | const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); |
---|
175 | const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; |
---|
176 | if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) |
---|
177 | { |
---|
178 | updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); |
---|
179 | } |
---|
180 | } |
---|
181 | |
---|
182 | setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); |
---|
183 | |
---|
184 | } |
---|
185 | |
---|
186 | void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) |
---|
187 | { |
---|
188 | btAssert(m_useQuantization); |
---|
189 | |
---|
190 | btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; |
---|
191 | int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); |
---|
192 | int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
193 | |
---|
194 | btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; |
---|
195 | int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); |
---|
196 | int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
197 | |
---|
198 | if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
199 | { |
---|
200 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
201 | subtree.setAabbFromQuantizeNode(leftChildNode); |
---|
202 | subtree.m_rootNodeIndex = leftChildNodexIndex; |
---|
203 | subtree.m_subtreeSize = leftSubTreeSize; |
---|
204 | } |
---|
205 | |
---|
206 | if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
207 | { |
---|
208 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
209 | subtree.setAabbFromQuantizeNode(rightChildNode); |
---|
210 | subtree.m_rootNodeIndex = rightChildNodexIndex; |
---|
211 | subtree.m_subtreeSize = rightSubTreeSize; |
---|
212 | } |
---|
213 | |
---|
214 | //PCK: update the copy of the size |
---|
215 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
216 | } |
---|
217 | |
---|
218 | |
---|
219 | int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) |
---|
220 | { |
---|
221 | int i; |
---|
222 | int splitIndex =startIndex; |
---|
223 | int numIndices = endIndex - startIndex; |
---|
224 | btScalar splitValue; |
---|
225 | |
---|
226 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
227 | for (i=startIndex;i<endIndex;i++) |
---|
228 | { |
---|
229 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
230 | means+=center; |
---|
231 | } |
---|
232 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
233 | |
---|
234 | splitValue = means[splitAxis]; |
---|
235 | |
---|
236 | //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. |
---|
237 | for (i=startIndex;i<endIndex;i++) |
---|
238 | { |
---|
239 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
240 | if (center[splitAxis] > splitValue) |
---|
241 | { |
---|
242 | //swap |
---|
243 | swapLeafNodes(i,splitIndex); |
---|
244 | splitIndex++; |
---|
245 | } |
---|
246 | } |
---|
247 | |
---|
248 | //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex |
---|
249 | //otherwise the tree-building might fail due to stack-overflows in certain cases. |
---|
250 | //unbalanced1 is unsafe: it can cause stack overflows |
---|
251 | //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); |
---|
252 | |
---|
253 | //unbalanced2 should work too: always use center (perfect balanced trees) |
---|
254 | //bool unbalanced2 = true; |
---|
255 | |
---|
256 | //this should be safe too: |
---|
257 | int rangeBalancedIndices = numIndices/3; |
---|
258 | bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); |
---|
259 | |
---|
260 | if (unbalanced) |
---|
261 | { |
---|
262 | splitIndex = startIndex+ (numIndices>>1); |
---|
263 | } |
---|
264 | |
---|
265 | bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); |
---|
266 | (void)unbal; |
---|
267 | btAssert(!unbal); |
---|
268 | |
---|
269 | return splitIndex; |
---|
270 | } |
---|
271 | |
---|
272 | |
---|
273 | int btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) |
---|
274 | { |
---|
275 | int i; |
---|
276 | |
---|
277 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
278 | btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
279 | int numIndices = endIndex-startIndex; |
---|
280 | |
---|
281 | for (i=startIndex;i<endIndex;i++) |
---|
282 | { |
---|
283 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
284 | means+=center; |
---|
285 | } |
---|
286 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
287 | |
---|
288 | for (i=startIndex;i<endIndex;i++) |
---|
289 | { |
---|
290 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
291 | btVector3 diff2 = center-means; |
---|
292 | diff2 = diff2 * diff2; |
---|
293 | variance += diff2; |
---|
294 | } |
---|
295 | variance *= (btScalar(1.)/ ((btScalar)numIndices-1) ); |
---|
296 | |
---|
297 | return variance.maxAxis(); |
---|
298 | } |
---|
299 | |
---|
300 | |
---|
301 | |
---|
302 | void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
303 | { |
---|
304 | //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) |
---|
305 | |
---|
306 | if (m_useQuantization) |
---|
307 | { |
---|
308 | ///quantize query AABB |
---|
309 | unsigned short int quantizedQueryAabbMin[3]; |
---|
310 | unsigned short int quantizedQueryAabbMax[3]; |
---|
311 | quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); |
---|
312 | quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); |
---|
313 | |
---|
314 | switch (m_traversalMode) |
---|
315 | { |
---|
316 | case TRAVERSAL_STACKLESS: |
---|
317 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); |
---|
318 | break; |
---|
319 | case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: |
---|
320 | walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
321 | break; |
---|
322 | case TRAVERSAL_RECURSIVE: |
---|
323 | { |
---|
324 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; |
---|
325 | walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
326 | } |
---|
327 | break; |
---|
328 | default: |
---|
329 | //unsupported |
---|
330 | btAssert(0); |
---|
331 | } |
---|
332 | } else |
---|
333 | { |
---|
334 | walkStacklessTree(nodeCallback,aabbMin,aabbMax); |
---|
335 | } |
---|
336 | } |
---|
337 | |
---|
338 | |
---|
339 | int maxIterations = 0; |
---|
340 | |
---|
341 | void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
342 | { |
---|
343 | btAssert(!m_useQuantization); |
---|
344 | |
---|
345 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; |
---|
346 | int escapeIndex, curIndex = 0; |
---|
347 | int walkIterations = 0; |
---|
348 | bool isLeafNode; |
---|
349 | //PCK: unsigned instead of bool |
---|
350 | unsigned aabbOverlap; |
---|
351 | |
---|
352 | while (curIndex < m_curNodeIndex) |
---|
353 | { |
---|
354 | //catch bugs in tree data |
---|
355 | assert (walkIterations < m_curNodeIndex); |
---|
356 | |
---|
357 | walkIterations++; |
---|
358 | aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); |
---|
359 | isLeafNode = rootNode->m_escapeIndex == -1; |
---|
360 | |
---|
361 | //PCK: unsigned instead of bool |
---|
362 | if (isLeafNode && (aabbOverlap != 0)) |
---|
363 | { |
---|
364 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); |
---|
365 | } |
---|
366 | |
---|
367 | //PCK: unsigned instead of bool |
---|
368 | if ((aabbOverlap != 0) || isLeafNode) |
---|
369 | { |
---|
370 | rootNode++; |
---|
371 | curIndex++; |
---|
372 | } else |
---|
373 | { |
---|
374 | escapeIndex = rootNode->m_escapeIndex; |
---|
375 | rootNode += escapeIndex; |
---|
376 | curIndex += escapeIndex; |
---|
377 | } |
---|
378 | } |
---|
379 | if (maxIterations < walkIterations) |
---|
380 | maxIterations = walkIterations; |
---|
381 | |
---|
382 | } |
---|
383 | |
---|
384 | /* |
---|
385 | ///this was the original recursive traversal, before we optimized towards stackless traversal |
---|
386 | void btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
387 | { |
---|
388 | bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); |
---|
389 | if (aabbOverlap) |
---|
390 | { |
---|
391 | isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); |
---|
392 | if (isLeafNode) |
---|
393 | { |
---|
394 | nodeCallback->processNode(rootNode); |
---|
395 | } else |
---|
396 | { |
---|
397 | walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); |
---|
398 | walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | } |
---|
403 | */ |
---|
404 | |
---|
405 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
406 | { |
---|
407 | btAssert(m_useQuantization); |
---|
408 | |
---|
409 | bool isLeafNode; |
---|
410 | //PCK: unsigned instead of bool |
---|
411 | unsigned aabbOverlap; |
---|
412 | |
---|
413 | //PCK: unsigned instead of bool |
---|
414 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); |
---|
415 | isLeafNode = currentNode->isLeafNode(); |
---|
416 | |
---|
417 | //PCK: unsigned instead of bool |
---|
418 | if (aabbOverlap != 0) |
---|
419 | { |
---|
420 | if (isLeafNode) |
---|
421 | { |
---|
422 | nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); |
---|
423 | } else |
---|
424 | { |
---|
425 | //process left and right children |
---|
426 | const btQuantizedBvhNode* leftChildNode = currentNode+1; |
---|
427 | walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
428 | |
---|
429 | const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); |
---|
430 | walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
431 | } |
---|
432 | } |
---|
433 | } |
---|
434 | |
---|
435 | |
---|
436 | |
---|
437 | |
---|
438 | |
---|
439 | void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const |
---|
440 | { |
---|
441 | btAssert(m_useQuantization); |
---|
442 | |
---|
443 | int curIndex = startNodeIndex; |
---|
444 | int walkIterations = 0; |
---|
445 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
446 | (void)subTreeSize; |
---|
447 | |
---|
448 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
449 | int escapeIndex; |
---|
450 | |
---|
451 | bool isLeafNode; |
---|
452 | //PCK: unsigned instead of bool |
---|
453 | unsigned boxBoxOverlap = 0; |
---|
454 | unsigned rayBoxOverlap = 0; |
---|
455 | |
---|
456 | btScalar lambda_max = 1.0; |
---|
457 | #define RAYAABB2 |
---|
458 | #ifdef RAYAABB2 |
---|
459 | btVector3 rayFrom = raySource; |
---|
460 | btVector3 rayDirection = (rayTarget-raySource); |
---|
461 | rayDirection.normalize (); |
---|
462 | lambda_max = rayDirection.dot(rayTarget-raySource); |
---|
463 | ///what about division by zero? --> just set rayDirection[i] to 1.0 |
---|
464 | rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[0]; |
---|
465 | rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[1]; |
---|
466 | rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[2]; |
---|
467 | unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; |
---|
468 | #endif |
---|
469 | |
---|
470 | /* Quick pruning by quantized box */ |
---|
471 | btVector3 rayAabbMin = raySource; |
---|
472 | btVector3 rayAabbMax = raySource; |
---|
473 | rayAabbMin.setMin(rayTarget); |
---|
474 | rayAabbMax.setMax(rayTarget); |
---|
475 | |
---|
476 | /* Add box cast extents to bounding box */ |
---|
477 | rayAabbMin += aabbMin; |
---|
478 | rayAabbMax += aabbMax; |
---|
479 | |
---|
480 | unsigned short int quantizedQueryAabbMin[3]; |
---|
481 | unsigned short int quantizedQueryAabbMax[3]; |
---|
482 | quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); |
---|
483 | quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); |
---|
484 | |
---|
485 | while (curIndex < endNodeIndex) |
---|
486 | { |
---|
487 | |
---|
488 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
489 | #ifdef VISUALLY_ANALYZE_BVH |
---|
490 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
491 | static int drawPatch = 0; |
---|
492 | //need some global access to a debugDrawer |
---|
493 | extern btIDebugDraw* debugDrawerPtr; |
---|
494 | if (curIndex==drawPatch) |
---|
495 | { |
---|
496 | btVector3 aabbMin,aabbMax; |
---|
497 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
498 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
499 | btVector3 color(1,0,0); |
---|
500 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
501 | } |
---|
502 | #endif//VISUALLY_ANALYZE_BVH |
---|
503 | |
---|
504 | //catch bugs in tree data |
---|
505 | assert (walkIterations < subTreeSize); |
---|
506 | |
---|
507 | walkIterations++; |
---|
508 | //PCK: unsigned instead of bool |
---|
509 | // only interested if this is closer than any previous hit |
---|
510 | btScalar param = 1.0; |
---|
511 | rayBoxOverlap = 0; |
---|
512 | boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
513 | isLeafNode = rootNode->isLeafNode(); |
---|
514 | if (boxBoxOverlap) |
---|
515 | { |
---|
516 | btVector3 bounds[2]; |
---|
517 | bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); |
---|
518 | bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); |
---|
519 | /* Add box cast extents */ |
---|
520 | bounds[0] += aabbMin; |
---|
521 | bounds[1] += aabbMax; |
---|
522 | btVector3 normal; |
---|
523 | #if 0 |
---|
524 | bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); |
---|
525 | bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
526 | if (ra2 != ra) |
---|
527 | { |
---|
528 | printf("functions don't match\n"); |
---|
529 | } |
---|
530 | #endif |
---|
531 | #ifdef RAYAABB2 |
---|
532 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method |
---|
533 | ///thanks Joerg/hiker for the reproduction case! |
---|
534 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 |
---|
535 | |
---|
536 | rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); |
---|
537 | #else |
---|
538 | rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
539 | #endif |
---|
540 | } |
---|
541 | |
---|
542 | if (isLeafNode && rayBoxOverlap) |
---|
543 | { |
---|
544 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
545 | } |
---|
546 | |
---|
547 | //PCK: unsigned instead of bool |
---|
548 | if ((rayBoxOverlap != 0) || isLeafNode) |
---|
549 | { |
---|
550 | rootNode++; |
---|
551 | curIndex++; |
---|
552 | } else |
---|
553 | { |
---|
554 | escapeIndex = rootNode->getEscapeIndex(); |
---|
555 | rootNode += escapeIndex; |
---|
556 | curIndex += escapeIndex; |
---|
557 | } |
---|
558 | } |
---|
559 | if (maxIterations < walkIterations) |
---|
560 | maxIterations = walkIterations; |
---|
561 | |
---|
562 | } |
---|
563 | |
---|
564 | void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const |
---|
565 | { |
---|
566 | btAssert(m_useQuantization); |
---|
567 | |
---|
568 | int curIndex = startNodeIndex; |
---|
569 | int walkIterations = 0; |
---|
570 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
571 | (void)subTreeSize; |
---|
572 | |
---|
573 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
574 | int escapeIndex; |
---|
575 | |
---|
576 | bool isLeafNode; |
---|
577 | //PCK: unsigned instead of bool |
---|
578 | unsigned aabbOverlap; |
---|
579 | |
---|
580 | while (curIndex < endNodeIndex) |
---|
581 | { |
---|
582 | |
---|
583 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
584 | #ifdef VISUALLY_ANALYZE_BVH |
---|
585 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
586 | static int drawPatch = 0; |
---|
587 | //need some global access to a debugDrawer |
---|
588 | extern btIDebugDraw* debugDrawerPtr; |
---|
589 | if (curIndex==drawPatch) |
---|
590 | { |
---|
591 | btVector3 aabbMin,aabbMax; |
---|
592 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
593 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
594 | btVector3 color(1,0,0); |
---|
595 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
596 | } |
---|
597 | #endif//VISUALLY_ANALYZE_BVH |
---|
598 | |
---|
599 | //catch bugs in tree data |
---|
600 | assert (walkIterations < subTreeSize); |
---|
601 | |
---|
602 | walkIterations++; |
---|
603 | //PCK: unsigned instead of bool |
---|
604 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
605 | isLeafNode = rootNode->isLeafNode(); |
---|
606 | |
---|
607 | if (isLeafNode && aabbOverlap) |
---|
608 | { |
---|
609 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
610 | } |
---|
611 | |
---|
612 | //PCK: unsigned instead of bool |
---|
613 | if ((aabbOverlap != 0) || isLeafNode) |
---|
614 | { |
---|
615 | rootNode++; |
---|
616 | curIndex++; |
---|
617 | } else |
---|
618 | { |
---|
619 | escapeIndex = rootNode->getEscapeIndex(); |
---|
620 | rootNode += escapeIndex; |
---|
621 | curIndex += escapeIndex; |
---|
622 | } |
---|
623 | } |
---|
624 | if (maxIterations < walkIterations) |
---|
625 | maxIterations = walkIterations; |
---|
626 | |
---|
627 | } |
---|
628 | |
---|
629 | //This traversal can be called from Playstation 3 SPU |
---|
630 | void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
631 | { |
---|
632 | btAssert(m_useQuantization); |
---|
633 | |
---|
634 | int i; |
---|
635 | |
---|
636 | |
---|
637 | for (i=0;i<this->m_SubtreeHeaders.size();i++) |
---|
638 | { |
---|
639 | const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; |
---|
640 | |
---|
641 | //PCK: unsigned instead of bool |
---|
642 | unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); |
---|
643 | if (overlap != 0) |
---|
644 | { |
---|
645 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, |
---|
646 | subtree.m_rootNodeIndex, |
---|
647 | subtree.m_rootNodeIndex+subtree.m_subtreeSize); |
---|
648 | } |
---|
649 | } |
---|
650 | } |
---|
651 | |
---|
652 | |
---|
653 | void btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const |
---|
654 | { |
---|
655 | bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; |
---|
656 | if (fast_path) |
---|
657 | { |
---|
658 | walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, btVector3(0, 0, 0), btVector3(0, 0, 0), 0, m_curNodeIndex); |
---|
659 | } else { |
---|
660 | /* Otherwise fallback to AABB overlap test */ |
---|
661 | btVector3 aabbMin = raySource; |
---|
662 | btVector3 aabbMax = raySource; |
---|
663 | aabbMin.setMin(rayTarget); |
---|
664 | aabbMax.setMax(rayTarget); |
---|
665 | reportAabbOverlappingNodex(nodeCallback,aabbMin,aabbMax); |
---|
666 | } |
---|
667 | } |
---|
668 | |
---|
669 | |
---|
670 | void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
671 | { |
---|
672 | bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; |
---|
673 | if (fast_path) |
---|
674 | { |
---|
675 | walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); |
---|
676 | } else { |
---|
677 | /* Slow path: |
---|
678 | Construct the bounding box for the entire box cast and send that down the tree */ |
---|
679 | btVector3 qaabbMin = raySource; |
---|
680 | btVector3 qaabbMax = raySource; |
---|
681 | qaabbMin.setMin(rayTarget); |
---|
682 | qaabbMax.setMax(rayTarget); |
---|
683 | qaabbMin += aabbMin; |
---|
684 | qaabbMax += aabbMax; |
---|
685 | reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); |
---|
686 | } |
---|
687 | } |
---|
688 | |
---|
689 | |
---|
690 | void btQuantizedBvh::swapLeafNodes(int i,int splitIndex) |
---|
691 | { |
---|
692 | if (m_useQuantization) |
---|
693 | { |
---|
694 | btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; |
---|
695 | m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; |
---|
696 | m_quantizedLeafNodes[splitIndex] = tmp; |
---|
697 | } else |
---|
698 | { |
---|
699 | btOptimizedBvhNode tmp = m_leafNodes[i]; |
---|
700 | m_leafNodes[i] = m_leafNodes[splitIndex]; |
---|
701 | m_leafNodes[splitIndex] = tmp; |
---|
702 | } |
---|
703 | } |
---|
704 | |
---|
705 | void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) |
---|
706 | { |
---|
707 | if (m_useQuantization) |
---|
708 | { |
---|
709 | m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; |
---|
710 | } else |
---|
711 | { |
---|
712 | m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; |
---|
713 | } |
---|
714 | } |
---|
715 | |
---|
716 | //PCK: include |
---|
717 | #include <new> |
---|
718 | |
---|
719 | //PCK: consts |
---|
720 | static const unsigned BVH_ALIGNMENT = 16; |
---|
721 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; |
---|
722 | |
---|
723 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; |
---|
724 | |
---|
725 | |
---|
726 | |
---|
727 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() |
---|
728 | { |
---|
729 | // I changed this to 0 since the extra padding is not needed or used. |
---|
730 | return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; |
---|
731 | } |
---|
732 | |
---|
733 | unsigned btQuantizedBvh::calculateSerializeBufferSize() |
---|
734 | { |
---|
735 | unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); |
---|
736 | baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
737 | if (m_useQuantization) |
---|
738 | { |
---|
739 | return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); |
---|
740 | } |
---|
741 | return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); |
---|
742 | } |
---|
743 | |
---|
744 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) |
---|
745 | { |
---|
746 | assert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); |
---|
747 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
748 | |
---|
749 | /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
750 | { |
---|
751 | ///check alignedment for buffer? |
---|
752 | btAssert(0); |
---|
753 | return false; |
---|
754 | } |
---|
755 | */ |
---|
756 | |
---|
757 | btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; |
---|
758 | |
---|
759 | // construct the class so the virtual function table, etc will be set up |
---|
760 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
761 | new (targetBvh) btQuantizedBvh; |
---|
762 | |
---|
763 | if (i_swapEndian) |
---|
764 | { |
---|
765 | targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); |
---|
766 | |
---|
767 | |
---|
768 | btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); |
---|
769 | btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); |
---|
770 | btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); |
---|
771 | |
---|
772 | targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); |
---|
773 | targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); |
---|
774 | } |
---|
775 | else |
---|
776 | { |
---|
777 | targetBvh->m_curNodeIndex = m_curNodeIndex; |
---|
778 | targetBvh->m_bvhAabbMin = m_bvhAabbMin; |
---|
779 | targetBvh->m_bvhAabbMax = m_bvhAabbMax; |
---|
780 | targetBvh->m_bvhQuantization = m_bvhQuantization; |
---|
781 | targetBvh->m_traversalMode = m_traversalMode; |
---|
782 | targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; |
---|
783 | } |
---|
784 | |
---|
785 | targetBvh->m_useQuantization = m_useQuantization; |
---|
786 | |
---|
787 | unsigned char *nodeData = (unsigned char *)targetBvh; |
---|
788 | nodeData += sizeof(btQuantizedBvh); |
---|
789 | |
---|
790 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
791 | nodeData += sizeToAdd; |
---|
792 | |
---|
793 | int nodeCount = m_curNodeIndex; |
---|
794 | |
---|
795 | if (m_useQuantization) |
---|
796 | { |
---|
797 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
798 | |
---|
799 | if (i_swapEndian) |
---|
800 | { |
---|
801 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
802 | { |
---|
803 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
804 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
805 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
806 | |
---|
807 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
808 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
809 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
810 | |
---|
811 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
812 | } |
---|
813 | } |
---|
814 | else |
---|
815 | { |
---|
816 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
817 | { |
---|
818 | |
---|
819 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; |
---|
820 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; |
---|
821 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; |
---|
822 | |
---|
823 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; |
---|
824 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; |
---|
825 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; |
---|
826 | |
---|
827 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; |
---|
828 | |
---|
829 | |
---|
830 | } |
---|
831 | } |
---|
832 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
833 | |
---|
834 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
835 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
836 | // so the memory (which is not freed) is left alone |
---|
837 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
838 | } |
---|
839 | else |
---|
840 | { |
---|
841 | targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
842 | |
---|
843 | if (i_swapEndian) |
---|
844 | { |
---|
845 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
846 | { |
---|
847 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
848 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
849 | |
---|
850 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
851 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); |
---|
852 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
853 | } |
---|
854 | } |
---|
855 | else |
---|
856 | { |
---|
857 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
858 | { |
---|
859 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; |
---|
860 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; |
---|
861 | |
---|
862 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; |
---|
863 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; |
---|
864 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; |
---|
865 | } |
---|
866 | } |
---|
867 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
868 | |
---|
869 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
870 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
871 | // so the memory (which is not freed) is left alone |
---|
872 | targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
873 | } |
---|
874 | |
---|
875 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
876 | nodeData += sizeToAdd; |
---|
877 | |
---|
878 | // Now serialize the subtree headers |
---|
879 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); |
---|
880 | if (i_swapEndian) |
---|
881 | { |
---|
882 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
883 | { |
---|
884 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
885 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
886 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
887 | |
---|
888 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
889 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
890 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
891 | |
---|
892 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
893 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); |
---|
894 | } |
---|
895 | } |
---|
896 | else |
---|
897 | { |
---|
898 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
899 | { |
---|
900 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
901 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
902 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
903 | |
---|
904 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
905 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
906 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
907 | |
---|
908 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); |
---|
909 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); |
---|
910 | |
---|
911 | // need to clear padding in destination buffer |
---|
912 | targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; |
---|
913 | targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; |
---|
914 | targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; |
---|
915 | } |
---|
916 | } |
---|
917 | nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
918 | |
---|
919 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
920 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
921 | // so the memory (which is not freed) is left alone |
---|
922 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); |
---|
923 | |
---|
924 | // this wipes the virtual function table pointer at the start of the buffer for the class |
---|
925 | *((void**)o_alignedDataBuffer) = NULL; |
---|
926 | |
---|
927 | return true; |
---|
928 | } |
---|
929 | |
---|
930 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) |
---|
931 | { |
---|
932 | |
---|
933 | if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
934 | { |
---|
935 | return NULL; |
---|
936 | } |
---|
937 | btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; |
---|
938 | |
---|
939 | if (i_swapEndian) |
---|
940 | { |
---|
941 | bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); |
---|
942 | |
---|
943 | btUnSwapVector3Endian(bvh->m_bvhAabbMin); |
---|
944 | btUnSwapVector3Endian(bvh->m_bvhAabbMax); |
---|
945 | btUnSwapVector3Endian(bvh->m_bvhQuantization); |
---|
946 | |
---|
947 | bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); |
---|
948 | bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); |
---|
949 | } |
---|
950 | |
---|
951 | unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); |
---|
952 | btAssert(calculatedBufSize <= i_dataBufferSize); |
---|
953 | |
---|
954 | if (calculatedBufSize > i_dataBufferSize) |
---|
955 | { |
---|
956 | return NULL; |
---|
957 | } |
---|
958 | |
---|
959 | unsigned char *nodeData = (unsigned char *)bvh; |
---|
960 | nodeData += sizeof(btQuantizedBvh); |
---|
961 | |
---|
962 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
963 | nodeData += sizeToAdd; |
---|
964 | |
---|
965 | int nodeCount = bvh->m_curNodeIndex; |
---|
966 | |
---|
967 | // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor |
---|
968 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
969 | new (bvh) btQuantizedBvh(*bvh, false); |
---|
970 | |
---|
971 | if (bvh->m_useQuantization) |
---|
972 | { |
---|
973 | bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
974 | |
---|
975 | if (i_swapEndian) |
---|
976 | { |
---|
977 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
978 | { |
---|
979 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
980 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
981 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
982 | |
---|
983 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
984 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
985 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
986 | |
---|
987 | bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
988 | } |
---|
989 | } |
---|
990 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
991 | } |
---|
992 | else |
---|
993 | { |
---|
994 | bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
995 | |
---|
996 | if (i_swapEndian) |
---|
997 | { |
---|
998 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
999 | { |
---|
1000 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
1001 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
1002 | |
---|
1003 | bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
1004 | bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); |
---|
1005 | bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
1006 | } |
---|
1007 | } |
---|
1008 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
1009 | } |
---|
1010 | |
---|
1011 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
1012 | nodeData += sizeToAdd; |
---|
1013 | |
---|
1014 | // Now serialize the subtree headers |
---|
1015 | bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); |
---|
1016 | if (i_swapEndian) |
---|
1017 | { |
---|
1018 | for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) |
---|
1019 | { |
---|
1020 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
1021 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
1022 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
1023 | |
---|
1024 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
1025 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
1026 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
1027 | |
---|
1028 | bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
1029 | bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); |
---|
1030 | } |
---|
1031 | } |
---|
1032 | |
---|
1033 | return bvh; |
---|
1034 | } |
---|
1035 | |
---|
1036 | // Constructor that prevents btVector3's default constructor from being called |
---|
1037 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : |
---|
1038 | m_bvhAabbMin(self.m_bvhAabbMin), |
---|
1039 | m_bvhAabbMax(self.m_bvhAabbMax), |
---|
1040 | m_bvhQuantization(self.m_bvhQuantization) |
---|
1041 | { |
---|
1042 | |
---|
1043 | |
---|
1044 | } |
---|
1045 | |
---|
1046 | |
---|
1047 | |
---|