1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #ifndef QUANTIZED_BVH_H |
---|
17 | #define QUANTIZED_BVH_H |
---|
18 | |
---|
19 | //#define DEBUG_CHECK_DEQUANTIZATION 1 |
---|
20 | #ifdef DEBUG_CHECK_DEQUANTIZATION |
---|
21 | #ifdef __SPU__ |
---|
22 | #define printf spu_printf |
---|
23 | #endif //__SPU__ |
---|
24 | |
---|
25 | #include <stdio.h> |
---|
26 | #include <stdlib.h> |
---|
27 | #endif //DEBUG_CHECK_DEQUANTIZATION |
---|
28 | |
---|
29 | #include "LinearMath/btVector3.h" |
---|
30 | #include "LinearMath/btAlignedAllocator.h" |
---|
31 | |
---|
32 | |
---|
33 | //http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp |
---|
34 | |
---|
35 | |
---|
36 | //Note: currently we have 16 bytes per quantized node |
---|
37 | #define MAX_SUBTREE_SIZE_IN_BYTES 2048 |
---|
38 | |
---|
39 | // 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one |
---|
40 | // actually) triangles each (since the sign bit is reserved |
---|
41 | #define MAX_NUM_PARTS_IN_BITS 10 |
---|
42 | |
---|
43 | ///btQuantizedBvhNode is a compressed aabb node, 16 bytes. |
---|
44 | ///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). |
---|
45 | ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode |
---|
46 | { |
---|
47 | BT_DECLARE_ALIGNED_ALLOCATOR(); |
---|
48 | |
---|
49 | //12 bytes |
---|
50 | unsigned short int m_quantizedAabbMin[3]; |
---|
51 | unsigned short int m_quantizedAabbMax[3]; |
---|
52 | //4 bytes |
---|
53 | int m_escapeIndexOrTriangleIndex; |
---|
54 | |
---|
55 | bool isLeafNode() const |
---|
56 | { |
---|
57 | //skipindex is negative (internal node), triangleindex >=0 (leafnode) |
---|
58 | return (m_escapeIndexOrTriangleIndex >= 0); |
---|
59 | } |
---|
60 | int getEscapeIndex() const |
---|
61 | { |
---|
62 | btAssert(!isLeafNode()); |
---|
63 | return -m_escapeIndexOrTriangleIndex; |
---|
64 | } |
---|
65 | int getTriangleIndex() const |
---|
66 | { |
---|
67 | btAssert(isLeafNode()); |
---|
68 | // Get only the lower bits where the triangle index is stored |
---|
69 | return (m_escapeIndexOrTriangleIndex&~((~0)<<(31-MAX_NUM_PARTS_IN_BITS))); |
---|
70 | } |
---|
71 | int getPartId() const |
---|
72 | { |
---|
73 | btAssert(isLeafNode()); |
---|
74 | // Get only the highest bits where the part index is stored |
---|
75 | return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS)); |
---|
76 | } |
---|
77 | } |
---|
78 | ; |
---|
79 | |
---|
80 | /// btOptimizedBvhNode contains both internal and leaf node information. |
---|
81 | /// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes. |
---|
82 | ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode |
---|
83 | { |
---|
84 | BT_DECLARE_ALIGNED_ALLOCATOR(); |
---|
85 | |
---|
86 | //32 bytes |
---|
87 | btVector3 m_aabbMinOrg; |
---|
88 | btVector3 m_aabbMaxOrg; |
---|
89 | |
---|
90 | //4 |
---|
91 | int m_escapeIndex; |
---|
92 | |
---|
93 | //8 |
---|
94 | //for child nodes |
---|
95 | int m_subPart; |
---|
96 | int m_triangleIndex; |
---|
97 | int m_padding[5];//bad, due to alignment |
---|
98 | |
---|
99 | |
---|
100 | }; |
---|
101 | |
---|
102 | |
---|
103 | ///btBvhSubtreeInfo provides info to gather a subtree of limited size |
---|
104 | ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo |
---|
105 | { |
---|
106 | public: |
---|
107 | BT_DECLARE_ALIGNED_ALLOCATOR(); |
---|
108 | |
---|
109 | //12 bytes |
---|
110 | unsigned short int m_quantizedAabbMin[3]; |
---|
111 | unsigned short int m_quantizedAabbMax[3]; |
---|
112 | //4 bytes, points to the root of the subtree |
---|
113 | int m_rootNodeIndex; |
---|
114 | //4 bytes |
---|
115 | int m_subtreeSize; |
---|
116 | int m_padding[3]; |
---|
117 | |
---|
118 | btBvhSubtreeInfo() |
---|
119 | { |
---|
120 | //memset(&m_padding[0], 0, sizeof(m_padding)); |
---|
121 | } |
---|
122 | |
---|
123 | |
---|
124 | void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode) |
---|
125 | { |
---|
126 | m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0]; |
---|
127 | m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1]; |
---|
128 | m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2]; |
---|
129 | m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0]; |
---|
130 | m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1]; |
---|
131 | m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2]; |
---|
132 | } |
---|
133 | } |
---|
134 | ; |
---|
135 | |
---|
136 | |
---|
137 | class btNodeOverlapCallback |
---|
138 | { |
---|
139 | public: |
---|
140 | virtual ~btNodeOverlapCallback() {}; |
---|
141 | |
---|
142 | virtual void processNode(int subPart, int triangleIndex) = 0; |
---|
143 | }; |
---|
144 | |
---|
145 | #include "LinearMath/btAlignedAllocator.h" |
---|
146 | #include "LinearMath/btAlignedObjectArray.h" |
---|
147 | |
---|
148 | |
---|
149 | |
---|
150 | ///for code readability: |
---|
151 | typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray; |
---|
152 | typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray; |
---|
153 | typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray; |
---|
154 | |
---|
155 | |
---|
156 | ///The btQuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU. |
---|
157 | ///It is used by the btBvhTriangleMeshShape as midphase, and by the btMultiSapBroadphase. |
---|
158 | ///It is recommended to use quantization for better performance and lower memory requirements. |
---|
159 | ATTRIBUTE_ALIGNED16(class) btQuantizedBvh |
---|
160 | { |
---|
161 | protected: |
---|
162 | |
---|
163 | NodeArray m_leafNodes; |
---|
164 | NodeArray m_contiguousNodes; |
---|
165 | |
---|
166 | QuantizedNodeArray m_quantizedLeafNodes; |
---|
167 | |
---|
168 | QuantizedNodeArray m_quantizedContiguousNodes; |
---|
169 | |
---|
170 | int m_curNodeIndex; |
---|
171 | |
---|
172 | |
---|
173 | //quantization data |
---|
174 | bool m_useQuantization; |
---|
175 | btVector3 m_bvhAabbMin; |
---|
176 | btVector3 m_bvhAabbMax; |
---|
177 | btVector3 m_bvhQuantization; |
---|
178 | public: |
---|
179 | BT_DECLARE_ALIGNED_ALLOCATOR(); |
---|
180 | |
---|
181 | enum btTraversalMode |
---|
182 | { |
---|
183 | TRAVERSAL_STACKLESS = 0, |
---|
184 | TRAVERSAL_STACKLESS_CACHE_FRIENDLY, |
---|
185 | TRAVERSAL_RECURSIVE |
---|
186 | }; |
---|
187 | protected: |
---|
188 | |
---|
189 | btTraversalMode m_traversalMode; |
---|
190 | |
---|
191 | BvhSubtreeInfoArray m_SubtreeHeaders; |
---|
192 | |
---|
193 | //This is only used for serialization so we don't have to add serialization directly to btAlignedObjectArray |
---|
194 | int m_subtreeHeaderCount; |
---|
195 | |
---|
196 | |
---|
197 | ///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!) |
---|
198 | ///this might be refactored into a virtual, it is usually not calculated at run-time |
---|
199 | void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin) |
---|
200 | { |
---|
201 | if (m_useQuantization) |
---|
202 | { |
---|
203 | quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0); |
---|
204 | } else |
---|
205 | { |
---|
206 | m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin; |
---|
207 | |
---|
208 | } |
---|
209 | } |
---|
210 | void setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax) |
---|
211 | { |
---|
212 | if (m_useQuantization) |
---|
213 | { |
---|
214 | quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1); |
---|
215 | } else |
---|
216 | { |
---|
217 | m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax; |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | btVector3 getAabbMin(int nodeIndex) const |
---|
222 | { |
---|
223 | if (m_useQuantization) |
---|
224 | { |
---|
225 | return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
226 | } |
---|
227 | //non-quantized |
---|
228 | return m_leafNodes[nodeIndex].m_aabbMinOrg; |
---|
229 | |
---|
230 | } |
---|
231 | btVector3 getAabbMax(int nodeIndex) const |
---|
232 | { |
---|
233 | if (m_useQuantization) |
---|
234 | { |
---|
235 | return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
236 | } |
---|
237 | //non-quantized |
---|
238 | return m_leafNodes[nodeIndex].m_aabbMaxOrg; |
---|
239 | |
---|
240 | } |
---|
241 | |
---|
242 | |
---|
243 | void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex) |
---|
244 | { |
---|
245 | if (m_useQuantization) |
---|
246 | { |
---|
247 | m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex; |
---|
248 | } |
---|
249 | else |
---|
250 | { |
---|
251 | m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex; |
---|
252 | } |
---|
253 | |
---|
254 | } |
---|
255 | |
---|
256 | void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax) |
---|
257 | { |
---|
258 | if (m_useQuantization) |
---|
259 | { |
---|
260 | unsigned short int quantizedAabbMin[3]; |
---|
261 | unsigned short int quantizedAabbMax[3]; |
---|
262 | quantize(quantizedAabbMin,newAabbMin,0); |
---|
263 | quantize(quantizedAabbMax,newAabbMax,1); |
---|
264 | for (int i=0;i<3;i++) |
---|
265 | { |
---|
266 | if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i]) |
---|
267 | m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i]; |
---|
268 | |
---|
269 | if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i]) |
---|
270 | m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i]; |
---|
271 | |
---|
272 | } |
---|
273 | } else |
---|
274 | { |
---|
275 | //non-quantized |
---|
276 | m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin); |
---|
277 | m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax); |
---|
278 | } |
---|
279 | } |
---|
280 | |
---|
281 | void swapLeafNodes(int firstIndex,int secondIndex); |
---|
282 | |
---|
283 | void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex); |
---|
284 | |
---|
285 | protected: |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | void buildTree (int startIndex,int endIndex); |
---|
290 | |
---|
291 | int calcSplittingAxis(int startIndex,int endIndex); |
---|
292 | |
---|
293 | int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis); |
---|
294 | |
---|
295 | void walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const; |
---|
296 | |
---|
297 | void walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const; |
---|
298 | void walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const; |
---|
299 | |
---|
300 | ///tree traversal designed for small-memory processors like PS3 SPU |
---|
301 | void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const; |
---|
302 | |
---|
303 | ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal |
---|
304 | void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const; |
---|
305 | |
---|
306 | ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal |
---|
307 | void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const; |
---|
308 | |
---|
309 | |
---|
310 | #define USE_BANCHLESS 1 |
---|
311 | #ifdef USE_BANCHLESS |
---|
312 | //This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360) |
---|
313 | SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const |
---|
314 | { |
---|
315 | return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0]) |
---|
316 | & (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2]) |
---|
317 | & (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])), |
---|
318 | 1, 0)); |
---|
319 | } |
---|
320 | #else |
---|
321 | SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const |
---|
322 | { |
---|
323 | bool overlap = true; |
---|
324 | overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap; |
---|
325 | overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap; |
---|
326 | overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap; |
---|
327 | return overlap; |
---|
328 | } |
---|
329 | #endif //USE_BANCHLESS |
---|
330 | |
---|
331 | void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex); |
---|
332 | |
---|
333 | public: |
---|
334 | btQuantizedBvh(); |
---|
335 | |
---|
336 | virtual ~btQuantizedBvh(); |
---|
337 | |
---|
338 | |
---|
339 | ///***************************************** expert/internal use only ************************* |
---|
340 | void setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0)); |
---|
341 | QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; } |
---|
342 | ///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized |
---|
343 | void buildInternal(); |
---|
344 | ///***************************************** expert/internal use only ************************* |
---|
345 | |
---|
346 | void reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const; |
---|
347 | void reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const; |
---|
348 | void reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const; |
---|
349 | |
---|
350 | SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point,int isMax) const |
---|
351 | { |
---|
352 | |
---|
353 | btAssert(m_useQuantization); |
---|
354 | |
---|
355 | btAssert(point.getX() <= m_bvhAabbMax.getX()); |
---|
356 | btAssert(point.getY() <= m_bvhAabbMax.getY()); |
---|
357 | btAssert(point.getZ() <= m_bvhAabbMax.getZ()); |
---|
358 | |
---|
359 | btAssert(point.getX() >= m_bvhAabbMin.getX()); |
---|
360 | btAssert(point.getY() >= m_bvhAabbMin.getY()); |
---|
361 | btAssert(point.getZ() >= m_bvhAabbMin.getZ()); |
---|
362 | |
---|
363 | btVector3 v = (point - m_bvhAabbMin) * m_bvhQuantization; |
---|
364 | ///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative |
---|
365 | ///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly) |
---|
366 | ///todo: double-check this |
---|
367 | if (isMax) |
---|
368 | { |
---|
369 | out[0] = (unsigned short) (((unsigned short)(v.getX()+btScalar(1.)) | 1)); |
---|
370 | out[1] = (unsigned short) (((unsigned short)(v.getY()+btScalar(1.)) | 1)); |
---|
371 | out[2] = (unsigned short) (((unsigned short)(v.getZ()+btScalar(1.)) | 1)); |
---|
372 | } else |
---|
373 | { |
---|
374 | out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe)); |
---|
375 | out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe)); |
---|
376 | out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe)); |
---|
377 | } |
---|
378 | |
---|
379 | |
---|
380 | #ifdef DEBUG_CHECK_DEQUANTIZATION |
---|
381 | btVector3 newPoint = unQuantize(out); |
---|
382 | if (isMax) |
---|
383 | { |
---|
384 | if (newPoint.getX() < point.getX()) |
---|
385 | { |
---|
386 | printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX()); |
---|
387 | } |
---|
388 | if (newPoint.getY() < point.getY()) |
---|
389 | { |
---|
390 | printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY()); |
---|
391 | } |
---|
392 | if (newPoint.getZ() < point.getZ()) |
---|
393 | { |
---|
394 | |
---|
395 | printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ()); |
---|
396 | } |
---|
397 | } else |
---|
398 | { |
---|
399 | if (newPoint.getX() > point.getX()) |
---|
400 | { |
---|
401 | printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX()); |
---|
402 | } |
---|
403 | if (newPoint.getY() > point.getY()) |
---|
404 | { |
---|
405 | printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY()); |
---|
406 | } |
---|
407 | if (newPoint.getZ() > point.getZ()) |
---|
408 | { |
---|
409 | printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ()); |
---|
410 | } |
---|
411 | } |
---|
412 | #endif //DEBUG_CHECK_DEQUANTIZATION |
---|
413 | |
---|
414 | } |
---|
415 | |
---|
416 | |
---|
417 | SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2,int isMax) const |
---|
418 | { |
---|
419 | |
---|
420 | btAssert(m_useQuantization); |
---|
421 | |
---|
422 | btVector3 clampedPoint(point2); |
---|
423 | clampedPoint.setMax(m_bvhAabbMin); |
---|
424 | clampedPoint.setMin(m_bvhAabbMax); |
---|
425 | |
---|
426 | quantize(out,clampedPoint,isMax); |
---|
427 | |
---|
428 | } |
---|
429 | |
---|
430 | SIMD_FORCE_INLINE btVector3 unQuantize(const unsigned short* vecIn) const |
---|
431 | { |
---|
432 | btVector3 vecOut; |
---|
433 | vecOut.setValue( |
---|
434 | (btScalar)(vecIn[0]) / (m_bvhQuantization.getX()), |
---|
435 | (btScalar)(vecIn[1]) / (m_bvhQuantization.getY()), |
---|
436 | (btScalar)(vecIn[2]) / (m_bvhQuantization.getZ())); |
---|
437 | vecOut += m_bvhAabbMin; |
---|
438 | return vecOut; |
---|
439 | } |
---|
440 | |
---|
441 | ///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees. |
---|
442 | void setTraversalMode(btTraversalMode traversalMode) |
---|
443 | { |
---|
444 | m_traversalMode = traversalMode; |
---|
445 | } |
---|
446 | |
---|
447 | |
---|
448 | SIMD_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray() |
---|
449 | { |
---|
450 | return m_quantizedContiguousNodes; |
---|
451 | } |
---|
452 | |
---|
453 | |
---|
454 | SIMD_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray() |
---|
455 | { |
---|
456 | return m_SubtreeHeaders; |
---|
457 | } |
---|
458 | |
---|
459 | |
---|
460 | /////Calculate space needed to store BVH for serialization |
---|
461 | unsigned calculateSerializeBufferSize(); |
---|
462 | |
---|
463 | /// Data buffer MUST be 16 byte aligned |
---|
464 | virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian); |
---|
465 | |
---|
466 | ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' |
---|
467 | static btQuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian); |
---|
468 | |
---|
469 | static unsigned int getAlignmentSerializationPadding(); |
---|
470 | |
---|
471 | SIMD_FORCE_INLINE bool isQuantized() |
---|
472 | { |
---|
473 | return m_useQuantization; |
---|
474 | } |
---|
475 | |
---|
476 | private: |
---|
477 | // Special "copy" constructor that allows for in-place deserialization |
---|
478 | // Prevents btVector3's default constructor from being called, but doesn't inialize much else |
---|
479 | // ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need) |
---|
480 | btQuantizedBvh(btQuantizedBvh &other, bool ownsMemory); |
---|
481 | |
---|
482 | } |
---|
483 | ; |
---|
484 | |
---|
485 | |
---|
486 | #endif //QUANTIZED_BVH_H |
---|