1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h" |
---|
17 | #include "BulletCollision/CollisionDispatch/btCollisionObject.h" |
---|
18 | #include "BulletCollision/CollisionShapes/btCompoundShape.h" |
---|
19 | #include "BulletCollision/BroadphaseCollision/btDbvt.h" |
---|
20 | #include "LinearMath/btIDebugDraw.h" |
---|
21 | #include "LinearMath/btAabbUtil2.h" |
---|
22 | |
---|
23 | btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped) |
---|
24 | :btCollisionAlgorithm(ci), |
---|
25 | m_isSwapped(isSwapped), |
---|
26 | m_sharedManifold(ci.m_manifold) |
---|
27 | { |
---|
28 | m_ownsManifold = false; |
---|
29 | |
---|
30 | btCollisionObject* colObj = m_isSwapped? body1 : body0; |
---|
31 | btCollisionObject* otherObj = m_isSwapped? body0 : body1; |
---|
32 | assert (colObj->getCollisionShape()->isCompound()); |
---|
33 | |
---|
34 | btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape()); |
---|
35 | int numChildren = compoundShape->getNumChildShapes(); |
---|
36 | int i; |
---|
37 | |
---|
38 | m_childCollisionAlgorithms.resize(numChildren); |
---|
39 | for (i=0;i<numChildren;i++) |
---|
40 | { |
---|
41 | if (compoundShape->getDynamicAabbTree()) |
---|
42 | { |
---|
43 | m_childCollisionAlgorithms[i] = 0; |
---|
44 | } else |
---|
45 | { |
---|
46 | btCollisionShape* tmpShape = colObj->getCollisionShape(); |
---|
47 | btCollisionShape* childShape = compoundShape->getChildShape(i); |
---|
48 | colObj->internalSetTemporaryCollisionShape( childShape ); |
---|
49 | m_childCollisionAlgorithms[i] = ci.m_dispatcher1->findAlgorithm(colObj,otherObj,m_sharedManifold); |
---|
50 | colObj->internalSetTemporaryCollisionShape( tmpShape ); |
---|
51 | } |
---|
52 | } |
---|
53 | } |
---|
54 | |
---|
55 | |
---|
56 | btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm() |
---|
57 | { |
---|
58 | int numChildren = m_childCollisionAlgorithms.size(); |
---|
59 | int i; |
---|
60 | for (i=0;i<numChildren;i++) |
---|
61 | { |
---|
62 | if (m_childCollisionAlgorithms[i]) |
---|
63 | { |
---|
64 | m_childCollisionAlgorithms[i]->~btCollisionAlgorithm(); |
---|
65 | m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]); |
---|
66 | } |
---|
67 | } |
---|
68 | } |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | struct btCompoundLeafCallback : btDbvt::ICollide |
---|
74 | { |
---|
75 | |
---|
76 | public: |
---|
77 | |
---|
78 | btCollisionObject* m_compoundColObj; |
---|
79 | btCollisionObject* m_otherObj; |
---|
80 | btDispatcher* m_dispatcher; |
---|
81 | const btDispatcherInfo& m_dispatchInfo; |
---|
82 | btManifoldResult* m_resultOut; |
---|
83 | btCollisionAlgorithm** m_childCollisionAlgorithms; |
---|
84 | btPersistentManifold* m_sharedManifold; |
---|
85 | |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | btCompoundLeafCallback (btCollisionObject* compoundObj,btCollisionObject* otherObj,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut,btCollisionAlgorithm** childCollisionAlgorithms,btPersistentManifold* sharedManifold) |
---|
90 | :m_compoundColObj(compoundObj),m_otherObj(otherObj),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut), |
---|
91 | m_childCollisionAlgorithms(childCollisionAlgorithms), |
---|
92 | m_sharedManifold(sharedManifold) |
---|
93 | { |
---|
94 | |
---|
95 | } |
---|
96 | |
---|
97 | |
---|
98 | void ProcessChildShape(btCollisionShape* childShape,int index) |
---|
99 | { |
---|
100 | |
---|
101 | btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape()); |
---|
102 | |
---|
103 | |
---|
104 | //backup |
---|
105 | btTransform orgTrans = m_compoundColObj->getWorldTransform(); |
---|
106 | btTransform orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform(); |
---|
107 | const btTransform& childTrans = compoundShape->getChildTransform(index); |
---|
108 | btTransform newChildWorldTrans = orgTrans*childTrans ; |
---|
109 | |
---|
110 | //perform an AABB check first |
---|
111 | btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1; |
---|
112 | childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0); |
---|
113 | m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1); |
---|
114 | |
---|
115 | if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1)) |
---|
116 | { |
---|
117 | |
---|
118 | m_compoundColObj->setWorldTransform( newChildWorldTrans); |
---|
119 | m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans); |
---|
120 | |
---|
121 | //the contactpoint is still projected back using the original inverted worldtrans |
---|
122 | btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape(); |
---|
123 | m_compoundColObj->internalSetTemporaryCollisionShape( childShape ); |
---|
124 | |
---|
125 | if (!m_childCollisionAlgorithms[index]) |
---|
126 | m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold); |
---|
127 | |
---|
128 | m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut); |
---|
129 | if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) |
---|
130 | { |
---|
131 | btVector3 worldAabbMin,worldAabbMax; |
---|
132 | m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1)); |
---|
133 | m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1)); |
---|
134 | } |
---|
135 | |
---|
136 | //revert back transform |
---|
137 | m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape); |
---|
138 | m_compoundColObj->setWorldTransform( orgTrans ); |
---|
139 | m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans); |
---|
140 | } |
---|
141 | } |
---|
142 | void Process(const btDbvtNode* leaf) |
---|
143 | { |
---|
144 | int index = leaf->dataAsInt; |
---|
145 | |
---|
146 | btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape()); |
---|
147 | btCollisionShape* childShape = compoundShape->getChildShape(index); |
---|
148 | if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) |
---|
149 | { |
---|
150 | btVector3 worldAabbMin,worldAabbMax; |
---|
151 | btTransform orgTrans = m_compoundColObj->getWorldTransform(); |
---|
152 | btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax); |
---|
153 | m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0)); |
---|
154 | } |
---|
155 | ProcessChildShape(childShape,index); |
---|
156 | |
---|
157 | } |
---|
158 | }; |
---|
159 | |
---|
160 | |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
166 | { |
---|
167 | btCollisionObject* colObj = m_isSwapped? body1 : body0; |
---|
168 | btCollisionObject* otherObj = m_isSwapped? body0 : body1; |
---|
169 | |
---|
170 | assert (colObj->getCollisionShape()->isCompound()); |
---|
171 | btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape()); |
---|
172 | |
---|
173 | btDbvt* tree = compoundShape->getDynamicAabbTree(); |
---|
174 | //use a dynamic aabb tree to cull potential child-overlaps |
---|
175 | btCompoundLeafCallback callback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold); |
---|
176 | |
---|
177 | |
---|
178 | if (tree) |
---|
179 | { |
---|
180 | |
---|
181 | btVector3 localAabbMin,localAabbMax; |
---|
182 | btTransform otherInCompoundSpace; |
---|
183 | otherInCompoundSpace = colObj->getWorldTransform().inverse() * otherObj->getWorldTransform(); |
---|
184 | otherObj->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax); |
---|
185 | |
---|
186 | const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax); |
---|
187 | //process all children, that overlap with the given AABB bounds |
---|
188 | tree->collideTV(tree->m_root,bounds,callback); |
---|
189 | |
---|
190 | } else |
---|
191 | { |
---|
192 | //iterate over all children, perform an AABB check inside ProcessChildShape |
---|
193 | int numChildren = m_childCollisionAlgorithms.size(); |
---|
194 | int i; |
---|
195 | for (i=0;i<numChildren;i++) |
---|
196 | { |
---|
197 | callback.ProcessChildShape(compoundShape->getChildShape(i),i); |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | { |
---|
202 | //iterate over all children, perform an AABB check inside ProcessChildShape |
---|
203 | int numChildren = m_childCollisionAlgorithms.size(); |
---|
204 | int i; |
---|
205 | btManifoldArray manifoldArray; |
---|
206 | |
---|
207 | for (i=0;i<numChildren;i++) |
---|
208 | { |
---|
209 | if (m_childCollisionAlgorithms[i]) |
---|
210 | { |
---|
211 | btCollisionShape* childShape = compoundShape->getChildShape(i); |
---|
212 | //if not longer overlapping, remove the algorithm |
---|
213 | btTransform orgTrans = colObj->getWorldTransform(); |
---|
214 | btTransform orgInterpolationTrans = colObj->getInterpolationWorldTransform(); |
---|
215 | const btTransform& childTrans = compoundShape->getChildTransform(i); |
---|
216 | btTransform newChildWorldTrans = orgTrans*childTrans ; |
---|
217 | |
---|
218 | //perform an AABB check first |
---|
219 | btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1; |
---|
220 | childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0); |
---|
221 | otherObj->getCollisionShape()->getAabb(otherObj->getWorldTransform(),aabbMin1,aabbMax1); |
---|
222 | |
---|
223 | if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1)) |
---|
224 | { |
---|
225 | m_childCollisionAlgorithms[i]->~btCollisionAlgorithm(); |
---|
226 | m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]); |
---|
227 | m_childCollisionAlgorithms[i] = 0; |
---|
228 | } |
---|
229 | |
---|
230 | } |
---|
231 | |
---|
232 | } |
---|
233 | |
---|
234 | |
---|
235 | |
---|
236 | } |
---|
237 | } |
---|
238 | |
---|
239 | btScalar btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) |
---|
240 | { |
---|
241 | |
---|
242 | btCollisionObject* colObj = m_isSwapped? body1 : body0; |
---|
243 | btCollisionObject* otherObj = m_isSwapped? body0 : body1; |
---|
244 | |
---|
245 | assert (colObj->getCollisionShape()->isCompound()); |
---|
246 | |
---|
247 | btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape()); |
---|
248 | |
---|
249 | //We will use the OptimizedBVH, AABB tree to cull potential child-overlaps |
---|
250 | //If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals |
---|
251 | //given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means: |
---|
252 | //determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1 |
---|
253 | //then use each overlapping node AABB against Tree0 |
---|
254 | //and vise versa. |
---|
255 | |
---|
256 | btScalar hitFraction = btScalar(1.); |
---|
257 | |
---|
258 | int numChildren = m_childCollisionAlgorithms.size(); |
---|
259 | int i; |
---|
260 | for (i=0;i<numChildren;i++) |
---|
261 | { |
---|
262 | //temporarily exchange parent btCollisionShape with childShape, and recurse |
---|
263 | btCollisionShape* childShape = compoundShape->getChildShape(i); |
---|
264 | |
---|
265 | //backup |
---|
266 | btTransform orgTrans = colObj->getWorldTransform(); |
---|
267 | |
---|
268 | const btTransform& childTrans = compoundShape->getChildTransform(i); |
---|
269 | //btTransform newChildWorldTrans = orgTrans*childTrans ; |
---|
270 | colObj->setWorldTransform( orgTrans*childTrans ); |
---|
271 | |
---|
272 | btCollisionShape* tmpShape = colObj->getCollisionShape(); |
---|
273 | colObj->internalSetTemporaryCollisionShape( childShape ); |
---|
274 | btScalar frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj,otherObj,dispatchInfo,resultOut); |
---|
275 | if (frac<hitFraction) |
---|
276 | { |
---|
277 | hitFraction = frac; |
---|
278 | } |
---|
279 | //revert back |
---|
280 | colObj->internalSetTemporaryCollisionShape( tmpShape); |
---|
281 | colObj->setWorldTransform( orgTrans); |
---|
282 | } |
---|
283 | return hitFraction; |
---|
284 | |
---|
285 | } |
---|
286 | |
---|
287 | |
---|