1 | /*! \file gim_box_set.h |
---|
2 | \author Francisco Len Nßjera |
---|
3 | */ |
---|
4 | /* |
---|
5 | This source file is part of GIMPACT Library. |
---|
6 | |
---|
7 | For the latest info, see http://gimpact.sourceforge.net/ |
---|
8 | |
---|
9 | Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371. |
---|
10 | email: projectileman@yahoo.com |
---|
11 | |
---|
12 | |
---|
13 | This software is provided 'as-is', without any express or implied warranty. |
---|
14 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
15 | Permission is granted to anyone to use this software for any purpose, |
---|
16 | including commercial applications, and to alter it and redistribute it freely, |
---|
17 | subject to the following restrictions: |
---|
18 | |
---|
19 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
20 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
21 | 3. This notice may not be removed or altered from any source distribution. |
---|
22 | */ |
---|
23 | #include "btGImpactBvh.h" |
---|
24 | #include "LinearMath/btQuickprof.h" |
---|
25 | |
---|
26 | #ifdef TRI_COLLISION_PROFILING |
---|
27 | |
---|
28 | btClock g_tree_clock; |
---|
29 | |
---|
30 | float g_accum_tree_collision_time = 0; |
---|
31 | int g_count_traversing = 0; |
---|
32 | |
---|
33 | |
---|
34 | void bt_begin_gim02_tree_time() |
---|
35 | { |
---|
36 | g_tree_clock.reset(); |
---|
37 | } |
---|
38 | |
---|
39 | void bt_end_gim02_tree_time() |
---|
40 | { |
---|
41 | g_accum_tree_collision_time += g_tree_clock.getTimeMicroseconds(); |
---|
42 | g_count_traversing++; |
---|
43 | } |
---|
44 | |
---|
45 | //! Gets the average time in miliseconds of tree collisions |
---|
46 | float btGImpactBvh::getAverageTreeCollisionTime() |
---|
47 | { |
---|
48 | if(g_count_traversing == 0) return 0; |
---|
49 | |
---|
50 | float avgtime = g_accum_tree_collision_time; |
---|
51 | avgtime /= (float)g_count_traversing; |
---|
52 | |
---|
53 | g_accum_tree_collision_time = 0; |
---|
54 | g_count_traversing = 0; |
---|
55 | return avgtime; |
---|
56 | |
---|
57 | // float avgtime = g_count_traversing; |
---|
58 | // g_count_traversing = 0; |
---|
59 | // return avgtime; |
---|
60 | |
---|
61 | } |
---|
62 | |
---|
63 | #endif //TRI_COLLISION_PROFILING |
---|
64 | |
---|
65 | /////////////////////// btBvhTree ///////////////////////////////// |
---|
66 | |
---|
67 | int btBvhTree::_calc_splitting_axis( |
---|
68 | BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex) |
---|
69 | { |
---|
70 | |
---|
71 | int i; |
---|
72 | |
---|
73 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
74 | btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
75 | int numIndices = endIndex-startIndex; |
---|
76 | |
---|
77 | for (i=startIndex;i<endIndex;i++) |
---|
78 | { |
---|
79 | btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max + |
---|
80 | primitive_boxes[i].m_bound.m_min); |
---|
81 | means+=center; |
---|
82 | } |
---|
83 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
84 | |
---|
85 | for (i=startIndex;i<endIndex;i++) |
---|
86 | { |
---|
87 | btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max + |
---|
88 | primitive_boxes[i].m_bound.m_min); |
---|
89 | btVector3 diff2 = center-means; |
---|
90 | diff2 = diff2 * diff2; |
---|
91 | variance += diff2; |
---|
92 | } |
---|
93 | variance *= (btScalar(1.)/ ((btScalar)numIndices-1) ); |
---|
94 | |
---|
95 | return variance.maxAxis(); |
---|
96 | } |
---|
97 | |
---|
98 | |
---|
99 | int btBvhTree::_sort_and_calc_splitting_index( |
---|
100 | BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, |
---|
101 | int endIndex, int splitAxis) |
---|
102 | { |
---|
103 | int i; |
---|
104 | int splitIndex =startIndex; |
---|
105 | int numIndices = endIndex - startIndex; |
---|
106 | |
---|
107 | // average of centers |
---|
108 | btScalar splitValue = 0.0f; |
---|
109 | |
---|
110 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
111 | for (i=startIndex;i<endIndex;i++) |
---|
112 | { |
---|
113 | btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max + |
---|
114 | primitive_boxes[i].m_bound.m_min); |
---|
115 | means+=center; |
---|
116 | } |
---|
117 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
118 | |
---|
119 | splitValue = means[splitAxis]; |
---|
120 | |
---|
121 | |
---|
122 | //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. |
---|
123 | for (i=startIndex;i<endIndex;i++) |
---|
124 | { |
---|
125 | btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max + |
---|
126 | primitive_boxes[i].m_bound.m_min); |
---|
127 | if (center[splitAxis] > splitValue) |
---|
128 | { |
---|
129 | //swap |
---|
130 | primitive_boxes.swap(i,splitIndex); |
---|
131 | //swapLeafNodes(i,splitIndex); |
---|
132 | splitIndex++; |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex |
---|
137 | //otherwise the tree-building might fail due to stack-overflows in certain cases. |
---|
138 | //unbalanced1 is unsafe: it can cause stack overflows |
---|
139 | //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); |
---|
140 | |
---|
141 | //unbalanced2 should work too: always use center (perfect balanced trees) |
---|
142 | //bool unbalanced2 = true; |
---|
143 | |
---|
144 | //this should be safe too: |
---|
145 | int rangeBalancedIndices = numIndices/3; |
---|
146 | bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); |
---|
147 | |
---|
148 | if (unbalanced) |
---|
149 | { |
---|
150 | splitIndex = startIndex+ (numIndices>>1); |
---|
151 | } |
---|
152 | |
---|
153 | bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); |
---|
154 | btAssert(!unbal); |
---|
155 | |
---|
156 | return splitIndex; |
---|
157 | |
---|
158 | } |
---|
159 | |
---|
160 | |
---|
161 | void btBvhTree::_build_sub_tree(BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex) |
---|
162 | { |
---|
163 | int curIndex = m_num_nodes; |
---|
164 | m_num_nodes++; |
---|
165 | |
---|
166 | btAssert((endIndex-startIndex)>0); |
---|
167 | |
---|
168 | if ((endIndex-startIndex)==1) |
---|
169 | { |
---|
170 | //We have a leaf node |
---|
171 | setNodeBound(curIndex,primitive_boxes[startIndex].m_bound); |
---|
172 | m_node_array[curIndex].setDataIndex(primitive_boxes[startIndex].m_data); |
---|
173 | |
---|
174 | return; |
---|
175 | } |
---|
176 | //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. |
---|
177 | |
---|
178 | //split axis |
---|
179 | int splitIndex = _calc_splitting_axis(primitive_boxes,startIndex,endIndex); |
---|
180 | |
---|
181 | splitIndex = _sort_and_calc_splitting_index( |
---|
182 | primitive_boxes,startIndex,endIndex, |
---|
183 | splitIndex//split axis |
---|
184 | ); |
---|
185 | |
---|
186 | |
---|
187 | //calc this node bounding box |
---|
188 | |
---|
189 | btAABB node_bound; |
---|
190 | node_bound.invalidate(); |
---|
191 | |
---|
192 | for (int i=startIndex;i<endIndex;i++) |
---|
193 | { |
---|
194 | node_bound.merge(primitive_boxes[i].m_bound); |
---|
195 | } |
---|
196 | |
---|
197 | setNodeBound(curIndex,node_bound); |
---|
198 | |
---|
199 | |
---|
200 | //build left branch |
---|
201 | _build_sub_tree(primitive_boxes, startIndex, splitIndex ); |
---|
202 | |
---|
203 | |
---|
204 | //build right branch |
---|
205 | _build_sub_tree(primitive_boxes, splitIndex ,endIndex); |
---|
206 | |
---|
207 | m_node_array[curIndex].setEscapeIndex(m_num_nodes - curIndex); |
---|
208 | |
---|
209 | |
---|
210 | } |
---|
211 | |
---|
212 | //! stackless build tree |
---|
213 | void btBvhTree::build_tree( |
---|
214 | BT_BVH_DATA_ARRAY & primitive_boxes) |
---|
215 | { |
---|
216 | // initialize node count to 0 |
---|
217 | m_num_nodes = 0; |
---|
218 | // allocate nodes |
---|
219 | m_node_array.resize(primitive_boxes.size()*2); |
---|
220 | |
---|
221 | _build_sub_tree(primitive_boxes, 0, primitive_boxes.size()); |
---|
222 | } |
---|
223 | |
---|
224 | ////////////////////////////////////class btGImpactBvh |
---|
225 | |
---|
226 | void btGImpactBvh::refit() |
---|
227 | { |
---|
228 | int nodecount = getNodeCount(); |
---|
229 | while(nodecount--) |
---|
230 | { |
---|
231 | if(isLeafNode(nodecount)) |
---|
232 | { |
---|
233 | btAABB leafbox; |
---|
234 | m_primitive_manager->get_primitive_box(getNodeData(nodecount),leafbox); |
---|
235 | setNodeBound(nodecount,leafbox); |
---|
236 | } |
---|
237 | else |
---|
238 | { |
---|
239 | //const BT_BVH_TREE_NODE * nodepointer = get_node_pointer(nodecount); |
---|
240 | //get left bound |
---|
241 | btAABB bound; |
---|
242 | bound.invalidate(); |
---|
243 | |
---|
244 | btAABB temp_box; |
---|
245 | |
---|
246 | int child_node = getLeftNode(nodecount); |
---|
247 | if(child_node) |
---|
248 | { |
---|
249 | getNodeBound(child_node,temp_box); |
---|
250 | bound.merge(temp_box); |
---|
251 | } |
---|
252 | |
---|
253 | child_node = getRightNode(nodecount); |
---|
254 | if(child_node) |
---|
255 | { |
---|
256 | getNodeBound(child_node,temp_box); |
---|
257 | bound.merge(temp_box); |
---|
258 | } |
---|
259 | |
---|
260 | setNodeBound(nodecount,bound); |
---|
261 | } |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | //! this rebuild the entire set |
---|
266 | void btGImpactBvh::buildSet() |
---|
267 | { |
---|
268 | //obtain primitive boxes |
---|
269 | BT_BVH_DATA_ARRAY primitive_boxes; |
---|
270 | primitive_boxes.resize(m_primitive_manager->get_primitive_count()); |
---|
271 | |
---|
272 | for (int i = 0;i<primitive_boxes.size() ;i++ ) |
---|
273 | { |
---|
274 | m_primitive_manager->get_primitive_box(i,primitive_boxes[i].m_bound); |
---|
275 | primitive_boxes[i].m_data = i; |
---|
276 | } |
---|
277 | |
---|
278 | m_box_tree.build_tree(primitive_boxes); |
---|
279 | } |
---|
280 | |
---|
281 | //! returns the indices of the primitives in the m_primitive_manager |
---|
282 | bool btGImpactBvh::boxQuery(const btAABB & box, btAlignedObjectArray<int> & collided_results) const |
---|
283 | { |
---|
284 | int curIndex = 0; |
---|
285 | int numNodes = getNodeCount(); |
---|
286 | |
---|
287 | while (curIndex < numNodes) |
---|
288 | { |
---|
289 | btAABB bound; |
---|
290 | getNodeBound(curIndex,bound); |
---|
291 | |
---|
292 | //catch bugs in tree data |
---|
293 | |
---|
294 | bool aabbOverlap = bound.has_collision(box); |
---|
295 | bool isleafnode = isLeafNode(curIndex); |
---|
296 | |
---|
297 | if (isleafnode && aabbOverlap) |
---|
298 | { |
---|
299 | collided_results.push_back(getNodeData(curIndex)); |
---|
300 | } |
---|
301 | |
---|
302 | if (aabbOverlap || isleafnode) |
---|
303 | { |
---|
304 | //next subnode |
---|
305 | curIndex++; |
---|
306 | } |
---|
307 | else |
---|
308 | { |
---|
309 | //skip node |
---|
310 | curIndex+= getEscapeNodeIndex(curIndex); |
---|
311 | } |
---|
312 | } |
---|
313 | if(collided_results.size()>0) return true; |
---|
314 | return false; |
---|
315 | } |
---|
316 | |
---|
317 | |
---|
318 | |
---|
319 | //! returns the indices of the primitives in the m_primitive_manager |
---|
320 | bool btGImpactBvh::rayQuery( |
---|
321 | const btVector3 & ray_dir,const btVector3 & ray_origin , |
---|
322 | btAlignedObjectArray<int> & collided_results) const |
---|
323 | { |
---|
324 | int curIndex = 0; |
---|
325 | int numNodes = getNodeCount(); |
---|
326 | |
---|
327 | while (curIndex < numNodes) |
---|
328 | { |
---|
329 | btAABB bound; |
---|
330 | getNodeBound(curIndex,bound); |
---|
331 | |
---|
332 | //catch bugs in tree data |
---|
333 | |
---|
334 | bool aabbOverlap = bound.collide_ray(ray_origin,ray_dir); |
---|
335 | bool isleafnode = isLeafNode(curIndex); |
---|
336 | |
---|
337 | if (isleafnode && aabbOverlap) |
---|
338 | { |
---|
339 | collided_results.push_back(getNodeData( curIndex)); |
---|
340 | } |
---|
341 | |
---|
342 | if (aabbOverlap || isleafnode) |
---|
343 | { |
---|
344 | //next subnode |
---|
345 | curIndex++; |
---|
346 | } |
---|
347 | else |
---|
348 | { |
---|
349 | //skip node |
---|
350 | curIndex+= getEscapeNodeIndex(curIndex); |
---|
351 | } |
---|
352 | } |
---|
353 | if(collided_results.size()>0) return true; |
---|
354 | return false; |
---|
355 | } |
---|
356 | |
---|
357 | |
---|
358 | SIMD_FORCE_INLINE bool _node_collision( |
---|
359 | btGImpactBvh * boxset0, btGImpactBvh * boxset1, |
---|
360 | const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0, |
---|
361 | int node0 ,int node1, bool complete_primitive_tests) |
---|
362 | { |
---|
363 | btAABB box0; |
---|
364 | boxset0->getNodeBound(node0,box0); |
---|
365 | btAABB box1; |
---|
366 | boxset1->getNodeBound(node1,box1); |
---|
367 | |
---|
368 | return box0.overlapping_trans_cache(box1,trans_cache_1to0,complete_primitive_tests ); |
---|
369 | // box1.appy_transform_trans_cache(trans_cache_1to0); |
---|
370 | // return box0.has_collision(box1); |
---|
371 | |
---|
372 | } |
---|
373 | |
---|
374 | |
---|
375 | //stackless recursive collision routine |
---|
376 | static void _find_collision_pairs_recursive( |
---|
377 | btGImpactBvh * boxset0, btGImpactBvh * boxset1, |
---|
378 | btPairSet * collision_pairs, |
---|
379 | const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0, |
---|
380 | int node0, int node1, bool complete_primitive_tests) |
---|
381 | { |
---|
382 | |
---|
383 | |
---|
384 | |
---|
385 | if( _node_collision( |
---|
386 | boxset0,boxset1,trans_cache_1to0, |
---|
387 | node0,node1,complete_primitive_tests) ==false) return;//avoid colliding internal nodes |
---|
388 | |
---|
389 | if(boxset0->isLeafNode(node0)) |
---|
390 | { |
---|
391 | if(boxset1->isLeafNode(node1)) |
---|
392 | { |
---|
393 | // collision result |
---|
394 | collision_pairs->push_pair( |
---|
395 | boxset0->getNodeData(node0),boxset1->getNodeData(node1)); |
---|
396 | return; |
---|
397 | } |
---|
398 | else |
---|
399 | { |
---|
400 | |
---|
401 | //collide left recursive |
---|
402 | |
---|
403 | _find_collision_pairs_recursive( |
---|
404 | boxset0,boxset1, |
---|
405 | collision_pairs,trans_cache_1to0, |
---|
406 | node0,boxset1->getLeftNode(node1),false); |
---|
407 | |
---|
408 | //collide right recursive |
---|
409 | _find_collision_pairs_recursive( |
---|
410 | boxset0,boxset1, |
---|
411 | collision_pairs,trans_cache_1to0, |
---|
412 | node0,boxset1->getRightNode(node1),false); |
---|
413 | |
---|
414 | |
---|
415 | } |
---|
416 | } |
---|
417 | else |
---|
418 | { |
---|
419 | if(boxset1->isLeafNode(node1)) |
---|
420 | { |
---|
421 | |
---|
422 | //collide left recursive |
---|
423 | _find_collision_pairs_recursive( |
---|
424 | boxset0,boxset1, |
---|
425 | collision_pairs,trans_cache_1to0, |
---|
426 | boxset0->getLeftNode(node0),node1,false); |
---|
427 | |
---|
428 | |
---|
429 | //collide right recursive |
---|
430 | |
---|
431 | _find_collision_pairs_recursive( |
---|
432 | boxset0,boxset1, |
---|
433 | collision_pairs,trans_cache_1to0, |
---|
434 | boxset0->getRightNode(node0),node1,false); |
---|
435 | |
---|
436 | |
---|
437 | } |
---|
438 | else |
---|
439 | { |
---|
440 | //collide left0 left1 |
---|
441 | |
---|
442 | |
---|
443 | |
---|
444 | _find_collision_pairs_recursive( |
---|
445 | boxset0,boxset1, |
---|
446 | collision_pairs,trans_cache_1to0, |
---|
447 | boxset0->getLeftNode(node0),boxset1->getLeftNode(node1),false); |
---|
448 | |
---|
449 | //collide left0 right1 |
---|
450 | |
---|
451 | _find_collision_pairs_recursive( |
---|
452 | boxset0,boxset1, |
---|
453 | collision_pairs,trans_cache_1to0, |
---|
454 | boxset0->getLeftNode(node0),boxset1->getRightNode(node1),false); |
---|
455 | |
---|
456 | |
---|
457 | //collide right0 left1 |
---|
458 | |
---|
459 | _find_collision_pairs_recursive( |
---|
460 | boxset0,boxset1, |
---|
461 | collision_pairs,trans_cache_1to0, |
---|
462 | boxset0->getRightNode(node0),boxset1->getLeftNode(node1),false); |
---|
463 | |
---|
464 | //collide right0 right1 |
---|
465 | |
---|
466 | _find_collision_pairs_recursive( |
---|
467 | boxset0,boxset1, |
---|
468 | collision_pairs,trans_cache_1to0, |
---|
469 | boxset0->getRightNode(node0),boxset1->getRightNode(node1),false); |
---|
470 | |
---|
471 | }// else if node1 is not a leaf |
---|
472 | }// else if node0 is not a leaf |
---|
473 | } |
---|
474 | |
---|
475 | |
---|
476 | void btGImpactBvh::find_collision(btGImpactBvh * boxset0, const btTransform & trans0, |
---|
477 | btGImpactBvh * boxset1, const btTransform & trans1, |
---|
478 | btPairSet & collision_pairs) |
---|
479 | { |
---|
480 | |
---|
481 | if(boxset0->getNodeCount()==0 || boxset1->getNodeCount()==0 ) return; |
---|
482 | |
---|
483 | BT_BOX_BOX_TRANSFORM_CACHE trans_cache_1to0; |
---|
484 | |
---|
485 | trans_cache_1to0.calc_from_homogenic(trans0,trans1); |
---|
486 | |
---|
487 | #ifdef TRI_COLLISION_PROFILING |
---|
488 | bt_begin_gim02_tree_time(); |
---|
489 | #endif //TRI_COLLISION_PROFILING |
---|
490 | |
---|
491 | _find_collision_pairs_recursive( |
---|
492 | boxset0,boxset1, |
---|
493 | &collision_pairs,trans_cache_1to0,0,0,true); |
---|
494 | #ifdef TRI_COLLISION_PROFILING |
---|
495 | bt_end_gim02_tree_time(); |
---|
496 | #endif //TRI_COLLISION_PROFILING |
---|
497 | |
---|
498 | } |
---|
499 | |
---|