[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #include "btContactConstraint.h" |
---|
| 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 19 | #include "LinearMath/btVector3.h" |
---|
| 20 | #include "btJacobianEntry.h" |
---|
| 21 | #include "btContactSolverInfo.h" |
---|
| 22 | #include "LinearMath/btMinMax.h" |
---|
| 23 | #include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h" |
---|
| 24 | |
---|
| 25 | #define ASSERT2 assert |
---|
| 26 | |
---|
| 27 | #define USE_INTERNAL_APPLY_IMPULSE 1 |
---|
| 28 | |
---|
| 29 | |
---|
| 30 | //bilateral constraint between two dynamic objects |
---|
| 31 | void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1, |
---|
| 32 | btRigidBody& body2, const btVector3& pos2, |
---|
| 33 | btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep) |
---|
| 34 | { |
---|
| 35 | (void)timeStep; |
---|
| 36 | (void)distance; |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | btScalar normalLenSqr = normal.length2(); |
---|
| 40 | ASSERT2(btFabs(normalLenSqr) < btScalar(1.1)); |
---|
| 41 | if (normalLenSqr > btScalar(1.1)) |
---|
| 42 | { |
---|
| 43 | impulse = btScalar(0.); |
---|
| 44 | return; |
---|
| 45 | } |
---|
| 46 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); |
---|
| 47 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); |
---|
| 48 | //this jacobian entry could be re-used for all iterations |
---|
| 49 | |
---|
| 50 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 51 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 52 | btVector3 vel = vel1 - vel2; |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 56 | body2.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 57 | rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(), |
---|
| 58 | body2.getInvInertiaDiagLocal(),body2.getInvMass()); |
---|
| 59 | |
---|
| 60 | btScalar jacDiagAB = jac.getDiagonal(); |
---|
| 61 | btScalar jacDiagABInv = btScalar(1.) / jacDiagAB; |
---|
| 62 | |
---|
| 63 | btScalar rel_vel = jac.getRelativeVelocity( |
---|
| 64 | body1.getLinearVelocity(), |
---|
| 65 | body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(), |
---|
| 66 | body2.getLinearVelocity(), |
---|
| 67 | body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); |
---|
| 68 | btScalar a; |
---|
| 69 | a=jacDiagABInv; |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | rel_vel = normal.dot(vel); |
---|
| 73 | |
---|
| 74 | //todo: move this into proper structure |
---|
| 75 | btScalar contactDamping = btScalar(0.2); |
---|
| 76 | |
---|
| 77 | #ifdef ONLY_USE_LINEAR_MASS |
---|
| 78 | btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass()); |
---|
| 79 | impulse = - contactDamping * rel_vel * massTerm; |
---|
| 80 | #else |
---|
| 81 | btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv; |
---|
| 82 | impulse = velocityImpulse; |
---|
| 83 | #endif |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | //response between two dynamic objects with friction |
---|
| 89 | btScalar resolveSingleCollision( |
---|
| 90 | btRigidBody& body1, |
---|
| 91 | btRigidBody& body2, |
---|
| 92 | btManifoldPoint& contactPoint, |
---|
| 93 | const btContactSolverInfo& solverInfo) |
---|
| 94 | { |
---|
| 95 | |
---|
| 96 | const btVector3& pos1_ = contactPoint.getPositionWorldOnA(); |
---|
| 97 | const btVector3& pos2_ = contactPoint.getPositionWorldOnB(); |
---|
| 98 | const btVector3& normal = contactPoint.m_normalWorldOnB; |
---|
| 99 | |
---|
| 100 | //constant over all iterations |
---|
| 101 | btVector3 rel_pos1 = pos1_ - body1.getCenterOfMassPosition(); |
---|
| 102 | btVector3 rel_pos2 = pos2_ - body2.getCenterOfMassPosition(); |
---|
| 103 | |
---|
| 104 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 105 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 106 | btVector3 vel = vel1 - vel2; |
---|
| 107 | btScalar rel_vel; |
---|
| 108 | rel_vel = normal.dot(vel); |
---|
| 109 | |
---|
| 110 | btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; |
---|
| 111 | |
---|
| 112 | // btScalar damping = solverInfo.m_damping ; |
---|
| 113 | btScalar Kerp = solverInfo.m_erp; |
---|
| 114 | btScalar Kcor = Kerp *Kfps; |
---|
| 115 | |
---|
| 116 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; |
---|
| 117 | assert(cpd); |
---|
| 118 | btScalar distance = cpd->m_penetration; |
---|
| 119 | btScalar positionalError = Kcor *-distance; |
---|
| 120 | btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; |
---|
| 121 | |
---|
| 122 | btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; |
---|
| 123 | |
---|
| 124 | btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; |
---|
| 125 | |
---|
| 126 | btScalar normalImpulse = penetrationImpulse+velocityImpulse; |
---|
| 127 | |
---|
| 128 | // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse |
---|
| 129 | btScalar oldNormalImpulse = cpd->m_appliedImpulse; |
---|
| 130 | btScalar sum = oldNormalImpulse + normalImpulse; |
---|
| 131 | cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; |
---|
| 132 | |
---|
| 133 | normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; |
---|
| 134 | |
---|
| 135 | #ifdef USE_INTERNAL_APPLY_IMPULSE |
---|
| 136 | if (body1.getInvMass()) |
---|
| 137 | { |
---|
| 138 | body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); |
---|
| 139 | } |
---|
| 140 | if (body2.getInvMass()) |
---|
| 141 | { |
---|
| 142 | body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); |
---|
| 143 | } |
---|
| 144 | #else //USE_INTERNAL_APPLY_IMPULSE |
---|
| 145 | body1.applyImpulse(normal*(normalImpulse), rel_pos1); |
---|
| 146 | body2.applyImpulse(-normal*(normalImpulse), rel_pos2); |
---|
| 147 | #endif //USE_INTERNAL_APPLY_IMPULSE |
---|
| 148 | |
---|
| 149 | return normalImpulse; |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | btScalar resolveSingleFriction( |
---|
| 154 | btRigidBody& body1, |
---|
| 155 | btRigidBody& body2, |
---|
| 156 | btManifoldPoint& contactPoint, |
---|
| 157 | const btContactSolverInfo& solverInfo) |
---|
| 158 | { |
---|
| 159 | |
---|
| 160 | (void)solverInfo; |
---|
| 161 | |
---|
| 162 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); |
---|
| 163 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); |
---|
| 164 | |
---|
| 165 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); |
---|
| 166 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); |
---|
| 167 | |
---|
| 168 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; |
---|
| 169 | assert(cpd); |
---|
| 170 | |
---|
| 171 | btScalar combinedFriction = cpd->m_friction; |
---|
| 172 | |
---|
| 173 | btScalar limit = cpd->m_appliedImpulse * combinedFriction; |
---|
| 174 | |
---|
| 175 | if (cpd->m_appliedImpulse>btScalar(0.)) |
---|
| 176 | //friction |
---|
| 177 | { |
---|
| 178 | //apply friction in the 2 tangential directions |
---|
| 179 | |
---|
| 180 | // 1st tangent |
---|
| 181 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 182 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 183 | btVector3 vel = vel1 - vel2; |
---|
| 184 | |
---|
| 185 | btScalar j1,j2; |
---|
| 186 | |
---|
| 187 | { |
---|
| 188 | |
---|
| 189 | btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); |
---|
| 190 | |
---|
| 191 | // calculate j that moves us to zero relative velocity |
---|
| 192 | j1 = -vrel * cpd->m_jacDiagABInvTangent0; |
---|
| 193 | btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse0; |
---|
| 194 | cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1; |
---|
| 195 | btSetMin(cpd->m_accumulatedTangentImpulse0, limit); |
---|
| 196 | btSetMax(cpd->m_accumulatedTangentImpulse0, -limit); |
---|
| 197 | j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse; |
---|
| 198 | |
---|
| 199 | } |
---|
| 200 | { |
---|
| 201 | // 2nd tangent |
---|
| 202 | |
---|
| 203 | btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); |
---|
| 204 | |
---|
| 205 | // calculate j that moves us to zero relative velocity |
---|
| 206 | j2 = -vrel * cpd->m_jacDiagABInvTangent1; |
---|
| 207 | btScalar oldTangentImpulse = cpd->m_accumulatedTangentImpulse1; |
---|
| 208 | cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2; |
---|
| 209 | btSetMin(cpd->m_accumulatedTangentImpulse1, limit); |
---|
| 210 | btSetMax(cpd->m_accumulatedTangentImpulse1, -limit); |
---|
| 211 | j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse; |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | #ifdef USE_INTERNAL_APPLY_IMPULSE |
---|
| 215 | if (body1.getInvMass()) |
---|
| 216 | { |
---|
| 217 | body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1); |
---|
| 218 | body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2); |
---|
| 219 | } |
---|
| 220 | if (body2.getInvMass()) |
---|
| 221 | { |
---|
| 222 | body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1); |
---|
| 223 | body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2); |
---|
| 224 | } |
---|
| 225 | #else //USE_INTERNAL_APPLY_IMPULSE |
---|
| 226 | body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1); |
---|
| 227 | body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2); |
---|
| 228 | #endif //USE_INTERNAL_APPLY_IMPULSE |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | } |
---|
| 232 | return cpd->m_appliedImpulse; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | btScalar resolveSingleFrictionOriginal( |
---|
| 237 | btRigidBody& body1, |
---|
| 238 | btRigidBody& body2, |
---|
| 239 | btManifoldPoint& contactPoint, |
---|
| 240 | const btContactSolverInfo& solverInfo); |
---|
| 241 | |
---|
| 242 | btScalar resolveSingleFrictionOriginal( |
---|
| 243 | btRigidBody& body1, |
---|
| 244 | btRigidBody& body2, |
---|
| 245 | btManifoldPoint& contactPoint, |
---|
| 246 | const btContactSolverInfo& solverInfo) |
---|
| 247 | { |
---|
| 248 | |
---|
| 249 | (void)solverInfo; |
---|
| 250 | |
---|
| 251 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); |
---|
| 252 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); |
---|
| 253 | |
---|
| 254 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); |
---|
| 255 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); |
---|
| 256 | |
---|
| 257 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; |
---|
| 258 | assert(cpd); |
---|
| 259 | |
---|
| 260 | btScalar combinedFriction = cpd->m_friction; |
---|
| 261 | |
---|
| 262 | btScalar limit = cpd->m_appliedImpulse * combinedFriction; |
---|
| 263 | //if (contactPoint.m_appliedImpulse>btScalar(0.)) |
---|
| 264 | //friction |
---|
| 265 | { |
---|
| 266 | //apply friction in the 2 tangential directions |
---|
| 267 | |
---|
| 268 | { |
---|
| 269 | // 1st tangent |
---|
| 270 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 271 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 272 | btVector3 vel = vel1 - vel2; |
---|
| 273 | |
---|
| 274 | btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel); |
---|
| 275 | |
---|
| 276 | // calculate j that moves us to zero relative velocity |
---|
| 277 | btScalar j = -vrel * cpd->m_jacDiagABInvTangent0; |
---|
| 278 | btScalar total = cpd->m_accumulatedTangentImpulse0 + j; |
---|
| 279 | btSetMin(total, limit); |
---|
| 280 | btSetMax(total, -limit); |
---|
| 281 | j = total - cpd->m_accumulatedTangentImpulse0; |
---|
| 282 | cpd->m_accumulatedTangentImpulse0 = total; |
---|
| 283 | body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1); |
---|
| 284 | body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2); |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | |
---|
| 288 | { |
---|
| 289 | // 2nd tangent |
---|
| 290 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 291 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 292 | btVector3 vel = vel1 - vel2; |
---|
| 293 | |
---|
| 294 | btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel); |
---|
| 295 | |
---|
| 296 | // calculate j that moves us to zero relative velocity |
---|
| 297 | btScalar j = -vrel * cpd->m_jacDiagABInvTangent1; |
---|
| 298 | btScalar total = cpd->m_accumulatedTangentImpulse1 + j; |
---|
| 299 | btSetMin(total, limit); |
---|
| 300 | btSetMax(total, -limit); |
---|
| 301 | j = total - cpd->m_accumulatedTangentImpulse1; |
---|
| 302 | cpd->m_accumulatedTangentImpulse1 = total; |
---|
| 303 | body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1); |
---|
| 304 | body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2); |
---|
| 305 | } |
---|
| 306 | } |
---|
| 307 | return cpd->m_appliedImpulse; |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | |
---|
| 311 | //velocity + friction |
---|
| 312 | //response between two dynamic objects with friction |
---|
| 313 | btScalar resolveSingleCollisionCombined( |
---|
| 314 | btRigidBody& body1, |
---|
| 315 | btRigidBody& body2, |
---|
| 316 | btManifoldPoint& contactPoint, |
---|
| 317 | const btContactSolverInfo& solverInfo) |
---|
| 318 | { |
---|
| 319 | |
---|
| 320 | const btVector3& pos1 = contactPoint.getPositionWorldOnA(); |
---|
| 321 | const btVector3& pos2 = contactPoint.getPositionWorldOnB(); |
---|
| 322 | const btVector3& normal = contactPoint.m_normalWorldOnB; |
---|
| 323 | |
---|
| 324 | btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); |
---|
| 325 | btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition(); |
---|
| 326 | |
---|
| 327 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 328 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 329 | btVector3 vel = vel1 - vel2; |
---|
| 330 | btScalar rel_vel; |
---|
| 331 | rel_vel = normal.dot(vel); |
---|
| 332 | |
---|
| 333 | btScalar Kfps = btScalar(1.) / solverInfo.m_timeStep ; |
---|
| 334 | |
---|
| 335 | //btScalar damping = solverInfo.m_damping ; |
---|
| 336 | btScalar Kerp = solverInfo.m_erp; |
---|
| 337 | btScalar Kcor = Kerp *Kfps; |
---|
| 338 | |
---|
| 339 | btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData; |
---|
| 340 | assert(cpd); |
---|
| 341 | btScalar distance = cpd->m_penetration; |
---|
| 342 | btScalar positionalError = Kcor *-distance; |
---|
| 343 | btScalar velocityError = cpd->m_restitution - rel_vel;// * damping; |
---|
| 344 | |
---|
| 345 | btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv; |
---|
| 346 | |
---|
| 347 | btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv; |
---|
| 348 | |
---|
| 349 | btScalar normalImpulse = penetrationImpulse+velocityImpulse; |
---|
| 350 | |
---|
| 351 | // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse |
---|
| 352 | btScalar oldNormalImpulse = cpd->m_appliedImpulse; |
---|
| 353 | btScalar sum = oldNormalImpulse + normalImpulse; |
---|
| 354 | cpd->m_appliedImpulse = btScalar(0.) > sum ? btScalar(0.): sum; |
---|
| 355 | |
---|
| 356 | normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse; |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | #ifdef USE_INTERNAL_APPLY_IMPULSE |
---|
| 360 | if (body1.getInvMass()) |
---|
| 361 | { |
---|
| 362 | body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse); |
---|
| 363 | } |
---|
| 364 | if (body2.getInvMass()) |
---|
| 365 | { |
---|
| 366 | body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse); |
---|
| 367 | } |
---|
| 368 | #else //USE_INTERNAL_APPLY_IMPULSE |
---|
| 369 | body1.applyImpulse(normal*(normalImpulse), rel_pos1); |
---|
| 370 | body2.applyImpulse(-normal*(normalImpulse), rel_pos2); |
---|
| 371 | #endif //USE_INTERNAL_APPLY_IMPULSE |
---|
| 372 | |
---|
| 373 | { |
---|
| 374 | //friction |
---|
| 375 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 376 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 377 | btVector3 vel = vel1 - vel2; |
---|
| 378 | |
---|
| 379 | rel_vel = normal.dot(vel); |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | btVector3 lat_vel = vel - normal * rel_vel; |
---|
| 383 | btScalar lat_rel_vel = lat_vel.length(); |
---|
| 384 | |
---|
| 385 | btScalar combinedFriction = cpd->m_friction; |
---|
| 386 | |
---|
| 387 | if (cpd->m_appliedImpulse > 0) |
---|
| 388 | if (lat_rel_vel > SIMD_EPSILON) |
---|
| 389 | { |
---|
| 390 | lat_vel /= lat_rel_vel; |
---|
| 391 | btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel); |
---|
| 392 | btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel); |
---|
| 393 | btScalar friction_impulse = lat_rel_vel / |
---|
| 394 | (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2))); |
---|
| 395 | btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction; |
---|
| 396 | |
---|
| 397 | btSetMin(friction_impulse, normal_impulse); |
---|
| 398 | btSetMax(friction_impulse, -normal_impulse); |
---|
| 399 | body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1); |
---|
| 400 | body2.applyImpulse(lat_vel * friction_impulse, rel_pos2); |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | return normalImpulse; |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | btScalar resolveSingleFrictionEmpty( |
---|
| 410 | btRigidBody& body1, |
---|
| 411 | btRigidBody& body2, |
---|
| 412 | btManifoldPoint& contactPoint, |
---|
| 413 | const btContactSolverInfo& solverInfo); |
---|
| 414 | |
---|
| 415 | btScalar resolveSingleFrictionEmpty( |
---|
| 416 | btRigidBody& body1, |
---|
| 417 | btRigidBody& body2, |
---|
| 418 | btManifoldPoint& contactPoint, |
---|
| 419 | const btContactSolverInfo& solverInfo) |
---|
| 420 | { |
---|
| 421 | (void)contactPoint; |
---|
| 422 | (void)body1; |
---|
| 423 | (void)body2; |
---|
| 424 | (void)solverInfo; |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | return btScalar(0.); |
---|
| 428 | }; |
---|
| 429 | |
---|