[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | /* |
---|
| 16 | 2007-09-09 |
---|
| 17 | Refactored by Francisco Le?n |
---|
| 18 | email: projectileman@yahoo.com |
---|
| 19 | http://gimpact.sf.net |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #include "btGeneric6DofConstraint.h" |
---|
| 24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 25 | #include "LinearMath/btTransformUtil.h" |
---|
| 26 | #include <new> |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) }; |
---|
| 30 | static const int kAxisA[] = { 1, 0, 0 }; |
---|
| 31 | static const int kAxisB[] = { 2, 2, 1 }; |
---|
| 32 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 |
---|
| 33 | |
---|
| 34 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); |
---|
| 35 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) |
---|
| 36 | { |
---|
| 37 | int i = index%3; |
---|
| 38 | int j = index/3; |
---|
| 39 | return mat[i][j]; |
---|
| 40 | } |
---|
| 41 | |
---|
| 42 | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html |
---|
| 43 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); |
---|
| 44 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) |
---|
| 45 | { |
---|
| 46 | // // rot = cy*cz -cy*sz sy |
---|
| 47 | // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
---|
| 48 | // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
---|
| 49 | // |
---|
| 50 | |
---|
| 51 | if (btGetMatrixElem(mat,2) < btScalar(1.0)) |
---|
| 52 | { |
---|
| 53 | if (btGetMatrixElem(mat,2) > btScalar(-1.0)) |
---|
| 54 | { |
---|
| 55 | xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); |
---|
| 56 | xyz[1] = btAsin(btGetMatrixElem(mat,2)); |
---|
| 57 | xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); |
---|
| 58 | return true; |
---|
| 59 | } |
---|
| 60 | else |
---|
| 61 | { |
---|
| 62 | // WARNING. Not unique. XA - ZA = -atan2(r10,r11) |
---|
| 63 | xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
| 64 | xyz[1] = -SIMD_HALF_PI; |
---|
| 65 | xyz[2] = btScalar(0.0); |
---|
| 66 | return false; |
---|
| 67 | } |
---|
| 68 | } |
---|
| 69 | else |
---|
| 70 | { |
---|
| 71 | // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) |
---|
| 72 | xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
| 73 | xyz[1] = SIMD_HALF_PI; |
---|
| 74 | xyz[2] = 0.0; |
---|
| 75 | |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | return false; |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | //////////////////////////// btRotationalLimitMotor //////////////////////////////////// |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | int btRotationalLimitMotor::testLimitValue(btScalar test_value) |
---|
| 88 | { |
---|
| 89 | if(m_loLimit>m_hiLimit) |
---|
| 90 | { |
---|
| 91 | m_currentLimit = 0;//Free from violation |
---|
| 92 | return 0; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | if (test_value < m_loLimit) |
---|
| 96 | { |
---|
| 97 | m_currentLimit = 1;//low limit violation |
---|
| 98 | m_currentLimitError = test_value - m_loLimit; |
---|
| 99 | return 1; |
---|
| 100 | } |
---|
| 101 | else if (test_value> m_hiLimit) |
---|
| 102 | { |
---|
| 103 | m_currentLimit = 2;//High limit violation |
---|
| 104 | m_currentLimitError = test_value - m_hiLimit; |
---|
| 105 | return 2; |
---|
| 106 | }; |
---|
| 107 | |
---|
| 108 | m_currentLimit = 0;//Free from violation |
---|
| 109 | return 0; |
---|
| 110 | |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | btScalar btRotationalLimitMotor::solveAngularLimits( |
---|
| 115 | btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, |
---|
| 116 | btRigidBody * body0, btRigidBody * body1) |
---|
| 117 | { |
---|
| 118 | if (needApplyTorques()==false) return 0.0f; |
---|
| 119 | |
---|
| 120 | btScalar target_velocity = m_targetVelocity; |
---|
| 121 | btScalar maxMotorForce = m_maxMotorForce; |
---|
| 122 | |
---|
| 123 | //current error correction |
---|
| 124 | if (m_currentLimit!=0) |
---|
| 125 | { |
---|
| 126 | target_velocity = -m_ERP*m_currentLimitError/(timeStep); |
---|
| 127 | maxMotorForce = m_maxLimitForce; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | maxMotorForce *= timeStep; |
---|
| 131 | |
---|
| 132 | // current velocity difference |
---|
| 133 | btVector3 vel_diff = body0->getAngularVelocity(); |
---|
| 134 | if (body1) |
---|
| 135 | { |
---|
| 136 | vel_diff -= body1->getAngularVelocity(); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | btScalar rel_vel = axis.dot(vel_diff); |
---|
| 142 | |
---|
| 143 | // correction velocity |
---|
| 144 | btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel); |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON ) |
---|
| 148 | { |
---|
| 149 | return 0.0f;//no need for applying force |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | // correction impulse |
---|
| 154 | btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; |
---|
| 155 | |
---|
| 156 | // clip correction impulse |
---|
| 157 | btScalar clippedMotorImpulse; |
---|
| 158 | |
---|
| 159 | //todo: should clip against accumulated impulse |
---|
| 160 | if (unclippedMotorImpulse>0.0f) |
---|
| 161 | { |
---|
| 162 | clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; |
---|
| 163 | } |
---|
| 164 | else |
---|
| 165 | { |
---|
| 166 | clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | // sort with accumulated impulses |
---|
| 171 | btScalar lo = btScalar(-1e30); |
---|
| 172 | btScalar hi = btScalar(1e30); |
---|
| 173 | |
---|
| 174 | btScalar oldaccumImpulse = m_accumulatedImpulse; |
---|
| 175 | btScalar sum = oldaccumImpulse + clippedMotorImpulse; |
---|
| 176 | m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
| 177 | |
---|
| 178 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | btVector3 motorImp = clippedMotorImpulse * axis; |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | body0->applyTorqueImpulse(motorImp); |
---|
| 186 | if (body1) body1->applyTorqueImpulse(-motorImp); |
---|
| 187 | |
---|
| 188 | return clippedMotorImpulse; |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// |
---|
| 194 | |
---|
| 195 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
| 196 | btScalar btTranslationalLimitMotor::solveLinearAxis( |
---|
| 197 | btScalar timeStep, |
---|
| 198 | btScalar jacDiagABInv, |
---|
| 199 | btRigidBody& body1,const btVector3 &pointInA, |
---|
| 200 | btRigidBody& body2,const btVector3 &pointInB, |
---|
| 201 | int limit_index, |
---|
| 202 | const btVector3 & axis_normal_on_a, |
---|
| 203 | const btVector3 & anchorPos) |
---|
| 204 | { |
---|
| 205 | |
---|
| 206 | ///find relative velocity |
---|
| 207 | // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); |
---|
| 208 | // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); |
---|
| 209 | btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); |
---|
| 210 | btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); |
---|
| 211 | |
---|
| 212 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
| 213 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
| 214 | btVector3 vel = vel1 - vel2; |
---|
| 215 | |
---|
| 216 | btScalar rel_vel = axis_normal_on_a.dot(vel); |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | /// apply displacement correction |
---|
| 221 | |
---|
| 222 | //positional error (zeroth order error) |
---|
| 223 | btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); |
---|
| 224 | btScalar lo = btScalar(-1e30); |
---|
| 225 | btScalar hi = btScalar(1e30); |
---|
| 226 | |
---|
| 227 | btScalar minLimit = m_lowerLimit[limit_index]; |
---|
| 228 | btScalar maxLimit = m_upperLimit[limit_index]; |
---|
| 229 | |
---|
| 230 | //handle the limits |
---|
| 231 | if (minLimit < maxLimit) |
---|
| 232 | { |
---|
| 233 | { |
---|
| 234 | if (depth > maxLimit) |
---|
| 235 | { |
---|
| 236 | depth -= maxLimit; |
---|
| 237 | lo = btScalar(0.); |
---|
| 238 | |
---|
| 239 | } |
---|
| 240 | else |
---|
| 241 | { |
---|
| 242 | if (depth < minLimit) |
---|
| 243 | { |
---|
| 244 | depth -= minLimit; |
---|
| 245 | hi = btScalar(0.); |
---|
| 246 | } |
---|
| 247 | else |
---|
| 248 | { |
---|
| 249 | return 0.0f; |
---|
| 250 | } |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; |
---|
| 261 | btScalar sum = oldNormalImpulse + normalImpulse; |
---|
| 262 | m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
| 263 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; |
---|
| 264 | |
---|
| 265 | btVector3 impulse_vector = axis_normal_on_a * normalImpulse; |
---|
| 266 | body1.applyImpulse( impulse_vector, rel_pos1); |
---|
| 267 | body2.applyImpulse(-impulse_vector, rel_pos2); |
---|
| 268 | return normalImpulse; |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | btGeneric6DofConstraint::btGeneric6DofConstraint() |
---|
| 275 | :btTypedConstraint(D6_CONSTRAINT_TYPE), |
---|
| 276 | m_useLinearReferenceFrameA(true) |
---|
| 277 | { |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
| 281 | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) |
---|
| 282 | , m_frameInA(frameInA) |
---|
| 283 | , m_frameInB(frameInB), |
---|
| 284 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
| 285 | { |
---|
| 286 | |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | void btGeneric6DofConstraint::calculateAngleInfo() |
---|
| 294 | { |
---|
| 295 | btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); |
---|
| 296 | |
---|
| 297 | matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | // in euler angle mode we do not actually constrain the angular velocity |
---|
| 302 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : |
---|
| 303 | // |
---|
| 304 | // to get constrain w2-w1 along ...not |
---|
| 305 | // ------ --------------------- ------ |
---|
| 306 | // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] |
---|
| 307 | // d(angle[1])/dt = 0 ax[1] |
---|
| 308 | // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] |
---|
| 309 | // |
---|
| 310 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. |
---|
| 311 | // to prove the result for angle[0], write the expression for angle[0] from |
---|
| 312 | // GetInfo1 then take the derivative. to prove this for angle[2] it is |
---|
| 313 | // easier to take the euler rate expression for d(angle[2])/dt with respect |
---|
| 314 | // to the components of w and set that to 0. |
---|
| 315 | |
---|
| 316 | btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); |
---|
| 317 | btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
| 318 | |
---|
| 319 | m_calculatedAxis[1] = axis2.cross(axis0); |
---|
| 320 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); |
---|
| 321 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | // if(m_debugDrawer) |
---|
| 325 | // { |
---|
| 326 | // |
---|
| 327 | // char buff[300]; |
---|
| 328 | // sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", |
---|
| 329 | // m_calculatedAxisAngleDiff[0], |
---|
| 330 | // m_calculatedAxisAngleDiff[1], |
---|
| 331 | // m_calculatedAxisAngleDiff[2]); |
---|
| 332 | // m_debugDrawer->reportErrorWarning(buff); |
---|
| 333 | // } |
---|
| 334 | |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | void btGeneric6DofConstraint::calculateTransforms() |
---|
| 338 | { |
---|
| 339 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
| 340 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 341 | |
---|
| 342 | calculateAngleInfo(); |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | void btGeneric6DofConstraint::buildLinearJacobian( |
---|
| 347 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, |
---|
| 348 | const btVector3 & pivotAInW,const btVector3 & pivotBInW) |
---|
| 349 | { |
---|
| 350 | new (&jacLinear) btJacobianEntry( |
---|
| 351 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 352 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 353 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
| 354 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
| 355 | normalWorld, |
---|
| 356 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 357 | m_rbA.getInvMass(), |
---|
| 358 | m_rbB.getInvInertiaDiagLocal(), |
---|
| 359 | m_rbB.getInvMass()); |
---|
| 360 | |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | void btGeneric6DofConstraint::buildAngularJacobian( |
---|
| 364 | btJacobianEntry & jacAngular,const btVector3 & jointAxisW) |
---|
| 365 | { |
---|
| 366 | new (&jacAngular) btJacobianEntry(jointAxisW, |
---|
| 367 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 368 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 369 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 370 | m_rbB.getInvInertiaDiagLocal()); |
---|
| 371 | |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) |
---|
| 375 | { |
---|
| 376 | btScalar angle = m_calculatedAxisAngleDiff[axis_index]; |
---|
| 377 | |
---|
| 378 | //test limits |
---|
| 379 | m_angularLimits[axis_index].testLimitValue(angle); |
---|
| 380 | return m_angularLimits[axis_index].needApplyTorques(); |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | void btGeneric6DofConstraint::buildJacobian() |
---|
| 384 | { |
---|
| 385 | |
---|
| 386 | // Clear accumulated impulses for the next simulation step |
---|
| 387 | m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); |
---|
| 388 | int i; |
---|
| 389 | for(i = 0; i < 3; i++) |
---|
| 390 | { |
---|
| 391 | m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); |
---|
| 392 | } |
---|
| 393 | //calculates transform |
---|
| 394 | calculateTransforms(); |
---|
| 395 | |
---|
| 396 | // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 397 | // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 398 | calcAnchorPos(); |
---|
| 399 | btVector3 pivotAInW = m_AnchorPos; |
---|
| 400 | btVector3 pivotBInW = m_AnchorPos; |
---|
| 401 | |
---|
| 402 | // not used here |
---|
| 403 | // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
| 404 | // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
| 405 | |
---|
| 406 | btVector3 normalWorld; |
---|
| 407 | //linear part |
---|
| 408 | for (i=0;i<3;i++) |
---|
| 409 | { |
---|
| 410 | if (m_linearLimits.isLimited(i)) |
---|
| 411 | { |
---|
| 412 | if (m_useLinearReferenceFrameA) |
---|
| 413 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 414 | else |
---|
| 415 | normalWorld = m_calculatedTransformB.getBasis().getColumn(i); |
---|
| 416 | |
---|
| 417 | buildLinearJacobian( |
---|
| 418 | m_jacLinear[i],normalWorld , |
---|
| 419 | pivotAInW,pivotBInW); |
---|
| 420 | |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | // angular part |
---|
| 425 | for (i=0;i<3;i++) |
---|
| 426 | { |
---|
| 427 | //calculates error angle |
---|
| 428 | if (testAngularLimitMotor(i)) |
---|
| 429 | { |
---|
| 430 | normalWorld = this->getAxis(i); |
---|
| 431 | // Create angular atom |
---|
| 432 | buildAngularJacobian(m_jacAng[i],normalWorld); |
---|
| 433 | } |
---|
| 434 | } |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | } |
---|
| 438 | |
---|
| 439 | |
---|
| 440 | void btGeneric6DofConstraint::solveConstraint(btScalar timeStep) |
---|
| 441 | { |
---|
| 442 | m_timeStep = timeStep; |
---|
| 443 | |
---|
| 444 | //calculateTransforms(); |
---|
| 445 | |
---|
| 446 | int i; |
---|
| 447 | |
---|
| 448 | // linear |
---|
| 449 | |
---|
| 450 | btVector3 pointInA = m_calculatedTransformA.getOrigin(); |
---|
| 451 | btVector3 pointInB = m_calculatedTransformB.getOrigin(); |
---|
| 452 | |
---|
| 453 | btScalar jacDiagABInv; |
---|
| 454 | btVector3 linear_axis; |
---|
| 455 | for (i=0;i<3;i++) |
---|
| 456 | { |
---|
| 457 | if (m_linearLimits.isLimited(i)) |
---|
| 458 | { |
---|
| 459 | jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); |
---|
| 460 | |
---|
| 461 | if (m_useLinearReferenceFrameA) |
---|
| 462 | linear_axis = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 463 | else |
---|
| 464 | linear_axis = m_calculatedTransformB.getBasis().getColumn(i); |
---|
| 465 | |
---|
| 466 | m_linearLimits.solveLinearAxis( |
---|
| 467 | m_timeStep, |
---|
| 468 | jacDiagABInv, |
---|
| 469 | m_rbA,pointInA, |
---|
| 470 | m_rbB,pointInB, |
---|
| 471 | i,linear_axis, m_AnchorPos); |
---|
| 472 | |
---|
| 473 | } |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | // angular |
---|
| 477 | btVector3 angular_axis; |
---|
| 478 | btScalar angularJacDiagABInv; |
---|
| 479 | for (i=0;i<3;i++) |
---|
| 480 | { |
---|
| 481 | if (m_angularLimits[i].needApplyTorques()) |
---|
| 482 | { |
---|
| 483 | |
---|
| 484 | // get axis |
---|
| 485 | angular_axis = getAxis(i); |
---|
| 486 | |
---|
| 487 | angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); |
---|
| 488 | |
---|
| 489 | m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,&m_rbB); |
---|
| 490 | } |
---|
| 491 | } |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | void btGeneric6DofConstraint::updateRHS(btScalar timeStep) |
---|
| 495 | { |
---|
| 496 | (void)timeStep; |
---|
| 497 | |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const |
---|
| 501 | { |
---|
| 502 | return m_calculatedAxis[axis_index]; |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | btScalar btGeneric6DofConstraint::getAngle(int axis_index) const |
---|
| 506 | { |
---|
| 507 | return m_calculatedAxisAngleDiff[axis_index]; |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | void btGeneric6DofConstraint::calcAnchorPos(void) |
---|
| 511 | { |
---|
| 512 | btScalar imA = m_rbA.getInvMass(); |
---|
| 513 | btScalar imB = m_rbB.getInvMass(); |
---|
| 514 | btScalar weight; |
---|
| 515 | if(imB == btScalar(0.0)) |
---|
| 516 | { |
---|
| 517 | weight = btScalar(1.0); |
---|
| 518 | } |
---|
| 519 | else |
---|
| 520 | { |
---|
| 521 | weight = imA / (imA + imB); |
---|
| 522 | } |
---|
| 523 | const btVector3& pA = m_calculatedTransformA.getOrigin(); |
---|
| 524 | const btVector3& pB = m_calculatedTransformB.getOrigin(); |
---|
| 525 | m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); |
---|
| 526 | return; |
---|
| 527 | } // btGeneric6DofConstraint::calcAnchorPos() |
---|
| 528 | |
---|