[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #include "btHingeConstraint.h" |
---|
| 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 19 | #include "LinearMath/btTransformUtil.h" |
---|
| 20 | #include "LinearMath/btMinMax.h" |
---|
| 21 | #include <new> |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | btHingeConstraint::btHingeConstraint() |
---|
| 25 | : btTypedConstraint (HINGE_CONSTRAINT_TYPE), |
---|
| 26 | m_enableAngularMotor(false) |
---|
| 27 | { |
---|
| 28 | } |
---|
| 29 | |
---|
| 30 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, |
---|
| 31 | btVector3& axisInA,btVector3& axisInB) |
---|
| 32 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), |
---|
| 33 | m_angularOnly(false), |
---|
| 34 | m_enableAngularMotor(false) |
---|
| 35 | { |
---|
| 36 | m_rbAFrame.getOrigin() = pivotInA; |
---|
| 37 | |
---|
| 38 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
| 39 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); |
---|
| 40 | |
---|
| 41 | btVector3 rbAxisA2; |
---|
| 42 | btScalar projection = axisInA.dot(rbAxisA1); |
---|
| 43 | if (projection >= 1.0f - SIMD_EPSILON) { |
---|
| 44 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
| 45 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
| 46 | } else if (projection <= -1.0f + SIMD_EPSILON) { |
---|
| 47 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
| 48 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
| 49 | } else { |
---|
| 50 | rbAxisA2 = axisInA.cross(rbAxisA1); |
---|
| 51 | rbAxisA1 = rbAxisA2.cross(axisInA); |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
| 55 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
| 56 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
| 57 | |
---|
| 58 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
| 59 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
| 60 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
| 61 | |
---|
| 62 | m_rbBFrame.getOrigin() = pivotInB; |
---|
| 63 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(), |
---|
| 64 | rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(), |
---|
| 65 | rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() ); |
---|
| 66 | |
---|
| 67 | //start with free |
---|
| 68 | m_lowerLimit = btScalar(1e30); |
---|
| 69 | m_upperLimit = btScalar(-1e30); |
---|
| 70 | m_biasFactor = 0.3f; |
---|
| 71 | m_relaxationFactor = 1.0f; |
---|
| 72 | m_limitSoftness = 0.9f; |
---|
| 73 | m_solveLimit = false; |
---|
| 74 | |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA) |
---|
| 80 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false) |
---|
| 81 | { |
---|
| 82 | |
---|
| 83 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
| 84 | // fixed axis in worldspace |
---|
| 85 | btVector3 rbAxisA1, rbAxisA2; |
---|
| 86 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); |
---|
| 87 | |
---|
| 88 | m_rbAFrame.getOrigin() = pivotInA; |
---|
| 89 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
| 90 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
| 91 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
| 92 | |
---|
| 93 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA; |
---|
| 94 | |
---|
| 95 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
| 96 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
| 97 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); |
---|
| 101 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
| 102 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
| 103 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
| 104 | |
---|
| 105 | //start with free |
---|
| 106 | m_lowerLimit = btScalar(1e30); |
---|
| 107 | m_upperLimit = btScalar(-1e30); |
---|
| 108 | m_biasFactor = 0.3f; |
---|
| 109 | m_relaxationFactor = 1.0f; |
---|
| 110 | m_limitSoftness = 0.9f; |
---|
| 111 | m_solveLimit = false; |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, |
---|
| 115 | const btTransform& rbAFrame, const btTransform& rbBFrame) |
---|
| 116 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
---|
| 117 | m_angularOnly(false), |
---|
| 118 | m_enableAngularMotor(false) |
---|
| 119 | { |
---|
| 120 | // flip axis |
---|
| 121 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
---|
| 122 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
---|
| 123 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
---|
| 124 | |
---|
| 125 | //start with free |
---|
| 126 | m_lowerLimit = btScalar(1e30); |
---|
| 127 | m_upperLimit = btScalar(-1e30); |
---|
| 128 | m_biasFactor = 0.3f; |
---|
| 129 | m_relaxationFactor = 1.0f; |
---|
| 130 | m_limitSoftness = 0.9f; |
---|
| 131 | m_solveLimit = false; |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame) |
---|
| 137 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), |
---|
| 138 | m_angularOnly(false), |
---|
| 139 | m_enableAngularMotor(false) |
---|
| 140 | { |
---|
| 141 | ///not providing rigidbody B means implicitly using worldspace for body B |
---|
| 142 | |
---|
| 143 | // flip axis |
---|
| 144 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
---|
| 145 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
---|
| 146 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
---|
| 147 | |
---|
| 148 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); |
---|
| 149 | |
---|
| 150 | //start with free |
---|
| 151 | m_lowerLimit = btScalar(1e30); |
---|
| 152 | m_upperLimit = btScalar(-1e30); |
---|
| 153 | m_biasFactor = 0.3f; |
---|
| 154 | m_relaxationFactor = 1.0f; |
---|
| 155 | m_limitSoftness = 0.9f; |
---|
| 156 | m_solveLimit = false; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | void btHingeConstraint::buildJacobian() |
---|
| 160 | { |
---|
| 161 | m_appliedImpulse = btScalar(0.); |
---|
| 162 | |
---|
| 163 | if (!m_angularOnly) |
---|
| 164 | { |
---|
| 165 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
| 166 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
| 167 | btVector3 relPos = pivotBInW - pivotAInW; |
---|
| 168 | |
---|
| 169 | btVector3 normal[3]; |
---|
| 170 | if (relPos.length2() > SIMD_EPSILON) |
---|
| 171 | { |
---|
| 172 | normal[0] = relPos.normalized(); |
---|
| 173 | } |
---|
| 174 | else |
---|
| 175 | { |
---|
| 176 | normal[0].setValue(btScalar(1.0),0,0); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
---|
| 180 | |
---|
| 181 | for (int i=0;i<3;i++) |
---|
| 182 | { |
---|
| 183 | new (&m_jac[i]) btJacobianEntry( |
---|
| 184 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 185 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 186 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
| 187 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
| 188 | normal[i], |
---|
| 189 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 190 | m_rbA.getInvMass(), |
---|
| 191 | m_rbB.getInvInertiaDiagLocal(), |
---|
| 192 | m_rbB.getInvMass()); |
---|
| 193 | } |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis |
---|
| 197 | //these two jointAxis require equal angular velocities for both bodies |
---|
| 198 | |
---|
| 199 | //this is unused for now, it's a todo |
---|
| 200 | btVector3 jointAxis0local; |
---|
| 201 | btVector3 jointAxis1local; |
---|
| 202 | |
---|
| 203 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); |
---|
| 204 | |
---|
| 205 | getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
| 206 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; |
---|
| 207 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; |
---|
| 208 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
| 209 | |
---|
| 210 | new (&m_jacAng[0]) btJacobianEntry(jointAxis0, |
---|
| 211 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 212 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 213 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 214 | m_rbB.getInvInertiaDiagLocal()); |
---|
| 215 | |
---|
| 216 | new (&m_jacAng[1]) btJacobianEntry(jointAxis1, |
---|
| 217 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 218 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 219 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 220 | m_rbB.getInvInertiaDiagLocal()); |
---|
| 221 | |
---|
| 222 | new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld, |
---|
| 223 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 224 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 225 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 226 | m_rbB.getInvInertiaDiagLocal()); |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | // Compute limit information |
---|
| 230 | btScalar hingeAngle = getHingeAngle(); |
---|
| 231 | |
---|
| 232 | //set bias, sign, clear accumulator |
---|
| 233 | m_correction = btScalar(0.); |
---|
| 234 | m_limitSign = btScalar(0.); |
---|
| 235 | m_solveLimit = false; |
---|
| 236 | m_accLimitImpulse = btScalar(0.); |
---|
| 237 | |
---|
| 238 | // if (m_lowerLimit < m_upperLimit) |
---|
| 239 | if (m_lowerLimit <= m_upperLimit) |
---|
| 240 | { |
---|
| 241 | // if (hingeAngle <= m_lowerLimit*m_limitSoftness) |
---|
| 242 | if (hingeAngle <= m_lowerLimit) |
---|
| 243 | { |
---|
| 244 | m_correction = (m_lowerLimit - hingeAngle); |
---|
| 245 | m_limitSign = 1.0f; |
---|
| 246 | m_solveLimit = true; |
---|
| 247 | } |
---|
| 248 | // else if (hingeAngle >= m_upperLimit*m_limitSoftness) |
---|
| 249 | else if (hingeAngle >= m_upperLimit) |
---|
| 250 | { |
---|
| 251 | m_correction = m_upperLimit - hingeAngle; |
---|
| 252 | m_limitSign = -1.0f; |
---|
| 253 | m_solveLimit = true; |
---|
| 254 | } |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | //Compute K = J*W*J' for hinge axis |
---|
| 258 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
| 259 | m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + |
---|
| 260 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); |
---|
| 261 | |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | void btHingeConstraint::solveConstraint(btScalar timeStep) |
---|
| 265 | { |
---|
| 266 | |
---|
| 267 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
| 268 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
| 269 | |
---|
| 270 | btScalar tau = btScalar(0.3); |
---|
| 271 | |
---|
| 272 | //linear part |
---|
| 273 | if (!m_angularOnly) |
---|
| 274 | { |
---|
| 275 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
| 276 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
| 277 | |
---|
| 278 | btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1); |
---|
| 279 | btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2); |
---|
| 280 | btVector3 vel = vel1 - vel2; |
---|
| 281 | |
---|
| 282 | for (int i=0;i<3;i++) |
---|
| 283 | { |
---|
| 284 | const btVector3& normal = m_jac[i].m_linearJointAxis; |
---|
| 285 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); |
---|
| 286 | |
---|
| 287 | btScalar rel_vel; |
---|
| 288 | rel_vel = normal.dot(vel); |
---|
| 289 | //positional error (zeroth order error) |
---|
| 290 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
---|
| 291 | btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; |
---|
| 292 | m_appliedImpulse += impulse; |
---|
| 293 | btVector3 impulse_vector = normal * impulse; |
---|
| 294 | m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition()); |
---|
| 295 | m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition()); |
---|
| 296 | } |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | { |
---|
| 301 | ///solve angular part |
---|
| 302 | |
---|
| 303 | // get axes in world space |
---|
| 304 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
| 305 | btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2); |
---|
| 306 | |
---|
| 307 | const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); |
---|
| 308 | const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); |
---|
| 309 | |
---|
| 310 | btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); |
---|
| 311 | btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); |
---|
| 312 | |
---|
| 313 | btVector3 angAorthog = angVelA - angVelAroundHingeAxisA; |
---|
| 314 | btVector3 angBorthog = angVelB - angVelAroundHingeAxisB; |
---|
| 315 | btVector3 velrelOrthog = angAorthog-angBorthog; |
---|
| 316 | { |
---|
| 317 | //solve orthogonal angular velocity correction |
---|
| 318 | btScalar relaxation = btScalar(1.); |
---|
| 319 | btScalar len = velrelOrthog.length(); |
---|
| 320 | if (len > btScalar(0.00001)) |
---|
| 321 | { |
---|
| 322 | btVector3 normal = velrelOrthog.normalized(); |
---|
| 323 | btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) + |
---|
| 324 | getRigidBodyB().computeAngularImpulseDenominator(normal); |
---|
| 325 | // scale for mass and relaxation |
---|
| 326 | //todo: expose this 0.9 factor to developer |
---|
| 327 | velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | //solve angular positional correction |
---|
| 331 | btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep); |
---|
| 332 | btScalar len2 = angularError.length(); |
---|
| 333 | if (len2>btScalar(0.00001)) |
---|
| 334 | { |
---|
| 335 | btVector3 normal2 = angularError.normalized(); |
---|
| 336 | btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) + |
---|
| 337 | getRigidBodyB().computeAngularImpulseDenominator(normal2); |
---|
| 338 | angularError *= (btScalar(1.)/denom2) * relaxation; |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | m_rbA.applyTorqueImpulse(-velrelOrthog+angularError); |
---|
| 342 | m_rbB.applyTorqueImpulse(velrelOrthog-angularError); |
---|
| 343 | |
---|
| 344 | // solve limit |
---|
| 345 | if (m_solveLimit) |
---|
| 346 | { |
---|
| 347 | btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign; |
---|
| 348 | |
---|
| 349 | btScalar impulseMag = amplitude * m_kHinge; |
---|
| 350 | |
---|
| 351 | // Clamp the accumulated impulse |
---|
| 352 | btScalar temp = m_accLimitImpulse; |
---|
| 353 | m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) ); |
---|
| 354 | impulseMag = m_accLimitImpulse - temp; |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | btVector3 impulse = axisA * impulseMag * m_limitSign; |
---|
| 358 | m_rbA.applyTorqueImpulse(impulse); |
---|
| 359 | m_rbB.applyTorqueImpulse(-impulse); |
---|
| 360 | } |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | //apply motor |
---|
| 364 | if (m_enableAngularMotor) |
---|
| 365 | { |
---|
| 366 | //todo: add limits too |
---|
| 367 | btVector3 angularLimit(0,0,0); |
---|
| 368 | |
---|
| 369 | btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; |
---|
| 370 | btScalar projRelVel = velrel.dot(axisA); |
---|
| 371 | |
---|
| 372 | btScalar desiredMotorVel = m_motorTargetVelocity; |
---|
| 373 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
---|
| 374 | |
---|
| 375 | btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;; |
---|
| 376 | //todo: should clip against accumulated impulse |
---|
| 377 | btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; |
---|
| 378 | clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; |
---|
| 379 | btVector3 motorImp = clippedMotorImpulse * axisA; |
---|
| 380 | |
---|
| 381 | m_rbA.applyTorqueImpulse(motorImp+angularLimit); |
---|
| 382 | m_rbB.applyTorqueImpulse(-motorImp-angularLimit); |
---|
| 383 | |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | void btHingeConstraint::updateRHS(btScalar timeStep) |
---|
| 390 | { |
---|
| 391 | (void)timeStep; |
---|
| 392 | |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | btScalar btHingeConstraint::getHingeAngle() |
---|
| 396 | { |
---|
| 397 | const btVector3 refAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); |
---|
| 398 | const btVector3 refAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); |
---|
| 399 | const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1); |
---|
| 400 | |
---|
| 401 | return btAtan2Fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) ); |
---|
| 402 | } |
---|
| 403 | |
---|