1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #ifndef AABB_UTIL2 |
---|
18 | #define AABB_UTIL2 |
---|
19 | |
---|
20 | #include "btTransform.h" |
---|
21 | #include "btVector3.h" |
---|
22 | #include "btMinMax.h" |
---|
23 | |
---|
24 | SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin, |
---|
25 | btVector3& aabbMax, |
---|
26 | const btVector3& expansionMin, |
---|
27 | const btVector3& expansionMax) |
---|
28 | { |
---|
29 | aabbMin = aabbMin + expansionMin; |
---|
30 | aabbMax = aabbMax + expansionMax; |
---|
31 | } |
---|
32 | |
---|
33 | |
---|
34 | /// conservative test for overlap between two aabbs |
---|
35 | SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1, |
---|
36 | const btVector3 &aabbMin2, const btVector3 &aabbMax2) |
---|
37 | { |
---|
38 | bool overlap = true; |
---|
39 | overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap; |
---|
40 | overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap; |
---|
41 | overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap; |
---|
42 | return overlap; |
---|
43 | } |
---|
44 | |
---|
45 | /// conservative test for overlap between triangle and aabb |
---|
46 | SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices, |
---|
47 | const btVector3 &aabbMin, const btVector3 &aabbMax) |
---|
48 | { |
---|
49 | const btVector3 &p1 = vertices[0]; |
---|
50 | const btVector3 &p2 = vertices[1]; |
---|
51 | const btVector3 &p3 = vertices[2]; |
---|
52 | |
---|
53 | if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false; |
---|
54 | if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false; |
---|
55 | |
---|
56 | if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false; |
---|
57 | if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false; |
---|
58 | |
---|
59 | if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false; |
---|
60 | if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false; |
---|
61 | return true; |
---|
62 | } |
---|
63 | |
---|
64 | |
---|
65 | SIMD_FORCE_INLINE int btOutcode(const btVector3& p,const btVector3& halfExtent) |
---|
66 | { |
---|
67 | return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) | |
---|
68 | (p.getX() > halfExtent.getX() ? 0x08 : 0x0) | |
---|
69 | (p.getY() < -halfExtent.getY() ? 0x02 : 0x0) | |
---|
70 | (p.getY() > halfExtent.getY() ? 0x10 : 0x0) | |
---|
71 | (p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) | |
---|
72 | (p.getZ() > halfExtent.getZ() ? 0x20 : 0x0); |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom, |
---|
77 | const btVector3& rayInvDirection, |
---|
78 | const unsigned int raySign[3], |
---|
79 | const btVector3 bounds[2], |
---|
80 | btScalar& tmin, |
---|
81 | btScalar lambda_min, |
---|
82 | btScalar lambda_max) |
---|
83 | { |
---|
84 | btScalar tmax, tymin, tymax, tzmin, tzmax; |
---|
85 | tmin = (bounds[raySign[0]][0] - rayFrom[0]) * rayInvDirection[0]; |
---|
86 | tmax = (bounds[1-raySign[0]][0] - rayFrom[0]) * rayInvDirection[0]; |
---|
87 | tymin = (bounds[raySign[1]][1] - rayFrom[1]) * rayInvDirection[1]; |
---|
88 | tymax = (bounds[1-raySign[1]][1] - rayFrom[1]) * rayInvDirection[1]; |
---|
89 | |
---|
90 | if ( (tmin > tymax) || (tymin > tmax) ) |
---|
91 | return false; |
---|
92 | |
---|
93 | if (tymin > tmin) |
---|
94 | tmin = tymin; |
---|
95 | |
---|
96 | if (tymax < tmax) |
---|
97 | tmax = tymax; |
---|
98 | |
---|
99 | tzmin = (bounds[raySign[2]][2] - rayFrom[2]) * rayInvDirection[2]; |
---|
100 | tzmax = (bounds[1-raySign[2]][2] - rayFrom[2]) * rayInvDirection[2]; |
---|
101 | |
---|
102 | if ( (tmin > tzmax) || (tzmin > tmax) ) |
---|
103 | return false; |
---|
104 | if (tzmin > tmin) |
---|
105 | tmin = tzmin; |
---|
106 | if (tzmax < tmax) |
---|
107 | tmax = tzmax; |
---|
108 | return ( (tmin < lambda_max) && (tmax > lambda_min) ); |
---|
109 | } |
---|
110 | |
---|
111 | SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom, |
---|
112 | const btVector3& rayTo, |
---|
113 | const btVector3& aabbMin, |
---|
114 | const btVector3& aabbMax, |
---|
115 | btScalar& param, btVector3& normal) |
---|
116 | { |
---|
117 | btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5); |
---|
118 | btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5); |
---|
119 | btVector3 source = rayFrom - aabbCenter; |
---|
120 | btVector3 target = rayTo - aabbCenter; |
---|
121 | int sourceOutcode = btOutcode(source,aabbHalfExtent); |
---|
122 | int targetOutcode = btOutcode(target,aabbHalfExtent); |
---|
123 | if ((sourceOutcode & targetOutcode) == 0x0) |
---|
124 | { |
---|
125 | btScalar lambda_enter = btScalar(0.0); |
---|
126 | btScalar lambda_exit = param; |
---|
127 | btVector3 r = target - source; |
---|
128 | int i; |
---|
129 | btScalar normSign = 1; |
---|
130 | btVector3 hitNormal(0,0,0); |
---|
131 | int bit=1; |
---|
132 | |
---|
133 | for (int j=0;j<2;j++) |
---|
134 | { |
---|
135 | for (i = 0; i != 3; ++i) |
---|
136 | { |
---|
137 | if (sourceOutcode & bit) |
---|
138 | { |
---|
139 | btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i]; |
---|
140 | if (lambda_enter <= lambda) |
---|
141 | { |
---|
142 | lambda_enter = lambda; |
---|
143 | hitNormal.setValue(0,0,0); |
---|
144 | hitNormal[i] = normSign; |
---|
145 | } |
---|
146 | } |
---|
147 | else if (targetOutcode & bit) |
---|
148 | { |
---|
149 | btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i]; |
---|
150 | btSetMin(lambda_exit, lambda); |
---|
151 | } |
---|
152 | bit<<=1; |
---|
153 | } |
---|
154 | normSign = btScalar(-1.); |
---|
155 | } |
---|
156 | if (lambda_enter <= lambda_exit) |
---|
157 | { |
---|
158 | param = lambda_enter; |
---|
159 | normal = hitNormal; |
---|
160 | return true; |
---|
161 | } |
---|
162 | } |
---|
163 | return false; |
---|
164 | } |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut) |
---|
169 | { |
---|
170 | btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin); |
---|
171 | btMatrix3x3 abs_b = t.getBasis().absolute(); |
---|
172 | btVector3 center = t.getOrigin(); |
---|
173 | btVector3 extent = btVector3(abs_b[0].dot(halfExtentsWithMargin), |
---|
174 | abs_b[1].dot(halfExtentsWithMargin), |
---|
175 | abs_b[2].dot(halfExtentsWithMargin)); |
---|
176 | aabbMinOut = center - extent; |
---|
177 | aabbMaxOut = center + extent; |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut) |
---|
182 | { |
---|
183 | btAssert(localAabbMin.getX() <= localAabbMax.getX()); |
---|
184 | btAssert(localAabbMin.getY() <= localAabbMax.getY()); |
---|
185 | btAssert(localAabbMin.getZ() <= localAabbMax.getZ()); |
---|
186 | btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin); |
---|
187 | localHalfExtents+=btVector3(margin,margin,margin); |
---|
188 | |
---|
189 | btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin); |
---|
190 | btMatrix3x3 abs_b = trans.getBasis().absolute(); |
---|
191 | btVector3 center = trans(localCenter); |
---|
192 | btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents), |
---|
193 | abs_b[1].dot(localHalfExtents), |
---|
194 | abs_b[2].dot(localHalfExtents)); |
---|
195 | aabbMinOut = center-extent; |
---|
196 | aabbMaxOut = center+extent; |
---|
197 | } |
---|
198 | |
---|
199 | |
---|
200 | #endif |
---|
201 | |
---|
202 | |
---|