[1963] | 1 | /* |
---|
| 2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 3 | |
---|
| 4 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 6 | Permission is granted to anyone to use this software for any purpose, |
---|
| 7 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 8 | subject to the following restrictions: |
---|
| 9 | |
---|
| 10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 12 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | #ifndef btMatrix3x3_H |
---|
| 17 | #define btMatrix3x3_H |
---|
| 18 | |
---|
| 19 | #include "btScalar.h" |
---|
| 20 | |
---|
| 21 | #include "btVector3.h" |
---|
| 22 | #include "btQuaternion.h" |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | |
---|
| 26 | ///The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3. |
---|
| 27 | ///Make sure to only include a pure orthogonal matrix without scaling. |
---|
| 28 | class btMatrix3x3 { |
---|
| 29 | public: |
---|
| 30 | btMatrix3x3 () {} |
---|
| 31 | |
---|
| 32 | // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } |
---|
| 33 | |
---|
| 34 | explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } |
---|
| 35 | /* |
---|
| 36 | template <typename btScalar> |
---|
| 37 | Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
| 38 | { |
---|
| 39 | setEulerYPR(yaw, pitch, roll); |
---|
| 40 | } |
---|
| 41 | */ |
---|
| 42 | btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, |
---|
| 43 | const btScalar& yx, const btScalar& yy, const btScalar& yz, |
---|
| 44 | const btScalar& zx, const btScalar& zy, const btScalar& zz) |
---|
| 45 | { |
---|
| 46 | setValue(xx, xy, xz, |
---|
| 47 | yx, yy, yz, |
---|
| 48 | zx, zy, zz); |
---|
| 49 | } |
---|
| 50 | |
---|
| 51 | SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other) |
---|
| 52 | { |
---|
| 53 | m_el[0] = other.m_el[0]; |
---|
| 54 | m_el[1] = other.m_el[1]; |
---|
| 55 | m_el[2] = other.m_el[2]; |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) |
---|
| 59 | { |
---|
| 60 | m_el[0] = other.m_el[0]; |
---|
| 61 | m_el[1] = other.m_el[1]; |
---|
| 62 | m_el[2] = other.m_el[2]; |
---|
| 63 | return *this; |
---|
| 64 | } |
---|
| 65 | |
---|
| 66 | SIMD_FORCE_INLINE btVector3 getColumn(int i) const |
---|
| 67 | { |
---|
| 68 | return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]); |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | SIMD_FORCE_INLINE const btVector3& getRow(int i) const |
---|
| 74 | { |
---|
| 75 | return m_el[i]; |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | SIMD_FORCE_INLINE btVector3& operator[](int i) |
---|
| 80 | { |
---|
| 81 | btFullAssert(0 <= i && i < 3); |
---|
| 82 | return m_el[i]; |
---|
| 83 | } |
---|
| 84 | |
---|
| 85 | SIMD_FORCE_INLINE const btVector3& operator[](int i) const |
---|
| 86 | { |
---|
| 87 | btFullAssert(0 <= i && i < 3); |
---|
| 88 | return m_el[i]; |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | btMatrix3x3& operator*=(const btMatrix3x3& m); |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | void setFromOpenGLSubMatrix(const btScalar *m) |
---|
| 95 | { |
---|
| 96 | m_el[0].setValue(m[0],m[4],m[8]); |
---|
| 97 | m_el[1].setValue(m[1],m[5],m[9]); |
---|
| 98 | m_el[2].setValue(m[2],m[6],m[10]); |
---|
| 99 | |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, |
---|
| 103 | const btScalar& yx, const btScalar& yy, const btScalar& yz, |
---|
| 104 | const btScalar& zx, const btScalar& zy, const btScalar& zz) |
---|
| 105 | { |
---|
| 106 | m_el[0].setValue(xx,xy,xz); |
---|
| 107 | m_el[1].setValue(yx,yy,yz); |
---|
| 108 | m_el[2].setValue(zx,zy,zz); |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | void setRotation(const btQuaternion& q) |
---|
| 112 | { |
---|
| 113 | btScalar d = q.length2(); |
---|
| 114 | btFullAssert(d != btScalar(0.0)); |
---|
| 115 | btScalar s = btScalar(2.0) / d; |
---|
| 116 | btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; |
---|
| 117 | btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; |
---|
| 118 | btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; |
---|
| 119 | btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; |
---|
| 120 | setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy, |
---|
| 121 | xy + wz, btScalar(1.0) - (xx + zz), yz - wx, |
---|
| 122 | xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); |
---|
| 123 | } |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
| 128 | { |
---|
| 129 | |
---|
| 130 | btScalar cy(btCos(yaw)); |
---|
| 131 | btScalar sy(btSin(yaw)); |
---|
| 132 | btScalar cp(btCos(pitch)); |
---|
| 133 | btScalar sp(btSin(pitch)); |
---|
| 134 | btScalar cr(btCos(roll)); |
---|
| 135 | btScalar sr(btSin(roll)); |
---|
| 136 | btScalar cc = cy * cr; |
---|
| 137 | btScalar cs = cy * sr; |
---|
| 138 | btScalar sc = sy * cr; |
---|
| 139 | btScalar ss = sy * sr; |
---|
| 140 | setValue(cc - sp * ss, -cs - sp * sc, -sy * cp, |
---|
| 141 | cp * sr, cp * cr, -sp, |
---|
| 142 | sc + sp * cs, -ss + sp * cc, cy * cp); |
---|
| 143 | |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | /** |
---|
| 147 | * setEulerZYX |
---|
| 148 | * @param euler a const reference to a btVector3 of euler angles |
---|
| 149 | * These angles are used to produce a rotation matrix. The euler |
---|
| 150 | * angles are applied in ZYX order. I.e a vector is first rotated |
---|
| 151 | * about X then Y and then Z |
---|
| 152 | **/ |
---|
| 153 | |
---|
| 154 | void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { |
---|
| 155 | btScalar ci ( btCos(eulerX)); |
---|
| 156 | btScalar cj ( btCos(eulerY)); |
---|
| 157 | btScalar ch ( btCos(eulerZ)); |
---|
| 158 | btScalar si ( btSin(eulerX)); |
---|
| 159 | btScalar sj ( btSin(eulerY)); |
---|
| 160 | btScalar sh ( btSin(eulerZ)); |
---|
| 161 | btScalar cc = ci * ch; |
---|
| 162 | btScalar cs = ci * sh; |
---|
| 163 | btScalar sc = si * ch; |
---|
| 164 | btScalar ss = si * sh; |
---|
| 165 | |
---|
| 166 | setValue(cj * ch, sj * sc - cs, sj * cc + ss, |
---|
| 167 | cj * sh, sj * ss + cc, sj * cs - sc, |
---|
| 168 | -sj, cj * si, cj * ci); |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | void setIdentity() |
---|
| 172 | { |
---|
| 173 | setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), |
---|
| 174 | btScalar(0.0), btScalar(1.0), btScalar(0.0), |
---|
| 175 | btScalar(0.0), btScalar(0.0), btScalar(1.0)); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | void getOpenGLSubMatrix(btScalar *m) const |
---|
| 179 | { |
---|
| 180 | m[0] = btScalar(m_el[0].x()); |
---|
| 181 | m[1] = btScalar(m_el[1].x()); |
---|
| 182 | m[2] = btScalar(m_el[2].x()); |
---|
| 183 | m[3] = btScalar(0.0); |
---|
| 184 | m[4] = btScalar(m_el[0].y()); |
---|
| 185 | m[5] = btScalar(m_el[1].y()); |
---|
| 186 | m[6] = btScalar(m_el[2].y()); |
---|
| 187 | m[7] = btScalar(0.0); |
---|
| 188 | m[8] = btScalar(m_el[0].z()); |
---|
| 189 | m[9] = btScalar(m_el[1].z()); |
---|
| 190 | m[10] = btScalar(m_el[2].z()); |
---|
| 191 | m[11] = btScalar(0.0); |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | void getRotation(btQuaternion& q) const |
---|
| 195 | { |
---|
| 196 | btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); |
---|
| 197 | btScalar temp[4]; |
---|
| 198 | |
---|
| 199 | if (trace > btScalar(0.0)) |
---|
| 200 | { |
---|
| 201 | btScalar s = btSqrt(trace + btScalar(1.0)); |
---|
| 202 | temp[3]=(s * btScalar(0.5)); |
---|
| 203 | s = btScalar(0.5) / s; |
---|
| 204 | |
---|
| 205 | temp[0]=((m_el[2].y() - m_el[1].z()) * s); |
---|
| 206 | temp[1]=((m_el[0].z() - m_el[2].x()) * s); |
---|
| 207 | temp[2]=((m_el[1].x() - m_el[0].y()) * s); |
---|
| 208 | } |
---|
| 209 | else |
---|
| 210 | { |
---|
| 211 | int i = m_el[0].x() < m_el[1].y() ? |
---|
| 212 | (m_el[1].y() < m_el[2].z() ? 2 : 1) : |
---|
| 213 | (m_el[0].x() < m_el[2].z() ? 2 : 0); |
---|
| 214 | int j = (i + 1) % 3; |
---|
| 215 | int k = (i + 2) % 3; |
---|
| 216 | |
---|
| 217 | btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); |
---|
| 218 | temp[i] = s * btScalar(0.5); |
---|
| 219 | s = btScalar(0.5) / s; |
---|
| 220 | |
---|
| 221 | temp[3] = (m_el[k][j] - m_el[j][k]) * s; |
---|
| 222 | temp[j] = (m_el[j][i] + m_el[i][j]) * s; |
---|
| 223 | temp[k] = (m_el[k][i] + m_el[i][k]) * s; |
---|
| 224 | } |
---|
| 225 | q.setValue(temp[0],temp[1],temp[2],temp[3]); |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | void getEuler(btScalar& yaw, btScalar& pitch, btScalar& roll) const |
---|
| 229 | { |
---|
| 230 | |
---|
| 231 | if (btScalar(m_el[1].z()) < btScalar(1)) |
---|
| 232 | { |
---|
| 233 | if (btScalar(m_el[1].z()) > -btScalar(1)) |
---|
| 234 | { |
---|
| 235 | yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); |
---|
| 236 | pitch = btScalar(btAsin(-m_el[1].y())); |
---|
| 237 | roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); |
---|
| 238 | } |
---|
| 239 | else |
---|
| 240 | { |
---|
| 241 | yaw = btScalar(-btAtan2(-m_el[0].y(), m_el[0].z())); |
---|
| 242 | pitch = SIMD_HALF_PI; |
---|
| 243 | roll = btScalar(0.0); |
---|
| 244 | } |
---|
| 245 | } |
---|
| 246 | else |
---|
| 247 | { |
---|
| 248 | yaw = btScalar(btAtan2(-m_el[0].y(), m_el[0].z())); |
---|
| 249 | pitch = -SIMD_HALF_PI; |
---|
| 250 | roll = btScalar(0.0); |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | |
---|
| 257 | btMatrix3x3 scaled(const btVector3& s) const |
---|
| 258 | { |
---|
| 259 | return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), |
---|
| 260 | m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), |
---|
| 261 | m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | btScalar determinant() const; |
---|
| 265 | btMatrix3x3 adjoint() const; |
---|
| 266 | btMatrix3x3 absolute() const; |
---|
| 267 | btMatrix3x3 transpose() const; |
---|
| 268 | btMatrix3x3 inverse() const; |
---|
| 269 | |
---|
| 270 | btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; |
---|
| 271 | btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; |
---|
| 272 | |
---|
| 273 | SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const |
---|
| 274 | { |
---|
| 275 | return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); |
---|
| 276 | } |
---|
| 277 | SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const |
---|
| 278 | { |
---|
| 279 | return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); |
---|
| 280 | } |
---|
| 281 | SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const |
---|
| 282 | { |
---|
| 283 | return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | |
---|
| 287 | ///diagonalizes this matrix by the Jacobi method. rot stores the rotation |
---|
| 288 | ///from the coordinate system in which the matrix is diagonal to the original |
---|
| 289 | ///coordinate system, i.e., old_this = rot * new_this * rot^T. The iteration |
---|
| 290 | ///stops when all off-diagonal elements are less than the threshold multiplied |
---|
| 291 | ///by the sum of the absolute values of the diagonal, or when maxSteps have |
---|
| 292 | ///been executed. Note that this matrix is assumed to be symmetric. |
---|
| 293 | void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps) |
---|
| 294 | { |
---|
| 295 | rot.setIdentity(); |
---|
| 296 | for (int step = maxSteps; step > 0; step--) |
---|
| 297 | { |
---|
| 298 | // find off-diagonal element [p][q] with largest magnitude |
---|
| 299 | int p = 0; |
---|
| 300 | int q = 1; |
---|
| 301 | int r = 2; |
---|
| 302 | btScalar max = btFabs(m_el[0][1]); |
---|
| 303 | btScalar v = btFabs(m_el[0][2]); |
---|
| 304 | if (v > max) |
---|
| 305 | { |
---|
| 306 | q = 2; |
---|
| 307 | r = 1; |
---|
| 308 | max = v; |
---|
| 309 | } |
---|
| 310 | v = btFabs(m_el[1][2]); |
---|
| 311 | if (v > max) |
---|
| 312 | { |
---|
| 313 | p = 1; |
---|
| 314 | q = 2; |
---|
| 315 | r = 0; |
---|
| 316 | max = v; |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2])); |
---|
| 320 | if (max <= t) |
---|
| 321 | { |
---|
| 322 | if (max <= SIMD_EPSILON * t) |
---|
| 323 | { |
---|
| 324 | return; |
---|
| 325 | } |
---|
| 326 | step = 1; |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | // compute Jacobi rotation J which leads to a zero for element [p][q] |
---|
| 330 | btScalar mpq = m_el[p][q]; |
---|
| 331 | btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq); |
---|
| 332 | btScalar theta2 = theta * theta; |
---|
| 333 | btScalar cos; |
---|
| 334 | btScalar sin; |
---|
| 335 | if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON)) |
---|
| 336 | { |
---|
| 337 | t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2)) |
---|
| 338 | : 1 / (theta - btSqrt(1 + theta2)); |
---|
| 339 | cos = 1 / btSqrt(1 + t * t); |
---|
| 340 | sin = cos * t; |
---|
| 341 | } |
---|
| 342 | else |
---|
| 343 | { |
---|
| 344 | // approximation for large theta-value, i.e., a nearly diagonal matrix |
---|
| 345 | t = 1 / (theta * (2 + btScalar(0.5) / theta2)); |
---|
| 346 | cos = 1 - btScalar(0.5) * t * t; |
---|
| 347 | sin = cos * t; |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | // apply rotation to matrix (this = J^T * this * J) |
---|
| 351 | m_el[p][q] = m_el[q][p] = 0; |
---|
| 352 | m_el[p][p] -= t * mpq; |
---|
| 353 | m_el[q][q] += t * mpq; |
---|
| 354 | btScalar mrp = m_el[r][p]; |
---|
| 355 | btScalar mrq = m_el[r][q]; |
---|
| 356 | m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq; |
---|
| 357 | m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp; |
---|
| 358 | |
---|
| 359 | // apply rotation to rot (rot = rot * J) |
---|
| 360 | for (int i = 0; i < 3; i++) |
---|
| 361 | { |
---|
| 362 | btVector3& row = rot[i]; |
---|
| 363 | mrp = row[p]; |
---|
| 364 | mrq = row[q]; |
---|
| 365 | row[p] = cos * mrp - sin * mrq; |
---|
| 366 | row[q] = cos * mrq + sin * mrp; |
---|
| 367 | } |
---|
| 368 | } |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | protected: |
---|
| 374 | btScalar cofac(int r1, int c1, int r2, int c2) const |
---|
| 375 | { |
---|
| 376 | return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | btVector3 m_el[3]; |
---|
| 380 | }; |
---|
| 381 | |
---|
| 382 | SIMD_FORCE_INLINE btMatrix3x3& |
---|
| 383 | btMatrix3x3::operator*=(const btMatrix3x3& m) |
---|
| 384 | { |
---|
| 385 | setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), |
---|
| 386 | m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), |
---|
| 387 | m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); |
---|
| 388 | return *this; |
---|
| 389 | } |
---|
| 390 | |
---|
| 391 | SIMD_FORCE_INLINE btScalar |
---|
| 392 | btMatrix3x3::determinant() const |
---|
| 393 | { |
---|
| 394 | return triple((*this)[0], (*this)[1], (*this)[2]); |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 399 | btMatrix3x3::absolute() const |
---|
| 400 | { |
---|
| 401 | return btMatrix3x3( |
---|
| 402 | btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), |
---|
| 403 | btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), |
---|
| 404 | btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); |
---|
| 405 | } |
---|
| 406 | |
---|
| 407 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 408 | btMatrix3x3::transpose() const |
---|
| 409 | { |
---|
| 410 | return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(), |
---|
| 411 | m_el[0].y(), m_el[1].y(), m_el[2].y(), |
---|
| 412 | m_el[0].z(), m_el[1].z(), m_el[2].z()); |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 416 | btMatrix3x3::adjoint() const |
---|
| 417 | { |
---|
| 418 | return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), |
---|
| 419 | cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), |
---|
| 420 | cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); |
---|
| 421 | } |
---|
| 422 | |
---|
| 423 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 424 | btMatrix3x3::inverse() const |
---|
| 425 | { |
---|
| 426 | btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); |
---|
| 427 | btScalar det = (*this)[0].dot(co); |
---|
| 428 | btFullAssert(det != btScalar(0.0)); |
---|
| 429 | btScalar s = btScalar(1.0) / det; |
---|
| 430 | return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, |
---|
| 431 | co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, |
---|
| 432 | co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 436 | btMatrix3x3::transposeTimes(const btMatrix3x3& m) const |
---|
| 437 | { |
---|
| 438 | return btMatrix3x3( |
---|
| 439 | m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), |
---|
| 440 | m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), |
---|
| 441 | m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), |
---|
| 442 | m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), |
---|
| 443 | m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), |
---|
| 444 | m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), |
---|
| 445 | m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), |
---|
| 446 | m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), |
---|
| 447 | m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 451 | btMatrix3x3::timesTranspose(const btMatrix3x3& m) const |
---|
| 452 | { |
---|
| 453 | return btMatrix3x3( |
---|
| 454 | m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), |
---|
| 455 | m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), |
---|
| 456 | m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); |
---|
| 457 | |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | SIMD_FORCE_INLINE btVector3 |
---|
| 461 | operator*(const btMatrix3x3& m, const btVector3& v) |
---|
| 462 | { |
---|
| 463 | return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | SIMD_FORCE_INLINE btVector3 |
---|
| 468 | operator*(const btVector3& v, const btMatrix3x3& m) |
---|
| 469 | { |
---|
| 470 | return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
| 474 | operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) |
---|
| 475 | { |
---|
| 476 | return btMatrix3x3( |
---|
| 477 | m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]), |
---|
| 478 | m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]), |
---|
| 479 | m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2])); |
---|
| 480 | } |
---|
| 481 | |
---|
| 482 | /* |
---|
| 483 | SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { |
---|
| 484 | return btMatrix3x3( |
---|
| 485 | m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], |
---|
| 486 | m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], |
---|
| 487 | m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], |
---|
| 488 | m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], |
---|
| 489 | m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], |
---|
| 490 | m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], |
---|
| 491 | m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], |
---|
| 492 | m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], |
---|
| 493 | m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); |
---|
| 494 | } |
---|
| 495 | */ |
---|
| 496 | |
---|
| 497 | SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) |
---|
| 498 | { |
---|
| 499 | return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && |
---|
| 500 | m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && |
---|
| 501 | m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] ); |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | #endif |
---|