1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | #ifndef btMatrix3x3_H |
---|
17 | #define btMatrix3x3_H |
---|
18 | |
---|
19 | #include "btScalar.h" |
---|
20 | |
---|
21 | #include "btVector3.h" |
---|
22 | #include "btQuaternion.h" |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | ///The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3. |
---|
27 | ///Make sure to only include a pure orthogonal matrix without scaling. |
---|
28 | class btMatrix3x3 { |
---|
29 | public: |
---|
30 | btMatrix3x3 () {} |
---|
31 | |
---|
32 | // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } |
---|
33 | |
---|
34 | explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } |
---|
35 | /* |
---|
36 | template <typename btScalar> |
---|
37 | Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
38 | { |
---|
39 | setEulerYPR(yaw, pitch, roll); |
---|
40 | } |
---|
41 | */ |
---|
42 | btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, |
---|
43 | const btScalar& yx, const btScalar& yy, const btScalar& yz, |
---|
44 | const btScalar& zx, const btScalar& zy, const btScalar& zz) |
---|
45 | { |
---|
46 | setValue(xx, xy, xz, |
---|
47 | yx, yy, yz, |
---|
48 | zx, zy, zz); |
---|
49 | } |
---|
50 | |
---|
51 | SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other) |
---|
52 | { |
---|
53 | m_el[0] = other.m_el[0]; |
---|
54 | m_el[1] = other.m_el[1]; |
---|
55 | m_el[2] = other.m_el[2]; |
---|
56 | } |
---|
57 | |
---|
58 | SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) |
---|
59 | { |
---|
60 | m_el[0] = other.m_el[0]; |
---|
61 | m_el[1] = other.m_el[1]; |
---|
62 | m_el[2] = other.m_el[2]; |
---|
63 | return *this; |
---|
64 | } |
---|
65 | |
---|
66 | SIMD_FORCE_INLINE btVector3 getColumn(int i) const |
---|
67 | { |
---|
68 | return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]); |
---|
69 | } |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | SIMD_FORCE_INLINE const btVector3& getRow(int i) const |
---|
74 | { |
---|
75 | return m_el[i]; |
---|
76 | } |
---|
77 | |
---|
78 | |
---|
79 | SIMD_FORCE_INLINE btVector3& operator[](int i) |
---|
80 | { |
---|
81 | btFullAssert(0 <= i && i < 3); |
---|
82 | return m_el[i]; |
---|
83 | } |
---|
84 | |
---|
85 | SIMD_FORCE_INLINE const btVector3& operator[](int i) const |
---|
86 | { |
---|
87 | btFullAssert(0 <= i && i < 3); |
---|
88 | return m_el[i]; |
---|
89 | } |
---|
90 | |
---|
91 | btMatrix3x3& operator*=(const btMatrix3x3& m); |
---|
92 | |
---|
93 | |
---|
94 | void setFromOpenGLSubMatrix(const btScalar *m) |
---|
95 | { |
---|
96 | m_el[0].setValue(m[0],m[4],m[8]); |
---|
97 | m_el[1].setValue(m[1],m[5],m[9]); |
---|
98 | m_el[2].setValue(m[2],m[6],m[10]); |
---|
99 | |
---|
100 | } |
---|
101 | |
---|
102 | void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, |
---|
103 | const btScalar& yx, const btScalar& yy, const btScalar& yz, |
---|
104 | const btScalar& zx, const btScalar& zy, const btScalar& zz) |
---|
105 | { |
---|
106 | m_el[0].setValue(xx,xy,xz); |
---|
107 | m_el[1].setValue(yx,yy,yz); |
---|
108 | m_el[2].setValue(zx,zy,zz); |
---|
109 | } |
---|
110 | |
---|
111 | void setRotation(const btQuaternion& q) |
---|
112 | { |
---|
113 | btScalar d = q.length2(); |
---|
114 | btFullAssert(d != btScalar(0.0)); |
---|
115 | btScalar s = btScalar(2.0) / d; |
---|
116 | btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; |
---|
117 | btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; |
---|
118 | btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; |
---|
119 | btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; |
---|
120 | setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy, |
---|
121 | xy + wz, btScalar(1.0) - (xx + zz), yz - wx, |
---|
122 | xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); |
---|
123 | } |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) |
---|
128 | { |
---|
129 | |
---|
130 | btScalar cy(btCos(yaw)); |
---|
131 | btScalar sy(btSin(yaw)); |
---|
132 | btScalar cp(btCos(pitch)); |
---|
133 | btScalar sp(btSin(pitch)); |
---|
134 | btScalar cr(btCos(roll)); |
---|
135 | btScalar sr(btSin(roll)); |
---|
136 | btScalar cc = cy * cr; |
---|
137 | btScalar cs = cy * sr; |
---|
138 | btScalar sc = sy * cr; |
---|
139 | btScalar ss = sy * sr; |
---|
140 | setValue(cc - sp * ss, -cs - sp * sc, -sy * cp, |
---|
141 | cp * sr, cp * cr, -sp, |
---|
142 | sc + sp * cs, -ss + sp * cc, cy * cp); |
---|
143 | |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * setEulerZYX |
---|
148 | * @param euler a const reference to a btVector3 of euler angles |
---|
149 | * These angles are used to produce a rotation matrix. The euler |
---|
150 | * angles are applied in ZYX order. I.e a vector is first rotated |
---|
151 | * about X then Y and then Z |
---|
152 | **/ |
---|
153 | |
---|
154 | void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { |
---|
155 | btScalar ci ( btCos(eulerX)); |
---|
156 | btScalar cj ( btCos(eulerY)); |
---|
157 | btScalar ch ( btCos(eulerZ)); |
---|
158 | btScalar si ( btSin(eulerX)); |
---|
159 | btScalar sj ( btSin(eulerY)); |
---|
160 | btScalar sh ( btSin(eulerZ)); |
---|
161 | btScalar cc = ci * ch; |
---|
162 | btScalar cs = ci * sh; |
---|
163 | btScalar sc = si * ch; |
---|
164 | btScalar ss = si * sh; |
---|
165 | |
---|
166 | setValue(cj * ch, sj * sc - cs, sj * cc + ss, |
---|
167 | cj * sh, sj * ss + cc, sj * cs - sc, |
---|
168 | -sj, cj * si, cj * ci); |
---|
169 | } |
---|
170 | |
---|
171 | void setIdentity() |
---|
172 | { |
---|
173 | setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), |
---|
174 | btScalar(0.0), btScalar(1.0), btScalar(0.0), |
---|
175 | btScalar(0.0), btScalar(0.0), btScalar(1.0)); |
---|
176 | } |
---|
177 | |
---|
178 | void getOpenGLSubMatrix(btScalar *m) const |
---|
179 | { |
---|
180 | m[0] = btScalar(m_el[0].x()); |
---|
181 | m[1] = btScalar(m_el[1].x()); |
---|
182 | m[2] = btScalar(m_el[2].x()); |
---|
183 | m[3] = btScalar(0.0); |
---|
184 | m[4] = btScalar(m_el[0].y()); |
---|
185 | m[5] = btScalar(m_el[1].y()); |
---|
186 | m[6] = btScalar(m_el[2].y()); |
---|
187 | m[7] = btScalar(0.0); |
---|
188 | m[8] = btScalar(m_el[0].z()); |
---|
189 | m[9] = btScalar(m_el[1].z()); |
---|
190 | m[10] = btScalar(m_el[2].z()); |
---|
191 | m[11] = btScalar(0.0); |
---|
192 | } |
---|
193 | |
---|
194 | void getRotation(btQuaternion& q) const |
---|
195 | { |
---|
196 | btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); |
---|
197 | btScalar temp[4]; |
---|
198 | |
---|
199 | if (trace > btScalar(0.0)) |
---|
200 | { |
---|
201 | btScalar s = btSqrt(trace + btScalar(1.0)); |
---|
202 | temp[3]=(s * btScalar(0.5)); |
---|
203 | s = btScalar(0.5) / s; |
---|
204 | |
---|
205 | temp[0]=((m_el[2].y() - m_el[1].z()) * s); |
---|
206 | temp[1]=((m_el[0].z() - m_el[2].x()) * s); |
---|
207 | temp[2]=((m_el[1].x() - m_el[0].y()) * s); |
---|
208 | } |
---|
209 | else |
---|
210 | { |
---|
211 | int i = m_el[0].x() < m_el[1].y() ? |
---|
212 | (m_el[1].y() < m_el[2].z() ? 2 : 1) : |
---|
213 | (m_el[0].x() < m_el[2].z() ? 2 : 0); |
---|
214 | int j = (i + 1) % 3; |
---|
215 | int k = (i + 2) % 3; |
---|
216 | |
---|
217 | btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); |
---|
218 | temp[i] = s * btScalar(0.5); |
---|
219 | s = btScalar(0.5) / s; |
---|
220 | |
---|
221 | temp[3] = (m_el[k][j] - m_el[j][k]) * s; |
---|
222 | temp[j] = (m_el[j][i] + m_el[i][j]) * s; |
---|
223 | temp[k] = (m_el[k][i] + m_el[i][k]) * s; |
---|
224 | } |
---|
225 | q.setValue(temp[0],temp[1],temp[2],temp[3]); |
---|
226 | } |
---|
227 | |
---|
228 | void getEuler(btScalar& yaw, btScalar& pitch, btScalar& roll) const |
---|
229 | { |
---|
230 | |
---|
231 | if (btScalar(m_el[1].z()) < btScalar(1)) |
---|
232 | { |
---|
233 | if (btScalar(m_el[1].z()) > -btScalar(1)) |
---|
234 | { |
---|
235 | yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); |
---|
236 | pitch = btScalar(btAsin(-m_el[1].y())); |
---|
237 | roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); |
---|
238 | } |
---|
239 | else |
---|
240 | { |
---|
241 | yaw = btScalar(-btAtan2(-m_el[0].y(), m_el[0].z())); |
---|
242 | pitch = SIMD_HALF_PI; |
---|
243 | roll = btScalar(0.0); |
---|
244 | } |
---|
245 | } |
---|
246 | else |
---|
247 | { |
---|
248 | yaw = btScalar(btAtan2(-m_el[0].y(), m_el[0].z())); |
---|
249 | pitch = -SIMD_HALF_PI; |
---|
250 | roll = btScalar(0.0); |
---|
251 | } |
---|
252 | } |
---|
253 | |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | btMatrix3x3 scaled(const btVector3& s) const |
---|
258 | { |
---|
259 | return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), |
---|
260 | m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), |
---|
261 | m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); |
---|
262 | } |
---|
263 | |
---|
264 | btScalar determinant() const; |
---|
265 | btMatrix3x3 adjoint() const; |
---|
266 | btMatrix3x3 absolute() const; |
---|
267 | btMatrix3x3 transpose() const; |
---|
268 | btMatrix3x3 inverse() const; |
---|
269 | |
---|
270 | btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; |
---|
271 | btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; |
---|
272 | |
---|
273 | SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const |
---|
274 | { |
---|
275 | return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); |
---|
276 | } |
---|
277 | SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const |
---|
278 | { |
---|
279 | return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); |
---|
280 | } |
---|
281 | SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const |
---|
282 | { |
---|
283 | return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | ///diagonalizes this matrix by the Jacobi method. rot stores the rotation |
---|
288 | ///from the coordinate system in which the matrix is diagonal to the original |
---|
289 | ///coordinate system, i.e., old_this = rot * new_this * rot^T. The iteration |
---|
290 | ///stops when all off-diagonal elements are less than the threshold multiplied |
---|
291 | ///by the sum of the absolute values of the diagonal, or when maxSteps have |
---|
292 | ///been executed. Note that this matrix is assumed to be symmetric. |
---|
293 | void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps) |
---|
294 | { |
---|
295 | rot.setIdentity(); |
---|
296 | for (int step = maxSteps; step > 0; step--) |
---|
297 | { |
---|
298 | // find off-diagonal element [p][q] with largest magnitude |
---|
299 | int p = 0; |
---|
300 | int q = 1; |
---|
301 | int r = 2; |
---|
302 | btScalar max = btFabs(m_el[0][1]); |
---|
303 | btScalar v = btFabs(m_el[0][2]); |
---|
304 | if (v > max) |
---|
305 | { |
---|
306 | q = 2; |
---|
307 | r = 1; |
---|
308 | max = v; |
---|
309 | } |
---|
310 | v = btFabs(m_el[1][2]); |
---|
311 | if (v > max) |
---|
312 | { |
---|
313 | p = 1; |
---|
314 | q = 2; |
---|
315 | r = 0; |
---|
316 | max = v; |
---|
317 | } |
---|
318 | |
---|
319 | btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2])); |
---|
320 | if (max <= t) |
---|
321 | { |
---|
322 | if (max <= SIMD_EPSILON * t) |
---|
323 | { |
---|
324 | return; |
---|
325 | } |
---|
326 | step = 1; |
---|
327 | } |
---|
328 | |
---|
329 | // compute Jacobi rotation J which leads to a zero for element [p][q] |
---|
330 | btScalar mpq = m_el[p][q]; |
---|
331 | btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq); |
---|
332 | btScalar theta2 = theta * theta; |
---|
333 | btScalar cos; |
---|
334 | btScalar sin; |
---|
335 | if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON)) |
---|
336 | { |
---|
337 | t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2)) |
---|
338 | : 1 / (theta - btSqrt(1 + theta2)); |
---|
339 | cos = 1 / btSqrt(1 + t * t); |
---|
340 | sin = cos * t; |
---|
341 | } |
---|
342 | else |
---|
343 | { |
---|
344 | // approximation for large theta-value, i.e., a nearly diagonal matrix |
---|
345 | t = 1 / (theta * (2 + btScalar(0.5) / theta2)); |
---|
346 | cos = 1 - btScalar(0.5) * t * t; |
---|
347 | sin = cos * t; |
---|
348 | } |
---|
349 | |
---|
350 | // apply rotation to matrix (this = J^T * this * J) |
---|
351 | m_el[p][q] = m_el[q][p] = 0; |
---|
352 | m_el[p][p] -= t * mpq; |
---|
353 | m_el[q][q] += t * mpq; |
---|
354 | btScalar mrp = m_el[r][p]; |
---|
355 | btScalar mrq = m_el[r][q]; |
---|
356 | m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq; |
---|
357 | m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp; |
---|
358 | |
---|
359 | // apply rotation to rot (rot = rot * J) |
---|
360 | for (int i = 0; i < 3; i++) |
---|
361 | { |
---|
362 | btVector3& row = rot[i]; |
---|
363 | mrp = row[p]; |
---|
364 | mrq = row[q]; |
---|
365 | row[p] = cos * mrp - sin * mrq; |
---|
366 | row[q] = cos * mrq + sin * mrp; |
---|
367 | } |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | |
---|
372 | |
---|
373 | protected: |
---|
374 | btScalar cofac(int r1, int c1, int r2, int c2) const |
---|
375 | { |
---|
376 | return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; |
---|
377 | } |
---|
378 | |
---|
379 | btVector3 m_el[3]; |
---|
380 | }; |
---|
381 | |
---|
382 | SIMD_FORCE_INLINE btMatrix3x3& |
---|
383 | btMatrix3x3::operator*=(const btMatrix3x3& m) |
---|
384 | { |
---|
385 | setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), |
---|
386 | m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), |
---|
387 | m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); |
---|
388 | return *this; |
---|
389 | } |
---|
390 | |
---|
391 | SIMD_FORCE_INLINE btScalar |
---|
392 | btMatrix3x3::determinant() const |
---|
393 | { |
---|
394 | return triple((*this)[0], (*this)[1], (*this)[2]); |
---|
395 | } |
---|
396 | |
---|
397 | |
---|
398 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
399 | btMatrix3x3::absolute() const |
---|
400 | { |
---|
401 | return btMatrix3x3( |
---|
402 | btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), |
---|
403 | btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), |
---|
404 | btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); |
---|
405 | } |
---|
406 | |
---|
407 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
408 | btMatrix3x3::transpose() const |
---|
409 | { |
---|
410 | return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(), |
---|
411 | m_el[0].y(), m_el[1].y(), m_el[2].y(), |
---|
412 | m_el[0].z(), m_el[1].z(), m_el[2].z()); |
---|
413 | } |
---|
414 | |
---|
415 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
416 | btMatrix3x3::adjoint() const |
---|
417 | { |
---|
418 | return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), |
---|
419 | cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), |
---|
420 | cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); |
---|
421 | } |
---|
422 | |
---|
423 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
424 | btMatrix3x3::inverse() const |
---|
425 | { |
---|
426 | btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); |
---|
427 | btScalar det = (*this)[0].dot(co); |
---|
428 | btFullAssert(det != btScalar(0.0)); |
---|
429 | btScalar s = btScalar(1.0) / det; |
---|
430 | return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, |
---|
431 | co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, |
---|
432 | co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); |
---|
433 | } |
---|
434 | |
---|
435 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
436 | btMatrix3x3::transposeTimes(const btMatrix3x3& m) const |
---|
437 | { |
---|
438 | return btMatrix3x3( |
---|
439 | m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), |
---|
440 | m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), |
---|
441 | m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), |
---|
442 | m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), |
---|
443 | m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), |
---|
444 | m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), |
---|
445 | m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), |
---|
446 | m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), |
---|
447 | m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); |
---|
448 | } |
---|
449 | |
---|
450 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
451 | btMatrix3x3::timesTranspose(const btMatrix3x3& m) const |
---|
452 | { |
---|
453 | return btMatrix3x3( |
---|
454 | m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), |
---|
455 | m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), |
---|
456 | m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); |
---|
457 | |
---|
458 | } |
---|
459 | |
---|
460 | SIMD_FORCE_INLINE btVector3 |
---|
461 | operator*(const btMatrix3x3& m, const btVector3& v) |
---|
462 | { |
---|
463 | return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); |
---|
464 | } |
---|
465 | |
---|
466 | |
---|
467 | SIMD_FORCE_INLINE btVector3 |
---|
468 | operator*(const btVector3& v, const btMatrix3x3& m) |
---|
469 | { |
---|
470 | return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); |
---|
471 | } |
---|
472 | |
---|
473 | SIMD_FORCE_INLINE btMatrix3x3 |
---|
474 | operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) |
---|
475 | { |
---|
476 | return btMatrix3x3( |
---|
477 | m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]), |
---|
478 | m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]), |
---|
479 | m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2])); |
---|
480 | } |
---|
481 | |
---|
482 | /* |
---|
483 | SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { |
---|
484 | return btMatrix3x3( |
---|
485 | m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], |
---|
486 | m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], |
---|
487 | m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], |
---|
488 | m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], |
---|
489 | m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], |
---|
490 | m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], |
---|
491 | m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], |
---|
492 | m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], |
---|
493 | m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); |
---|
494 | } |
---|
495 | */ |
---|
496 | |
---|
497 | SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) |
---|
498 | { |
---|
499 | return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && |
---|
500 | m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && |
---|
501 | m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] ); |
---|
502 | } |
---|
503 | |
---|
504 | #endif |
---|