1 | #include "OgreOdePrecompiledHeaders.h" |
---|
2 | #include "OgreOdeUtility.h" |
---|
3 | |
---|
4 | using namespace OgreOde; |
---|
5 | using namespace Ogre; |
---|
6 | |
---|
7 | const Ogre::Real Utility::Infinity = dInfinity; |
---|
8 | |
---|
9 | Real Utility::randomReal() |
---|
10 | { |
---|
11 | return (Real)dRandReal(); |
---|
12 | } |
---|
13 | |
---|
14 | /** |
---|
15 | According to the ODE docs; |
---|
16 | |
---|
17 | By adjusting the values of ERP and CFM, you can achieve various effects. |
---|
18 | For example you can simulate springy constraints, where the two bodies oscillate |
---|
19 | as though connected by springs. Or you can simulate more spongy constraints, without |
---|
20 | the oscillation. In fact, ERP and CFM can be selected to have the same effect as any |
---|
21 | desired spring and damper constants. If you have a spring constant kp and damping constant kd, |
---|
22 | then the corresponding ODE constants are: |
---|
23 | |
---|
24 | ERP = h kp / (h kp + kd) |
---|
25 | CFM = 1 / (h kp + kd) |
---|
26 | |
---|
27 | where h is the stepsize. These values will give the same effect as a spring-and-damper |
---|
28 | system simulated with implicit first order integration. |
---|
29 | */ |
---|
30 | //----------------------------------------------------------------------- |
---|
31 | Real Utility::getCFM(Real spring, Real dampening, Real timeStep) |
---|
32 | { |
---|
33 | return 1 / ((timeStep * spring) + dampening); |
---|
34 | } |
---|
35 | |
---|
36 | //----------------------------------------------------------------------- |
---|
37 | Real Utility::getERP(Real spring, Real dampening, Real timeStep) |
---|
38 | { |
---|
39 | return (timeStep * spring) / ((timeStep * spring) + dampening); |
---|
40 | } |
---|
41 | |
---|
42 | //----------------------------------------------------------------------- |
---|
43 | void Utility::getSpringConstants(Real CFM, Real ERP, Real timeStep, Real &spring, Real &dampening) |
---|
44 | { |
---|
45 | spring = (ERP / CFM) / timeStep; |
---|
46 | dampening = (1 / CFM) - timeStep * spring; |
---|
47 | } |
---|