/* * ORXONOX - the hottest 3D action shooter ever to exist * > www.orxonox.net < * * * License notice: * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Author: * Fabian 'x3n' Landau * Co-authors: * ... * */ /** @file Math.h @brief Declaration and implementation of several math-functions, typedefs of some Ogre::Math classes to the orxonox namespace. */ #ifndef _Util_Math_H__ #define _Util_Math_H__ #include "UtilPrereqs.h" #include #include #include #include #include #include #include #include #include #include #include namespace orxonox { using Ogre::Radian; using Ogre::Degree; using Ogre::Vector2; using Ogre::Vector3; using Ogre::Vector4; using Ogre::Matrix3; using Ogre::Matrix4; using Ogre::Quaternion; using Ogre::ColourValue; // Also define our own transform space enum namespace TransformSpace { /** @brief Enumeration denoting the spaces which a transform can be relative to. */ enum Space { /// Transform is relative to the local space Local, /// Transform is relative to the space of the parent node Parent, /// Transform is relative to world space World }; } } _UtilExport std::ostream& operator<<(std::ostream& out, const orxonox::Radian& radian); _UtilExport std::istream& operator>>(std::istream& in, orxonox::Radian& radian); _UtilExport std::ostream& operator<<(std::ostream& out, const orxonox::Degree& degree); _UtilExport std::istream& operator>>(std::istream& in, orxonox::Degree& degree); _UtilExport float getAngle(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector2 get2DViewdirection(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector2 get2DViewcoordinates(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition); _UtilExport orxonox::Vector3 getPredictedPosition(const orxonox::Vector3& myposition, float projectilespeed, const orxonox::Vector3& targetposition, const orxonox::Vector3& targetvelocity); //Get around Windows hackery #if ORXONOX_PLATFORM == ORXONOX_PLATFORM_WIN32 # ifdef max # undef max # endif # ifdef min # undef min # endif #endif /** @brief Returns the sign of the given value. @param x The value @return 1 if the value is positive or zero, -1 if the value is negative */ template inline T sgn(T x) { return (x >= 0) ? 1 : -1; } /** @brief Returns the smaller of two values. */ template inline T min(T a, T b) { return (a <= b) ? a : b; } /** @brief Returns the greater of two values. */ template inline T max(T a, T b) { return (a >= b) ? a : b; } /** @brief Keeps a value between a lower and an upper limit. @param x The value @param min The lower limit @param max The upper limit */ template inline T clamp(T x, T min, T max) { if (x < min) return min; if (x > max) return max; return x; } /** @brief Returns the square value (x^2). */ template inline T square(T x) { return x*x; } /** @brief Returns the cube value (x^3). */ template inline T cube(T x) { return x*x*x; } /** @brief Rounds the value down. */ template inline int floor(T x) { return (int)(x); } /** @brief Rounds the value up. */ template inline int ceil(T x) { int temp = floor(x); return (temp != x) ? (temp + 1) : temp; } /** @brief Rounds the value. */ template inline int round(T x) { return (int)(x + 0.5); } /** @brief The modulo operation, enhanced to work properly with negative values. @param x The value @param max The operand */ template inline int mod(T x, int max) { if (x >= 0) return (x % max); else return ((x % max) + max); } template inline T zeroise() { // Default, raise a compiler error without including large boost header cascade. T temp(); *********temp; // If you reach this code, you abused zeroise()! return temp; } template <> inline char zeroise() { return 0; } template <> inline unsigned char zeroise() { return 0; } template <> inline short zeroise() { return 0; } template <> inline unsigned short zeroise() { return 0; } template <> inline int zeroise() { return 0; } template <> inline unsigned int zeroise() { return 0; } template <> inline long zeroise() { return 0; } template <> inline unsigned long zeroise() { return 0; } template <> inline long long zeroise() { return 0; } template <> inline unsigned long long zeroise() { return 0; } template <> inline float zeroise() { return 0; } template <> inline double zeroise() { return 0; } template <> inline long double zeroise() { return 0; } template <> inline bool zeroise() { return 0; } template <> inline void* zeroise() { return 0; } template <> inline std::string zeroise() { return ""; } template <> inline orxonox::Radian zeroise() { return orxonox::Radian(0.0f); } template <> inline orxonox::Degree zeroise() { return orxonox::Degree(0.0f); } template <> inline orxonox::Vector2 zeroise() { return orxonox::Vector2 (0, 0) ; } template <> inline orxonox::Vector3 zeroise() { return orxonox::Vector3 (0, 0, 0) ; } template <> inline orxonox::Vector4 zeroise() { return orxonox::Vector4 (0, 0, 0, 0); } template <> inline orxonox::ColourValue zeroise() { return orxonox::ColourValue(0, 0, 0, 0); } template <> inline orxonox::Quaternion zeroise() { return orxonox::Quaternion (0, 0, 0, 0); } /** @brief Interpolates between two values for a time between 0 and 1. @param time The time is a value between 0 and 1 - the function returns start if time is 0 and end if time is 1 and interpolates if time is between 0 and 1. @param start The value at time = 0 @param end The value at time = 1 @return The interpolation at a given time */ template T interpolate(float time, const T& start, const T& end) { return time * (end - start) + start; } /** @brief Interpolates smoothly between two values for a time between 0 and 1. The function starts slowly, increases faster and stops slowly again. @param time The time is a value between 0 and 1 - the function returns start if time is 0 and end if time is 1 and interpolates if time is between 0 and 1. @param start The value at time = 0 @param end The value at time = 1 @return The smoothed interpolation at a given time */ template T interpolateSmooth(float time, const T& start, const T& end) { return (-2 * (end - start) * cube(time)) + (3 * (end - start) * square(time)) + start; } /** @brief Returns a random number between 0 and almost 1: 0 <= rnd < 1. */ inline _UtilExport float rnd() { return rand() / (RAND_MAX + 1.0); } /** @brief Returns a random number between 0 and almost max: 0 <= rnd < max. @param max The maximum */ inline _UtilExport float rnd(float max) { return rnd() * max; } /** @brief Returns a random number between min and almost max: min <= rnd < max. @param min The minimum @param max The maximum */ inline _UtilExport float rnd(float min, float max) { return rnd(max - min) + min; } _UtilExport unsigned long getUniqueNumber(); class _UtilExport IntVector2 { public: IntVector2() : x(0), y(0) { } IntVector2(int _x, int _y) : x(_x), y(_y) { } int x; int y; }; class _UtilExport IntVector3 { public: IntVector3() : x(0), y(0), z(0) { } IntVector3(int _x, int _y, int _z) : x(_x), y(_y), z(_z) { } int x; int y; int z; }; #endif /* _Util_Math_H__ */