1 | |
---|
2 | /* |
---|
3 | Bullet Continuous Collision Detection and Physics Library |
---|
4 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
5 | |
---|
6 | This software is provided 'as-is', without any express or implied warranty. |
---|
7 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
8 | Permission is granted to anyone to use this software for any purpose, |
---|
9 | including commercial applications, and to alter it and redistribute it freely, |
---|
10 | subject to the following restrictions: |
---|
11 | |
---|
12 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
13 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
14 | 3. This notice may not be removed or altered from any source distribution. |
---|
15 | |
---|
16 | Elsevier CDROM license agreements grants nonexclusive license to use the software |
---|
17 | for any purpose, commercial or non-commercial as long as the following credit is included |
---|
18 | identifying the original source of the software: |
---|
19 | |
---|
20 | Parts of the source are "from the book Real-Time Collision Detection by |
---|
21 | Christer Ericson, published by Morgan Kaufmann Publishers, |
---|
22 | (c) 2005 Elsevier Inc." |
---|
23 | |
---|
24 | */ |
---|
25 | |
---|
26 | |
---|
27 | #include "btVoronoiSimplexSolver.h" |
---|
28 | |
---|
29 | #define VERTA 0 |
---|
30 | #define VERTB 1 |
---|
31 | #define VERTC 2 |
---|
32 | #define VERTD 3 |
---|
33 | |
---|
34 | #define CATCH_DEGENERATE_TETRAHEDRON 1 |
---|
35 | void btVoronoiSimplexSolver::removeVertex(int index) |
---|
36 | { |
---|
37 | |
---|
38 | btAssert(m_numVertices>0); |
---|
39 | m_numVertices--; |
---|
40 | m_simplexVectorW[index] = m_simplexVectorW[m_numVertices]; |
---|
41 | m_simplexPointsP[index] = m_simplexPointsP[m_numVertices]; |
---|
42 | m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices]; |
---|
43 | } |
---|
44 | |
---|
45 | void btVoronoiSimplexSolver::reduceVertices (const btUsageBitfield& usedVerts) |
---|
46 | { |
---|
47 | if ((numVertices() >= 4) && (!usedVerts.usedVertexD)) |
---|
48 | removeVertex(3); |
---|
49 | |
---|
50 | if ((numVertices() >= 3) && (!usedVerts.usedVertexC)) |
---|
51 | removeVertex(2); |
---|
52 | |
---|
53 | if ((numVertices() >= 2) && (!usedVerts.usedVertexB)) |
---|
54 | removeVertex(1); |
---|
55 | |
---|
56 | if ((numVertices() >= 1) && (!usedVerts.usedVertexA)) |
---|
57 | removeVertex(0); |
---|
58 | |
---|
59 | } |
---|
60 | |
---|
61 | |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | //clear the simplex, remove all the vertices |
---|
66 | void btVoronoiSimplexSolver::reset() |
---|
67 | { |
---|
68 | m_cachedValidClosest = false; |
---|
69 | m_numVertices = 0; |
---|
70 | m_needsUpdate = true; |
---|
71 | m_lastW = btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30)); |
---|
72 | m_cachedBC.reset(); |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | |
---|
77 | //add a vertex |
---|
78 | void btVoronoiSimplexSolver::addVertex(const btVector3& w, const btVector3& p, const btVector3& q) |
---|
79 | { |
---|
80 | m_lastW = w; |
---|
81 | m_needsUpdate = true; |
---|
82 | |
---|
83 | m_simplexVectorW[m_numVertices] = w; |
---|
84 | m_simplexPointsP[m_numVertices] = p; |
---|
85 | m_simplexPointsQ[m_numVertices] = q; |
---|
86 | |
---|
87 | m_numVertices++; |
---|
88 | } |
---|
89 | |
---|
90 | bool btVoronoiSimplexSolver::updateClosestVectorAndPoints() |
---|
91 | { |
---|
92 | |
---|
93 | if (m_needsUpdate) |
---|
94 | { |
---|
95 | m_cachedBC.reset(); |
---|
96 | |
---|
97 | m_needsUpdate = false; |
---|
98 | |
---|
99 | switch (numVertices()) |
---|
100 | { |
---|
101 | case 0: |
---|
102 | m_cachedValidClosest = false; |
---|
103 | break; |
---|
104 | case 1: |
---|
105 | { |
---|
106 | m_cachedP1 = m_simplexPointsP[0]; |
---|
107 | m_cachedP2 = m_simplexPointsQ[0]; |
---|
108 | m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0] |
---|
109 | m_cachedBC.reset(); |
---|
110 | m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
111 | m_cachedValidClosest = m_cachedBC.isValid(); |
---|
112 | break; |
---|
113 | }; |
---|
114 | case 2: |
---|
115 | { |
---|
116 | //closest point origin from line segment |
---|
117 | const btVector3& from = m_simplexVectorW[0]; |
---|
118 | const btVector3& to = m_simplexVectorW[1]; |
---|
119 | btVector3 nearest; |
---|
120 | |
---|
121 | btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
122 | btVector3 diff = p - from; |
---|
123 | btVector3 v = to - from; |
---|
124 | btScalar t = v.dot(diff); |
---|
125 | |
---|
126 | if (t > 0) { |
---|
127 | btScalar dotVV = v.dot(v); |
---|
128 | if (t < dotVV) { |
---|
129 | t /= dotVV; |
---|
130 | diff -= t*v; |
---|
131 | m_cachedBC.m_usedVertices.usedVertexA = true; |
---|
132 | m_cachedBC.m_usedVertices.usedVertexB = true; |
---|
133 | } else { |
---|
134 | t = 1; |
---|
135 | diff -= v; |
---|
136 | //reduce to 1 point |
---|
137 | m_cachedBC.m_usedVertices.usedVertexB = true; |
---|
138 | } |
---|
139 | } else |
---|
140 | { |
---|
141 | t = 0; |
---|
142 | //reduce to 1 point |
---|
143 | m_cachedBC.m_usedVertices.usedVertexA = true; |
---|
144 | } |
---|
145 | m_cachedBC.setBarycentricCoordinates(1-t,t); |
---|
146 | nearest = from + t*v; |
---|
147 | |
---|
148 | m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]); |
---|
149 | m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]); |
---|
150 | m_cachedV = m_cachedP1 - m_cachedP2; |
---|
151 | |
---|
152 | reduceVertices(m_cachedBC.m_usedVertices); |
---|
153 | |
---|
154 | m_cachedValidClosest = m_cachedBC.isValid(); |
---|
155 | break; |
---|
156 | } |
---|
157 | case 3: |
---|
158 | { |
---|
159 | //closest point origin from triangle |
---|
160 | btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
161 | |
---|
162 | const btVector3& a = m_simplexVectorW[0]; |
---|
163 | const btVector3& b = m_simplexVectorW[1]; |
---|
164 | const btVector3& c = m_simplexVectorW[2]; |
---|
165 | |
---|
166 | closestPtPointTriangle(p,a,b,c,m_cachedBC); |
---|
167 | m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + |
---|
168 | m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + |
---|
169 | m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; |
---|
170 | |
---|
171 | m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + |
---|
172 | m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + |
---|
173 | m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; |
---|
174 | |
---|
175 | m_cachedV = m_cachedP1-m_cachedP2; |
---|
176 | |
---|
177 | reduceVertices (m_cachedBC.m_usedVertices); |
---|
178 | m_cachedValidClosest = m_cachedBC.isValid(); |
---|
179 | |
---|
180 | break; |
---|
181 | } |
---|
182 | case 4: |
---|
183 | { |
---|
184 | |
---|
185 | |
---|
186 | btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
187 | |
---|
188 | const btVector3& a = m_simplexVectorW[0]; |
---|
189 | const btVector3& b = m_simplexVectorW[1]; |
---|
190 | const btVector3& c = m_simplexVectorW[2]; |
---|
191 | const btVector3& d = m_simplexVectorW[3]; |
---|
192 | |
---|
193 | bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC); |
---|
194 | |
---|
195 | if (hasSeperation) |
---|
196 | { |
---|
197 | |
---|
198 | m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + |
---|
199 | m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + |
---|
200 | m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] + |
---|
201 | m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3]; |
---|
202 | |
---|
203 | m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + |
---|
204 | m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + |
---|
205 | m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] + |
---|
206 | m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3]; |
---|
207 | |
---|
208 | m_cachedV = m_cachedP1-m_cachedP2; |
---|
209 | reduceVertices (m_cachedBC.m_usedVertices); |
---|
210 | } else |
---|
211 | { |
---|
212 | // printf("sub distance got penetration\n"); |
---|
213 | |
---|
214 | if (m_cachedBC.m_degenerate) |
---|
215 | { |
---|
216 | m_cachedValidClosest = false; |
---|
217 | } else |
---|
218 | { |
---|
219 | m_cachedValidClosest = true; |
---|
220 | //degenerate case == false, penetration = true + zero |
---|
221 | m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
222 | } |
---|
223 | break; |
---|
224 | } |
---|
225 | |
---|
226 | m_cachedValidClosest = m_cachedBC.isValid(); |
---|
227 | |
---|
228 | //closest point origin from tetrahedron |
---|
229 | break; |
---|
230 | } |
---|
231 | default: |
---|
232 | { |
---|
233 | m_cachedValidClosest = false; |
---|
234 | } |
---|
235 | }; |
---|
236 | } |
---|
237 | |
---|
238 | return m_cachedValidClosest; |
---|
239 | |
---|
240 | } |
---|
241 | |
---|
242 | //return/calculate the closest vertex |
---|
243 | bool btVoronoiSimplexSolver::closest(btVector3& v) |
---|
244 | { |
---|
245 | bool succes = updateClosestVectorAndPoints(); |
---|
246 | v = m_cachedV; |
---|
247 | return succes; |
---|
248 | } |
---|
249 | |
---|
250 | |
---|
251 | |
---|
252 | btScalar btVoronoiSimplexSolver::maxVertex() |
---|
253 | { |
---|
254 | int i, numverts = numVertices(); |
---|
255 | btScalar maxV = btScalar(0.); |
---|
256 | for (i=0;i<numverts;i++) |
---|
257 | { |
---|
258 | btScalar curLen2 = m_simplexVectorW[i].length2(); |
---|
259 | if (maxV < curLen2) |
---|
260 | maxV = curLen2; |
---|
261 | } |
---|
262 | return maxV; |
---|
263 | } |
---|
264 | |
---|
265 | |
---|
266 | |
---|
267 | //return the current simplex |
---|
268 | int btVoronoiSimplexSolver::getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const |
---|
269 | { |
---|
270 | int i; |
---|
271 | for (i=0;i<numVertices();i++) |
---|
272 | { |
---|
273 | yBuf[i] = m_simplexVectorW[i]; |
---|
274 | pBuf[i] = m_simplexPointsP[i]; |
---|
275 | qBuf[i] = m_simplexPointsQ[i]; |
---|
276 | } |
---|
277 | return numVertices(); |
---|
278 | } |
---|
279 | |
---|
280 | |
---|
281 | |
---|
282 | |
---|
283 | bool btVoronoiSimplexSolver::inSimplex(const btVector3& w) |
---|
284 | { |
---|
285 | bool found = false; |
---|
286 | int i, numverts = numVertices(); |
---|
287 | //btScalar maxV = btScalar(0.); |
---|
288 | |
---|
289 | //w is in the current (reduced) simplex |
---|
290 | for (i=0;i<numverts;i++) |
---|
291 | { |
---|
292 | if (m_simplexVectorW[i] == w) |
---|
293 | found = true; |
---|
294 | } |
---|
295 | |
---|
296 | //check in case lastW is already removed |
---|
297 | if (w == m_lastW) |
---|
298 | return true; |
---|
299 | |
---|
300 | return found; |
---|
301 | } |
---|
302 | |
---|
303 | void btVoronoiSimplexSolver::backup_closest(btVector3& v) |
---|
304 | { |
---|
305 | v = m_cachedV; |
---|
306 | } |
---|
307 | |
---|
308 | |
---|
309 | bool btVoronoiSimplexSolver::emptySimplex() const |
---|
310 | { |
---|
311 | return (numVertices() == 0); |
---|
312 | |
---|
313 | } |
---|
314 | |
---|
315 | void btVoronoiSimplexSolver::compute_points(btVector3& p1, btVector3& p2) |
---|
316 | { |
---|
317 | updateClosestVectorAndPoints(); |
---|
318 | p1 = m_cachedP1; |
---|
319 | p2 = m_cachedP2; |
---|
320 | |
---|
321 | } |
---|
322 | |
---|
323 | |
---|
324 | |
---|
325 | |
---|
326 | bool btVoronoiSimplexSolver::closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,btSubSimplexClosestResult& result) |
---|
327 | { |
---|
328 | result.m_usedVertices.reset(); |
---|
329 | |
---|
330 | // Check if P in vertex region outside A |
---|
331 | btVector3 ab = b - a; |
---|
332 | btVector3 ac = c - a; |
---|
333 | btVector3 ap = p - a; |
---|
334 | btScalar d1 = ab.dot(ap); |
---|
335 | btScalar d2 = ac.dot(ap); |
---|
336 | if (d1 <= btScalar(0.0) && d2 <= btScalar(0.0)) |
---|
337 | { |
---|
338 | result.m_closestPointOnSimplex = a; |
---|
339 | result.m_usedVertices.usedVertexA = true; |
---|
340 | result.setBarycentricCoordinates(1,0,0); |
---|
341 | return true;// a; // barycentric coordinates (1,0,0) |
---|
342 | } |
---|
343 | |
---|
344 | // Check if P in vertex region outside B |
---|
345 | btVector3 bp = p - b; |
---|
346 | btScalar d3 = ab.dot(bp); |
---|
347 | btScalar d4 = ac.dot(bp); |
---|
348 | if (d3 >= btScalar(0.0) && d4 <= d3) |
---|
349 | { |
---|
350 | result.m_closestPointOnSimplex = b; |
---|
351 | result.m_usedVertices.usedVertexB = true; |
---|
352 | result.setBarycentricCoordinates(0,1,0); |
---|
353 | |
---|
354 | return true; // b; // barycentric coordinates (0,1,0) |
---|
355 | } |
---|
356 | // Check if P in edge region of AB, if so return projection of P onto AB |
---|
357 | btScalar vc = d1*d4 - d3*d2; |
---|
358 | if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) { |
---|
359 | btScalar v = d1 / (d1 - d3); |
---|
360 | result.m_closestPointOnSimplex = a + v * ab; |
---|
361 | result.m_usedVertices.usedVertexA = true; |
---|
362 | result.m_usedVertices.usedVertexB = true; |
---|
363 | result.setBarycentricCoordinates(1-v,v,0); |
---|
364 | return true; |
---|
365 | //return a + v * ab; // barycentric coordinates (1-v,v,0) |
---|
366 | } |
---|
367 | |
---|
368 | // Check if P in vertex region outside C |
---|
369 | btVector3 cp = p - c; |
---|
370 | btScalar d5 = ab.dot(cp); |
---|
371 | btScalar d6 = ac.dot(cp); |
---|
372 | if (d6 >= btScalar(0.0) && d5 <= d6) |
---|
373 | { |
---|
374 | result.m_closestPointOnSimplex = c; |
---|
375 | result.m_usedVertices.usedVertexC = true; |
---|
376 | result.setBarycentricCoordinates(0,0,1); |
---|
377 | return true;//c; // barycentric coordinates (0,0,1) |
---|
378 | } |
---|
379 | |
---|
380 | // Check if P in edge region of AC, if so return projection of P onto AC |
---|
381 | btScalar vb = d5*d2 - d1*d6; |
---|
382 | if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) { |
---|
383 | btScalar w = d2 / (d2 - d6); |
---|
384 | result.m_closestPointOnSimplex = a + w * ac; |
---|
385 | result.m_usedVertices.usedVertexA = true; |
---|
386 | result.m_usedVertices.usedVertexC = true; |
---|
387 | result.setBarycentricCoordinates(1-w,0,w); |
---|
388 | return true; |
---|
389 | //return a + w * ac; // barycentric coordinates (1-w,0,w) |
---|
390 | } |
---|
391 | |
---|
392 | // Check if P in edge region of BC, if so return projection of P onto BC |
---|
393 | btScalar va = d3*d6 - d5*d4; |
---|
394 | if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) { |
---|
395 | btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); |
---|
396 | |
---|
397 | result.m_closestPointOnSimplex = b + w * (c - b); |
---|
398 | result.m_usedVertices.usedVertexB = true; |
---|
399 | result.m_usedVertices.usedVertexC = true; |
---|
400 | result.setBarycentricCoordinates(0,1-w,w); |
---|
401 | return true; |
---|
402 | // return b + w * (c - b); // barycentric coordinates (0,1-w,w) |
---|
403 | } |
---|
404 | |
---|
405 | // P inside face region. Compute Q through its barycentric coordinates (u,v,w) |
---|
406 | btScalar denom = btScalar(1.0) / (va + vb + vc); |
---|
407 | btScalar v = vb * denom; |
---|
408 | btScalar w = vc * denom; |
---|
409 | |
---|
410 | result.m_closestPointOnSimplex = a + ab * v + ac * w; |
---|
411 | result.m_usedVertices.usedVertexA = true; |
---|
412 | result.m_usedVertices.usedVertexB = true; |
---|
413 | result.m_usedVertices.usedVertexC = true; |
---|
414 | result.setBarycentricCoordinates(1-v-w,v,w); |
---|
415 | |
---|
416 | return true; |
---|
417 | // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w |
---|
418 | |
---|
419 | } |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | |
---|
424 | |
---|
425 | /// Test if point p and d lie on opposite sides of plane through abc |
---|
426 | int btVoronoiSimplexSolver::pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d) |
---|
427 | { |
---|
428 | btVector3 normal = (b-a).cross(c-a); |
---|
429 | |
---|
430 | btScalar signp = (p - a).dot(normal); // [AP AB AC] |
---|
431 | btScalar signd = (d - a).dot( normal); // [AD AB AC] |
---|
432 | |
---|
433 | #ifdef CATCH_DEGENERATE_TETRAHEDRON |
---|
434 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
435 | if (signd * signd < (btScalar(1e-8) * btScalar(1e-8))) |
---|
436 | { |
---|
437 | return -1; |
---|
438 | } |
---|
439 | #else |
---|
440 | if (signd * signd < (btScalar(1e-4) * btScalar(1e-4))) |
---|
441 | { |
---|
442 | // printf("affine dependent/degenerate\n");// |
---|
443 | return -1; |
---|
444 | } |
---|
445 | #endif |
---|
446 | |
---|
447 | #endif |
---|
448 | // Points on opposite sides if expression signs are opposite |
---|
449 | return signp * signd < btScalar(0.); |
---|
450 | } |
---|
451 | |
---|
452 | |
---|
453 | bool btVoronoiSimplexSolver::closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, btSubSimplexClosestResult& finalResult) |
---|
454 | { |
---|
455 | btSubSimplexClosestResult tempResult; |
---|
456 | |
---|
457 | // Start out assuming point inside all halfspaces, so closest to itself |
---|
458 | finalResult.m_closestPointOnSimplex = p; |
---|
459 | finalResult.m_usedVertices.reset(); |
---|
460 | finalResult.m_usedVertices.usedVertexA = true; |
---|
461 | finalResult.m_usedVertices.usedVertexB = true; |
---|
462 | finalResult.m_usedVertices.usedVertexC = true; |
---|
463 | finalResult.m_usedVertices.usedVertexD = true; |
---|
464 | |
---|
465 | int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d); |
---|
466 | int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b); |
---|
467 | int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c); |
---|
468 | int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a); |
---|
469 | |
---|
470 | if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0) |
---|
471 | { |
---|
472 | finalResult.m_degenerate = true; |
---|
473 | return false; |
---|
474 | } |
---|
475 | |
---|
476 | if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC) |
---|
477 | { |
---|
478 | return false; |
---|
479 | } |
---|
480 | |
---|
481 | |
---|
482 | btScalar bestSqDist = FLT_MAX; |
---|
483 | // If point outside face abc then compute closest point on abc |
---|
484 | if (pointOutsideABC) |
---|
485 | { |
---|
486 | closestPtPointTriangle(p, a, b, c,tempResult); |
---|
487 | btVector3 q = tempResult.m_closestPointOnSimplex; |
---|
488 | |
---|
489 | btScalar sqDist = (q - p).dot( q - p); |
---|
490 | // Update best closest point if (squared) distance is less than current best |
---|
491 | if (sqDist < bestSqDist) { |
---|
492 | bestSqDist = sqDist; |
---|
493 | finalResult.m_closestPointOnSimplex = q; |
---|
494 | //convert result bitmask! |
---|
495 | finalResult.m_usedVertices.reset(); |
---|
496 | finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; |
---|
497 | finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB; |
---|
498 | finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; |
---|
499 | finalResult.setBarycentricCoordinates( |
---|
500 | tempResult.m_barycentricCoords[VERTA], |
---|
501 | tempResult.m_barycentricCoords[VERTB], |
---|
502 | tempResult.m_barycentricCoords[VERTC], |
---|
503 | 0 |
---|
504 | ); |
---|
505 | |
---|
506 | } |
---|
507 | } |
---|
508 | |
---|
509 | |
---|
510 | // Repeat test for face acd |
---|
511 | if (pointOutsideACD) |
---|
512 | { |
---|
513 | closestPtPointTriangle(p, a, c, d,tempResult); |
---|
514 | btVector3 q = tempResult.m_closestPointOnSimplex; |
---|
515 | //convert result bitmask! |
---|
516 | |
---|
517 | btScalar sqDist = (q - p).dot( q - p); |
---|
518 | if (sqDist < bestSqDist) |
---|
519 | { |
---|
520 | bestSqDist = sqDist; |
---|
521 | finalResult.m_closestPointOnSimplex = q; |
---|
522 | finalResult.m_usedVertices.reset(); |
---|
523 | finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; |
---|
524 | |
---|
525 | finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB; |
---|
526 | finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC; |
---|
527 | finalResult.setBarycentricCoordinates( |
---|
528 | tempResult.m_barycentricCoords[VERTA], |
---|
529 | 0, |
---|
530 | tempResult.m_barycentricCoords[VERTB], |
---|
531 | tempResult.m_barycentricCoords[VERTC] |
---|
532 | ); |
---|
533 | |
---|
534 | } |
---|
535 | } |
---|
536 | // Repeat test for face adb |
---|
537 | |
---|
538 | |
---|
539 | if (pointOutsideADB) |
---|
540 | { |
---|
541 | closestPtPointTriangle(p, a, d, b,tempResult); |
---|
542 | btVector3 q = tempResult.m_closestPointOnSimplex; |
---|
543 | //convert result bitmask! |
---|
544 | |
---|
545 | btScalar sqDist = (q - p).dot( q - p); |
---|
546 | if (sqDist < bestSqDist) |
---|
547 | { |
---|
548 | bestSqDist = sqDist; |
---|
549 | finalResult.m_closestPointOnSimplex = q; |
---|
550 | finalResult.m_usedVertices.reset(); |
---|
551 | finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; |
---|
552 | finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC; |
---|
553 | |
---|
554 | finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; |
---|
555 | finalResult.setBarycentricCoordinates( |
---|
556 | tempResult.m_barycentricCoords[VERTA], |
---|
557 | tempResult.m_barycentricCoords[VERTC], |
---|
558 | 0, |
---|
559 | tempResult.m_barycentricCoords[VERTB] |
---|
560 | ); |
---|
561 | |
---|
562 | } |
---|
563 | } |
---|
564 | // Repeat test for face bdc |
---|
565 | |
---|
566 | |
---|
567 | if (pointOutsideBDC) |
---|
568 | { |
---|
569 | closestPtPointTriangle(p, b, d, c,tempResult); |
---|
570 | btVector3 q = tempResult.m_closestPointOnSimplex; |
---|
571 | //convert result bitmask! |
---|
572 | btScalar sqDist = (q - p).dot( q - p); |
---|
573 | if (sqDist < bestSqDist) |
---|
574 | { |
---|
575 | bestSqDist = sqDist; |
---|
576 | finalResult.m_closestPointOnSimplex = q; |
---|
577 | finalResult.m_usedVertices.reset(); |
---|
578 | // |
---|
579 | finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA; |
---|
580 | finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; |
---|
581 | finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; |
---|
582 | |
---|
583 | finalResult.setBarycentricCoordinates( |
---|
584 | 0, |
---|
585 | tempResult.m_barycentricCoords[VERTA], |
---|
586 | tempResult.m_barycentricCoords[VERTC], |
---|
587 | tempResult.m_barycentricCoords[VERTB] |
---|
588 | ); |
---|
589 | |
---|
590 | } |
---|
591 | } |
---|
592 | |
---|
593 | //help! we ended up full ! |
---|
594 | |
---|
595 | if (finalResult.m_usedVertices.usedVertexA && |
---|
596 | finalResult.m_usedVertices.usedVertexB && |
---|
597 | finalResult.m_usedVertices.usedVertexC && |
---|
598 | finalResult.m_usedVertices.usedVertexD) |
---|
599 | { |
---|
600 | return true; |
---|
601 | } |
---|
602 | |
---|
603 | return true; |
---|
604 | } |
---|
605 | |
---|