1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org |
---|
3 | Copyright (C) 2006, 2007 Sony Computer Entertainment Inc. |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | |
---|
18 | #include "btUniversalConstraint.h" |
---|
19 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
20 | #include "LinearMath/btTransformUtil.h" |
---|
21 | |
---|
22 | |
---|
23 | |
---|
24 | #define UNIV_EPS btScalar(0.01f) |
---|
25 | |
---|
26 | |
---|
27 | // constructor |
---|
28 | // anchor, axis1 and axis2 are in world coordinate system |
---|
29 | // axis1 must be orthogonal to axis2 |
---|
30 | btUniversalConstraint::btUniversalConstraint(btRigidBody& rbA, btRigidBody& rbB, btVector3& anchor, btVector3& axis1, btVector3& axis2) |
---|
31 | : btGeneric6DofConstraint(rbA, rbB, btTransform::getIdentity(), btTransform::getIdentity(), true), |
---|
32 | m_anchor(anchor), |
---|
33 | m_axis1(axis1), |
---|
34 | m_axis2(axis2) |
---|
35 | { |
---|
36 | // build frame basis |
---|
37 | // 6DOF constraint uses Euler angles and to define limits |
---|
38 | // it is assumed that rotational order is : |
---|
39 | // Z - first, allowed limits are (-PI,PI); |
---|
40 | // new position of Y - second (allowed limits are (-PI/2 + epsilon, PI/2 - epsilon), where epsilon is a small positive number |
---|
41 | // used to prevent constraint from instability on poles; |
---|
42 | // new position of X, allowed limits are (-PI,PI); |
---|
43 | // So to simulate ODE Universal joint we should use parent axis as Z, child axis as Y and limit all other DOFs |
---|
44 | // Build the frame in world coordinate system first |
---|
45 | btVector3 zAxis = axis1.normalize(); |
---|
46 | btVector3 yAxis = axis2.normalize(); |
---|
47 | btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system |
---|
48 | btTransform frameInW; |
---|
49 | frameInW.setIdentity(); |
---|
50 | frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0], |
---|
51 | xAxis[1], yAxis[1], zAxis[1], |
---|
52 | xAxis[2], yAxis[2], zAxis[2]); |
---|
53 | frameInW.setOrigin(anchor); |
---|
54 | // now get constraint frame in local coordinate systems |
---|
55 | m_frameInA = rbA.getCenterOfMassTransform().inverse() * frameInW; |
---|
56 | m_frameInB = rbB.getCenterOfMassTransform().inverse() * frameInW; |
---|
57 | // sei limits |
---|
58 | setLinearLowerLimit(btVector3(0., 0., 0.)); |
---|
59 | setLinearUpperLimit(btVector3(0., 0., 0.)); |
---|
60 | setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI + UNIV_EPS, -SIMD_PI + UNIV_EPS)); |
---|
61 | setAngularUpperLimit(btVector3(0.f, SIMD_HALF_PI - UNIV_EPS, SIMD_PI - UNIV_EPS)); |
---|
62 | } |
---|
63 | |
---|
64 | void btUniversalConstraint::setAxis(const btVector3& axis1,const btVector3& axis2) |
---|
65 | { |
---|
66 | m_axis1 = axis1; |
---|
67 | m_axis2 = axis2; |
---|
68 | |
---|
69 | btVector3 zAxis = axis1.normalized(); |
---|
70 | btVector3 yAxis = axis2.normalized(); |
---|
71 | btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system |
---|
72 | |
---|
73 | btTransform frameInW; |
---|
74 | frameInW.setIdentity(); |
---|
75 | frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0], |
---|
76 | xAxis[1], yAxis[1], zAxis[1], |
---|
77 | xAxis[2], yAxis[2], zAxis[2]); |
---|
78 | frameInW.setOrigin(m_anchor); |
---|
79 | |
---|
80 | // now get constraint frame in local coordinate systems |
---|
81 | m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW; |
---|
82 | m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW; |
---|
83 | |
---|
84 | calculateTransforms(); |
---|
85 | } |
---|
86 | |
---|
87 | |
---|