Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/presentation/src/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.h @ 2490

Last change on this file since 2490 was 2459, checked in by rgrieder, 16 years ago

Merged physics_merge back to presentation branch.

  • Property svn:eol-style set to native
File size: 13.6 KB
Line 
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans  http://bulletphysics.com/Bullet/
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16
17/**
18 * @mainpage Bullet Documentation
19 *
20 * @section intro_sec Introduction
21 * Bullet Collision Detection & Physics SDK
22 *
23 * Bullet is a Collision Detection and Rigid Body Dynamics Library. The Library is Open Source and free for commercial use, under the ZLib license ( http://opensource.org/licenses/zlib-license.php ).
24 *
25 * There is the Physics Forum for feedback and general Collision Detection and Physics discussions.
26 * Please visit http://www.bulletphysics.com
27 *
28 * @section install_sec Installation
29 *
30 * @subsection step1 Step 1: Download
31 * You can download the Bullet Physics Library from the Google Code repository: http://code.google.com/p/bullet/downloads/list
32 * @subsection step2 Step 2: Building
33 * Bullet comes with autogenerated Project Files for Microsoft Visual Studio 6, 7, 7.1 and 8.
34 * The main Workspace/Solution is located in Bullet/msvc/8/wksbullet.sln (replace 8 with your version).
35 *
36 * Under other platforms, like Linux or Mac OS-X, Bullet can be build using either using make, cmake, http://www.cmake.org , or jam, http://www.perforce.com/jam/jam.html . cmake can autogenerate Xcode, KDevelop, MSVC and other build systems. just run cmake . in the root of Bullet.
37 * So if you are not using MSVC or cmake, you can run ./autogen.sh ./configure to create both Makefile and Jamfile and then run make or jam.
38 * Jam is a build system that can build the library, demos and also autogenerate the MSVC Project Files.
39 * If you don't have jam installed, you can make jam from the included jam-2.5 sources, or download jam from ftp://ftp.perforce.com/jam
40 *
41 * @subsection step3 Step 3: Testing demos
42 * Try to run and experiment with BasicDemo executable as a starting point.
43 * Bullet can be used in several ways, as Full Rigid Body simulation, as Collision Detector Library or Low Level / Snippets like the GJK Closest Point calculation.
44 * The Dependencies can be seen in this documentation under Directories
45 *
46 * @subsection step4 Step 4: Integrating in your application, full Rigid Body and Soft Body simulation
47 * Check out BasicDemo how to create a btDynamicsWorld, btRigidBody and btCollisionShape, Stepping the simulation and synchronizing your graphics object transform.
48 * Check out SoftDemo how to use soft body dynamics, using btSoftRigidDynamicsWorld.
49 * @subsection step5 Step 5 : Integrate the Collision Detection Library (without Dynamics and other Extras)
50 * Bullet Collision Detection can also be used without the Dynamics/Extras.
51 * Check out btCollisionWorld and btCollisionObject, and the CollisionInterfaceDemo.
52 * @subsection step6 Step 6 : Use Snippets like the GJK Closest Point calculation.
53 * Bullet has been designed in a modular way keeping dependencies to a minimum. The ConvexHullDistance demo demonstrates direct use of btGjkPairDetector.
54 *
55 * @section copyright Copyright
56 * Copyright (C) 2005-2008 Erwin Coumans, some contributions Copyright Gino van den Bergen, Christer Ericson, Simon Hobbs, Ricardo Padrela, F Richter(res), Stephane Redon
57 * Special thanks to all visitors of the Bullet Physics forum, and in particular above contributors, John McCutchan, Nathanael Presson, Dave Eberle, Dirk Gregorius, Erin Catto, Dave Eberle, Adam Moravanszky,
58 * Pierre Terdiman, Kenny Erleben, Russell Smith, Oliver Strunk, Jan Paul van Waveren, Marten Svanfeldt.
59 *
60 */
61 
62 
63
64#ifndef COLLISION_WORLD_H
65#define COLLISION_WORLD_H
66
67class btStackAlloc;
68class btCollisionShape;
69class btConvexShape;
70class btBroadphaseInterface;
71#include "LinearMath/btVector3.h"
72#include "LinearMath/btTransform.h"
73#include "btCollisionObject.h"
74#include "btCollisionDispatcher.h"
75#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
76#include "LinearMath/btAlignedObjectArray.h"
77
78///CollisionWorld is interface and container for the collision detection
79class btCollisionWorld
80{
81
82       
83protected:
84
85        btAlignedObjectArray<btCollisionObject*>        m_collisionObjects;
86       
87        btDispatcher*   m_dispatcher1;
88
89        btDispatcherInfo        m_dispatchInfo;
90
91        btStackAlloc*   m_stackAlloc;
92
93        btBroadphaseInterface*  m_broadphasePairCache;
94
95        btIDebugDraw*   m_debugDrawer;
96
97       
98public:
99
100        //this constructor doesn't own the dispatcher and paircache/broadphase
101        btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* broadphasePairCache, btCollisionConfiguration* collisionConfiguration);
102
103        virtual ~btCollisionWorld();
104
105        void    setBroadphase(btBroadphaseInterface*    pairCache)
106        {
107                m_broadphasePairCache = pairCache;
108        }
109
110        const btBroadphaseInterface*    getBroadphase() const
111        {
112                return m_broadphasePairCache;
113        }
114
115        btBroadphaseInterface*  getBroadphase()
116        {
117                return m_broadphasePairCache;
118        }
119
120        btOverlappingPairCache* getPairCache()
121        {
122                return m_broadphasePairCache->getOverlappingPairCache();
123        }
124
125
126        btDispatcher*   getDispatcher()
127        {
128                return m_dispatcher1;
129        }
130
131        const btDispatcher*     getDispatcher() const
132        {
133                return m_dispatcher1;
134        }
135
136        virtual void    updateAabbs();
137
138       
139        virtual void    setDebugDrawer(btIDebugDraw*    debugDrawer)
140        {
141                        m_debugDrawer = debugDrawer;
142        }
143
144        virtual btIDebugDraw*   getDebugDrawer()
145        {
146                return m_debugDrawer;
147        }
148
149
150        ///LocalShapeInfo gives extra information for complex shapes
151        ///Currently, only btTriangleMeshShape is available, so it just contains triangleIndex and subpart
152        struct  LocalShapeInfo
153        {
154                int     m_shapePart;
155                int     m_triangleIndex;
156               
157                //const btCollisionShape*       m_shapeTemp;
158                //const btTransform*    m_shapeLocalTransform;
159        };
160
161        struct  LocalRayResult
162        {
163                LocalRayResult(btCollisionObject*       collisionObject, 
164                        LocalShapeInfo* localShapeInfo,
165                        const btVector3&                hitNormalLocal,
166                        btScalar hitFraction)
167                :m_collisionObject(collisionObject),
168                m_localShapeInfo(localShapeInfo),
169                m_hitNormalLocal(hitNormalLocal),
170                m_hitFraction(hitFraction)
171                {
172                }
173
174                btCollisionObject*              m_collisionObject;
175                LocalShapeInfo*                 m_localShapeInfo;
176                btVector3                               m_hitNormalLocal;
177                btScalar                                m_hitFraction;
178
179        };
180
181        ///RayResultCallback is used to report new raycast results
182        struct  RayResultCallback
183        {
184                btScalar        m_closestHitFraction;
185                btCollisionObject*              m_collisionObject;
186                short int       m_collisionFilterGroup;
187                short int       m_collisionFilterMask;
188
189                virtual ~RayResultCallback()
190                {
191                }
192                bool    hasHit() const
193                {
194                        return (m_collisionObject != 0);
195                }
196
197                RayResultCallback()
198                        :m_closestHitFraction(btScalar(1.)),
199                        m_collisionObject(0),
200                        m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
201                        m_collisionFilterMask(btBroadphaseProxy::AllFilter)
202                {
203                }
204
205                virtual bool needsCollision(btBroadphaseProxy* proxy0) const
206                {
207                        bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
208                        collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
209                        return collides;
210                }
211
212
213                virtual btScalar        addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) = 0;
214        };
215
216        struct  ClosestRayResultCallback : public RayResultCallback
217        {
218                ClosestRayResultCallback(const btVector3&       rayFromWorld,const btVector3&   rayToWorld)
219                :m_rayFromWorld(rayFromWorld),
220                m_rayToWorld(rayToWorld)
221                {
222                }
223
224                btVector3       m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
225                btVector3       m_rayToWorld;
226
227                btVector3       m_hitNormalWorld;
228                btVector3       m_hitPointWorld;
229                       
230                virtual btScalar        addSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
231                {
232                        //caller already does the filter on the m_closestHitFraction
233                        btAssert(rayResult.m_hitFraction <= m_closestHitFraction);
234                       
235                        m_closestHitFraction = rayResult.m_hitFraction;
236                        m_collisionObject = rayResult.m_collisionObject;
237                        if (normalInWorldSpace)
238                        {
239                                m_hitNormalWorld = rayResult.m_hitNormalLocal;
240                        } else
241                        {
242                                ///need to transform normal into worldspace
243                                m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
244                        }
245                        m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
246                        return rayResult.m_hitFraction;
247                }
248        };
249
250
251        struct LocalConvexResult
252        {
253                LocalConvexResult(btCollisionObject*    hitCollisionObject, 
254                        LocalShapeInfo* localShapeInfo,
255                        const btVector3&                hitNormalLocal,
256                        const btVector3&                hitPointLocal,
257                        btScalar hitFraction
258                        )
259                :m_hitCollisionObject(hitCollisionObject),
260                m_localShapeInfo(localShapeInfo),
261                m_hitNormalLocal(hitNormalLocal),
262                m_hitPointLocal(hitPointLocal),
263                m_hitFraction(hitFraction)
264                {
265                }
266
267                btCollisionObject*              m_hitCollisionObject;
268                LocalShapeInfo*                 m_localShapeInfo;
269                btVector3                               m_hitNormalLocal;
270                btVector3                               m_hitPointLocal;
271                btScalar                                m_hitFraction;
272        };
273
274        ///RayResultCallback is used to report new raycast results
275        struct  ConvexResultCallback
276        {
277                btScalar        m_closestHitFraction;
278                short int       m_collisionFilterGroup;
279                short int       m_collisionFilterMask;
280               
281                ConvexResultCallback()
282                        :m_closestHitFraction(btScalar(1.)),
283                        m_collisionFilterGroup(btBroadphaseProxy::DefaultFilter),
284                        m_collisionFilterMask(btBroadphaseProxy::AllFilter)
285                {
286                }
287
288                virtual ~ConvexResultCallback()
289                {
290                }
291               
292                bool    hasHit() const
293                {
294                        return (m_closestHitFraction < btScalar(1.));
295                }
296
297               
298
299                virtual bool needsCollision(btBroadphaseProxy* proxy0) const
300                {
301                        bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
302                        collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
303                        return collides;
304                }
305
306                virtual btScalar        addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace) = 0;
307        };
308
309        struct  ClosestConvexResultCallback : public ConvexResultCallback
310        {
311                ClosestConvexResultCallback(const btVector3&    convexFromWorld,const btVector3&        convexToWorld)
312                :m_convexFromWorld(convexFromWorld),
313                m_convexToWorld(convexToWorld),
314                m_hitCollisionObject(0)
315                {
316                }
317
318                btVector3       m_convexFromWorld;//used to calculate hitPointWorld from hitFraction
319                btVector3       m_convexToWorld;
320
321                btVector3       m_hitNormalWorld;
322                btVector3       m_hitPointWorld;
323                btCollisionObject*      m_hitCollisionObject;
324               
325                virtual btScalar        addSingleResult(LocalConvexResult& convexResult,bool normalInWorldSpace)
326                {
327//caller already does the filter on the m_closestHitFraction
328                        btAssert(convexResult.m_hitFraction <= m_closestHitFraction);
329                                               
330                        m_closestHitFraction = convexResult.m_hitFraction;
331                        m_hitCollisionObject = convexResult.m_hitCollisionObject;
332                        if (normalInWorldSpace)
333                        {
334                                m_hitNormalWorld = convexResult.m_hitNormalLocal;
335                        } else
336                        {
337                                ///need to transform normal into worldspace
338                                m_hitNormalWorld = m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal;
339                        }
340                        m_hitPointWorld = convexResult.m_hitPointLocal;
341                        return convexResult.m_hitFraction;
342                }
343        };
344
345        int     getNumCollisionObjects() const
346        {
347                return int(m_collisionObjects.size());
348        }
349
350        /// rayTest performs a raycast on all objects in the btCollisionWorld, and calls the resultCallback
351        /// This allows for several queries: first hit, all hits, any hit, dependent on the value returned by the callback.
352        void    rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const; 
353
354        // convexTest performs a swept convex cast on all objects in the btCollisionWorld, and calls the resultCallback
355        // This allows for several queries: first hit, all hits, any hit, dependent on the value return by the callback.
356        void    convexSweepTest (const btConvexShape* castShape, const btTransform& from, const btTransform& to, ConvexResultCallback& resultCallback,  btScalar allowedCcdPenetration = btScalar(0.)) const;
357
358
359        /// rayTestSingle performs a raycast call and calls the resultCallback. It is used internally by rayTest.
360        /// In a future implementation, we consider moving the ray test as a virtual method in btCollisionShape.
361        /// This allows more customization.
362        static void     rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
363                                          btCollisionObject* collisionObject,
364                                          const btCollisionShape* collisionShape,
365                                          const btTransform& colObjWorldTransform,
366                                          RayResultCallback& resultCallback);
367
368        /// objectQuerySingle performs a collision detection query and calls the resultCallback. It is used internally by rayTest.
369        static void     objectQuerySingle(const btConvexShape* castShape, const btTransform& rayFromTrans,const btTransform& rayToTrans,
370                                          btCollisionObject* collisionObject,
371                                          const btCollisionShape* collisionShape,
372                                          const btTransform& colObjWorldTransform,
373                                          ConvexResultCallback& resultCallback, btScalar        allowedPenetration);
374
375        void    addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup=btBroadphaseProxy::DefaultFilter,short int collisionFilterMask=btBroadphaseProxy::AllFilter);
376
377        btCollisionObjectArray& getCollisionObjectArray()
378        {
379                return m_collisionObjects;
380        }
381
382        const btCollisionObjectArray& getCollisionObjectArray() const
383        {
384                return m_collisionObjects;
385        }
386
387
388        void    removeCollisionObject(btCollisionObject* collisionObject);
389
390        virtual void    performDiscreteCollisionDetection();
391
392        btDispatcherInfo& getDispatchInfo()
393        {
394                return m_dispatchInfo;
395        }
396
397        const btDispatcherInfo& getDispatchInfo() const
398        {
399                return m_dispatchInfo;
400        }
401
402};
403
404
405#endif //COLLISION_WORLD_H
Note: See TracBrowser for help on using the repository browser.