1 | /* |
---|
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
3 | |
---|
4 | This software is provided 'as-is', without any express or implied warranty. |
---|
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
6 | Permission is granted to anyone to use this software for any purpose, |
---|
7 | including commercial applications, and to alter it and redistribute it freely, |
---|
8 | subject to the following restrictions: |
---|
9 | |
---|
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
12 | 3. This notice may not be removed or altered from any source distribution. |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | #ifndef SIMD__VECTOR3_H |
---|
18 | #define SIMD__VECTOR3_H |
---|
19 | |
---|
20 | |
---|
21 | #include "btScalar.h" |
---|
22 | #include "btScalar.h" |
---|
23 | #include "btMinMax.h" |
---|
24 | /**@brief btVector3 can be used to represent 3D points and vectors. |
---|
25 | * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user |
---|
26 | * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers |
---|
27 | */ |
---|
28 | |
---|
29 | ATTRIBUTE_ALIGNED16(class) btVector3 |
---|
30 | { |
---|
31 | public: |
---|
32 | |
---|
33 | #if defined (__SPU__) && defined (__CELLOS_LV2__) |
---|
34 | union { |
---|
35 | vec_float4 mVec128; |
---|
36 | btScalar m_floats[4]; |
---|
37 | }; |
---|
38 | public: |
---|
39 | vec_float4 get128() const |
---|
40 | { |
---|
41 | return mVec128; |
---|
42 | } |
---|
43 | public: |
---|
44 | #else //__CELLOS_LV2__ __SPU__ |
---|
45 | #ifdef BT_USE_SSE // WIN32 |
---|
46 | union { |
---|
47 | __m128 mVec128; |
---|
48 | btScalar m_floats[4]; |
---|
49 | }; |
---|
50 | SIMD_FORCE_INLINE __m128 get128() const |
---|
51 | { |
---|
52 | return mVec128; |
---|
53 | } |
---|
54 | SIMD_FORCE_INLINE void set128(__m128 v128) |
---|
55 | { |
---|
56 | mVec128 = v128; |
---|
57 | } |
---|
58 | #else |
---|
59 | btScalar m_floats[4]; |
---|
60 | #endif |
---|
61 | #endif //__CELLOS_LV2__ __SPU__ |
---|
62 | |
---|
63 | public: |
---|
64 | |
---|
65 | /**@brief No initialization constructor */ |
---|
66 | SIMD_FORCE_INLINE btVector3() {} |
---|
67 | |
---|
68 | |
---|
69 | |
---|
70 | /**@brief Constructor from scalars |
---|
71 | * @param x X value |
---|
72 | * @param y Y value |
---|
73 | * @param z Z value |
---|
74 | */ |
---|
75 | SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z) |
---|
76 | { |
---|
77 | m_floats[0] = x; |
---|
78 | m_floats[1] = y; |
---|
79 | m_floats[2] = z; |
---|
80 | m_floats[3] = btScalar(0.); |
---|
81 | } |
---|
82 | |
---|
83 | |
---|
84 | /**@brief Add a vector to this one |
---|
85 | * @param The vector to add to this one */ |
---|
86 | SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) |
---|
87 | { |
---|
88 | |
---|
89 | m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1];m_floats[2] += v.m_floats[2]; |
---|
90 | return *this; |
---|
91 | } |
---|
92 | |
---|
93 | |
---|
94 | /**@brief Subtract a vector from this one |
---|
95 | * @param The vector to subtract */ |
---|
96 | SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) |
---|
97 | { |
---|
98 | m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1];m_floats[2] -= v.m_floats[2]; |
---|
99 | return *this; |
---|
100 | } |
---|
101 | /**@brief Scale the vector |
---|
102 | * @param s Scale factor */ |
---|
103 | SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) |
---|
104 | { |
---|
105 | m_floats[0] *= s; m_floats[1] *= s;m_floats[2] *= s; |
---|
106 | return *this; |
---|
107 | } |
---|
108 | |
---|
109 | /**@brief Inversely scale the vector |
---|
110 | * @param s Scale factor to divide by */ |
---|
111 | SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) |
---|
112 | { |
---|
113 | btFullAssert(s != btScalar(0.0)); |
---|
114 | return *this *= btScalar(1.0) / s; |
---|
115 | } |
---|
116 | |
---|
117 | /**@brief Return the dot product |
---|
118 | * @param v The other vector in the dot product */ |
---|
119 | SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const |
---|
120 | { |
---|
121 | return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] +m_floats[2] * v.m_floats[2]; |
---|
122 | } |
---|
123 | |
---|
124 | /**@brief Return the length of the vector squared */ |
---|
125 | SIMD_FORCE_INLINE btScalar length2() const |
---|
126 | { |
---|
127 | return dot(*this); |
---|
128 | } |
---|
129 | |
---|
130 | /**@brief Return the length of the vector */ |
---|
131 | SIMD_FORCE_INLINE btScalar length() const |
---|
132 | { |
---|
133 | return btSqrt(length2()); |
---|
134 | } |
---|
135 | |
---|
136 | /**@brief Return the distance squared between the ends of this and another vector |
---|
137 | * This is symantically treating the vector like a point */ |
---|
138 | SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; |
---|
139 | |
---|
140 | /**@brief Return the distance between the ends of this and another vector |
---|
141 | * This is symantically treating the vector like a point */ |
---|
142 | SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; |
---|
143 | |
---|
144 | /**@brief Normalize this vector |
---|
145 | * x^2 + y^2 + z^2 = 1 */ |
---|
146 | SIMD_FORCE_INLINE btVector3& normalize() |
---|
147 | { |
---|
148 | return *this /= length(); |
---|
149 | } |
---|
150 | |
---|
151 | /**@brief Return a normalized version of this vector */ |
---|
152 | SIMD_FORCE_INLINE btVector3 normalized() const; |
---|
153 | |
---|
154 | /**@brief Rotate this vector |
---|
155 | * @param wAxis The axis to rotate about |
---|
156 | * @param angle The angle to rotate by */ |
---|
157 | SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ); |
---|
158 | |
---|
159 | /**@brief Return the angle between this and another vector |
---|
160 | * @param v The other vector */ |
---|
161 | SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const |
---|
162 | { |
---|
163 | btScalar s = btSqrt(length2() * v.length2()); |
---|
164 | btFullAssert(s != btScalar(0.0)); |
---|
165 | return btAcos(dot(v) / s); |
---|
166 | } |
---|
167 | /**@brief Return a vector will the absolute values of each element */ |
---|
168 | SIMD_FORCE_INLINE btVector3 absolute() const |
---|
169 | { |
---|
170 | return btVector3( |
---|
171 | btFabs(m_floats[0]), |
---|
172 | btFabs(m_floats[1]), |
---|
173 | btFabs(m_floats[2])); |
---|
174 | } |
---|
175 | /**@brief Return the cross product between this and another vector |
---|
176 | * @param v The other vector */ |
---|
177 | SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const |
---|
178 | { |
---|
179 | return btVector3( |
---|
180 | m_floats[1] * v.m_floats[2] -m_floats[2] * v.m_floats[1], |
---|
181 | m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], |
---|
182 | m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); |
---|
183 | } |
---|
184 | |
---|
185 | SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const |
---|
186 | { |
---|
187 | return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + |
---|
188 | m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + |
---|
189 | m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); |
---|
190 | } |
---|
191 | |
---|
192 | /**@brief Return the axis with the smallest value |
---|
193 | * Note return values are 0,1,2 for x, y, or z */ |
---|
194 | SIMD_FORCE_INLINE int minAxis() const |
---|
195 | { |
---|
196 | return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2); |
---|
197 | } |
---|
198 | |
---|
199 | /**@brief Return the axis with the largest value |
---|
200 | * Note return values are 0,1,2 for x, y, or z */ |
---|
201 | SIMD_FORCE_INLINE int maxAxis() const |
---|
202 | { |
---|
203 | return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0); |
---|
204 | } |
---|
205 | |
---|
206 | SIMD_FORCE_INLINE int furthestAxis() const |
---|
207 | { |
---|
208 | return absolute().minAxis(); |
---|
209 | } |
---|
210 | |
---|
211 | SIMD_FORCE_INLINE int closestAxis() const |
---|
212 | { |
---|
213 | return absolute().maxAxis(); |
---|
214 | } |
---|
215 | |
---|
216 | SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) |
---|
217 | { |
---|
218 | btScalar s = btScalar(1.0) - rt; |
---|
219 | m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; |
---|
220 | m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; |
---|
221 | m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; |
---|
222 | //don't do the unused w component |
---|
223 | // m_co[3] = s * v0[3] + rt * v1[3]; |
---|
224 | } |
---|
225 | |
---|
226 | /**@brief Return the linear interpolation between this and another vector |
---|
227 | * @param v The other vector |
---|
228 | * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ |
---|
229 | SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const |
---|
230 | { |
---|
231 | return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, |
---|
232 | m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, |
---|
233 | m_floats[2] + (v.m_floats[2] -m_floats[2]) * t); |
---|
234 | } |
---|
235 | |
---|
236 | /**@brief Elementwise multiply this vector by the other |
---|
237 | * @param v The other vector */ |
---|
238 | SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) |
---|
239 | { |
---|
240 | m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1];m_floats[2] *= v.m_floats[2]; |
---|
241 | return *this; |
---|
242 | } |
---|
243 | |
---|
244 | /**@brief Return the x value */ |
---|
245 | SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } |
---|
246 | /**@brief Return the y value */ |
---|
247 | SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } |
---|
248 | /**@brief Return the z value */ |
---|
249 | SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } |
---|
250 | /**@brief Set the x value */ |
---|
251 | SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x;}; |
---|
252 | /**@brief Set the y value */ |
---|
253 | SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y;}; |
---|
254 | /**@brief Set the z value */ |
---|
255 | SIMD_FORCE_INLINE void setZ(btScalar z) {m_floats[2] = z;}; |
---|
256 | /**@brief Set the w value */ |
---|
257 | SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w;}; |
---|
258 | /**@brief Return the x value */ |
---|
259 | SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } |
---|
260 | /**@brief Return the y value */ |
---|
261 | SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } |
---|
262 | /**@brief Return the z value */ |
---|
263 | SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } |
---|
264 | /**@brief Return the w value */ |
---|
265 | SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } |
---|
266 | |
---|
267 | //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; } |
---|
268 | //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; } |
---|
269 | ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. |
---|
270 | SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; } |
---|
271 | SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; } |
---|
272 | |
---|
273 | SIMD_FORCE_INLINE bool operator==(const btVector3& other) const |
---|
274 | { |
---|
275 | return ((m_floats[3]==other.m_floats[3]) && (m_floats[2]==other.m_floats[2]) && (m_floats[1]==other.m_floats[1]) && (m_floats[0]==other.m_floats[0])); |
---|
276 | } |
---|
277 | |
---|
278 | SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const |
---|
279 | { |
---|
280 | return !(*this == other); |
---|
281 | } |
---|
282 | |
---|
283 | /**@brief Set each element to the max of the current values and the values of another btVector3 |
---|
284 | * @param other The other btVector3 to compare with |
---|
285 | */ |
---|
286 | SIMD_FORCE_INLINE void setMax(const btVector3& other) |
---|
287 | { |
---|
288 | btSetMax(m_floats[0], other.m_floats[0]); |
---|
289 | btSetMax(m_floats[1], other.m_floats[1]); |
---|
290 | btSetMax(m_floats[2], other.m_floats[2]); |
---|
291 | btSetMax(m_floats[3], other.w()); |
---|
292 | } |
---|
293 | /**@brief Set each element to the min of the current values and the values of another btVector3 |
---|
294 | * @param other The other btVector3 to compare with |
---|
295 | */ |
---|
296 | SIMD_FORCE_INLINE void setMin(const btVector3& other) |
---|
297 | { |
---|
298 | btSetMin(m_floats[0], other.m_floats[0]); |
---|
299 | btSetMin(m_floats[1], other.m_floats[1]); |
---|
300 | btSetMin(m_floats[2], other.m_floats[2]); |
---|
301 | btSetMin(m_floats[3], other.w()); |
---|
302 | } |
---|
303 | |
---|
304 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z) |
---|
305 | { |
---|
306 | m_floats[0]=x; |
---|
307 | m_floats[1]=y; |
---|
308 | m_floats[2]=z; |
---|
309 | m_floats[3] = 0.f; |
---|
310 | } |
---|
311 | |
---|
312 | void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const |
---|
313 | { |
---|
314 | v0->setValue(0. ,-z() ,y()); |
---|
315 | v1->setValue(z() ,0. ,-x()); |
---|
316 | v2->setValue(-y() ,x() ,0.); |
---|
317 | } |
---|
318 | |
---|
319 | }; |
---|
320 | |
---|
321 | /**@brief Return the sum of two vectors (Point symantics)*/ |
---|
322 | SIMD_FORCE_INLINE btVector3 |
---|
323 | operator+(const btVector3& v1, const btVector3& v2) |
---|
324 | { |
---|
325 | return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]); |
---|
326 | } |
---|
327 | |
---|
328 | /**@brief Return the elementwise product of two vectors */ |
---|
329 | SIMD_FORCE_INLINE btVector3 |
---|
330 | operator*(const btVector3& v1, const btVector3& v2) |
---|
331 | { |
---|
332 | return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]); |
---|
333 | } |
---|
334 | |
---|
335 | /**@brief Return the difference between two vectors */ |
---|
336 | SIMD_FORCE_INLINE btVector3 |
---|
337 | operator-(const btVector3& v1, const btVector3& v2) |
---|
338 | { |
---|
339 | return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]); |
---|
340 | } |
---|
341 | /**@brief Return the negative of the vector */ |
---|
342 | SIMD_FORCE_INLINE btVector3 |
---|
343 | operator-(const btVector3& v) |
---|
344 | { |
---|
345 | return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); |
---|
346 | } |
---|
347 | |
---|
348 | /**@brief Return the vector scaled by s */ |
---|
349 | SIMD_FORCE_INLINE btVector3 |
---|
350 | operator*(const btVector3& v, const btScalar& s) |
---|
351 | { |
---|
352 | return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s); |
---|
353 | } |
---|
354 | |
---|
355 | /**@brief Return the vector scaled by s */ |
---|
356 | SIMD_FORCE_INLINE btVector3 |
---|
357 | operator*(const btScalar& s, const btVector3& v) |
---|
358 | { |
---|
359 | return v * s; |
---|
360 | } |
---|
361 | |
---|
362 | /**@brief Return the vector inversely scaled by s */ |
---|
363 | SIMD_FORCE_INLINE btVector3 |
---|
364 | operator/(const btVector3& v, const btScalar& s) |
---|
365 | { |
---|
366 | btFullAssert(s != btScalar(0.0)); |
---|
367 | return v * (btScalar(1.0) / s); |
---|
368 | } |
---|
369 | |
---|
370 | /**@brief Return the vector inversely scaled by s */ |
---|
371 | SIMD_FORCE_INLINE btVector3 |
---|
372 | operator/(const btVector3& v1, const btVector3& v2) |
---|
373 | { |
---|
374 | return btVector3(v1.m_floats[0] / v2.m_floats[0],v1.m_floats[1] / v2.m_floats[1],v1.m_floats[2] / v2.m_floats[2]); |
---|
375 | } |
---|
376 | |
---|
377 | /**@brief Return the dot product between two vectors */ |
---|
378 | SIMD_FORCE_INLINE btScalar |
---|
379 | dot(const btVector3& v1, const btVector3& v2) |
---|
380 | { |
---|
381 | return v1.dot(v2); |
---|
382 | } |
---|
383 | |
---|
384 | |
---|
385 | /**@brief Return the distance squared between two vectors */ |
---|
386 | SIMD_FORCE_INLINE btScalar |
---|
387 | distance2(const btVector3& v1, const btVector3& v2) |
---|
388 | { |
---|
389 | return v1.distance2(v2); |
---|
390 | } |
---|
391 | |
---|
392 | |
---|
393 | /**@brief Return the distance between two vectors */ |
---|
394 | SIMD_FORCE_INLINE btScalar |
---|
395 | distance(const btVector3& v1, const btVector3& v2) |
---|
396 | { |
---|
397 | return v1.distance(v2); |
---|
398 | } |
---|
399 | |
---|
400 | /**@brief Return the angle between two vectors */ |
---|
401 | SIMD_FORCE_INLINE btScalar |
---|
402 | angle(const btVector3& v1, const btVector3& v2) |
---|
403 | { |
---|
404 | return v1.angle(v2); |
---|
405 | } |
---|
406 | |
---|
407 | /**@brief Return the cross product of two vectors */ |
---|
408 | SIMD_FORCE_INLINE btVector3 |
---|
409 | cross(const btVector3& v1, const btVector3& v2) |
---|
410 | { |
---|
411 | return v1.cross(v2); |
---|
412 | } |
---|
413 | |
---|
414 | SIMD_FORCE_INLINE btScalar |
---|
415 | triple(const btVector3& v1, const btVector3& v2, const btVector3& v3) |
---|
416 | { |
---|
417 | return v1.triple(v2, v3); |
---|
418 | } |
---|
419 | |
---|
420 | /**@brief Return the linear interpolation between two vectors |
---|
421 | * @param v1 One vector |
---|
422 | * @param v2 The other vector |
---|
423 | * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ |
---|
424 | SIMD_FORCE_INLINE btVector3 |
---|
425 | lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) |
---|
426 | { |
---|
427 | return v1.lerp(v2, t); |
---|
428 | } |
---|
429 | |
---|
430 | |
---|
431 | |
---|
432 | SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const |
---|
433 | { |
---|
434 | return (v - *this).length2(); |
---|
435 | } |
---|
436 | |
---|
437 | SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const |
---|
438 | { |
---|
439 | return (v - *this).length(); |
---|
440 | } |
---|
441 | |
---|
442 | SIMD_FORCE_INLINE btVector3 btVector3::normalized() const |
---|
443 | { |
---|
444 | return *this / length(); |
---|
445 | } |
---|
446 | |
---|
447 | SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar angle ) |
---|
448 | { |
---|
449 | // wAxis must be a unit lenght vector |
---|
450 | |
---|
451 | btVector3 o = wAxis * wAxis.dot( *this ); |
---|
452 | btVector3 x = *this - o; |
---|
453 | btVector3 y; |
---|
454 | |
---|
455 | y = wAxis.cross( *this ); |
---|
456 | |
---|
457 | return ( o + x * btCos( angle ) + y * btSin( angle ) ); |
---|
458 | } |
---|
459 | |
---|
460 | class btVector4 : public btVector3 |
---|
461 | { |
---|
462 | public: |
---|
463 | |
---|
464 | SIMD_FORCE_INLINE btVector4() {} |
---|
465 | |
---|
466 | |
---|
467 | SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w) |
---|
468 | : btVector3(x,y,z) |
---|
469 | { |
---|
470 | m_floats[3] = w; |
---|
471 | } |
---|
472 | |
---|
473 | |
---|
474 | SIMD_FORCE_INLINE btVector4 absolute4() const |
---|
475 | { |
---|
476 | return btVector4( |
---|
477 | btFabs(m_floats[0]), |
---|
478 | btFabs(m_floats[1]), |
---|
479 | btFabs(m_floats[2]), |
---|
480 | btFabs(m_floats[3])); |
---|
481 | } |
---|
482 | |
---|
483 | |
---|
484 | |
---|
485 | btScalar getW() const { return m_floats[3];} |
---|
486 | |
---|
487 | |
---|
488 | SIMD_FORCE_INLINE int maxAxis4() const |
---|
489 | { |
---|
490 | int maxIndex = -1; |
---|
491 | btScalar maxVal = btScalar(-1e30); |
---|
492 | if (m_floats[0] > maxVal) |
---|
493 | { |
---|
494 | maxIndex = 0; |
---|
495 | maxVal = m_floats[0]; |
---|
496 | } |
---|
497 | if (m_floats[1] > maxVal) |
---|
498 | { |
---|
499 | maxIndex = 1; |
---|
500 | maxVal = m_floats[1]; |
---|
501 | } |
---|
502 | if (m_floats[2] > maxVal) |
---|
503 | { |
---|
504 | maxIndex = 2; |
---|
505 | maxVal =m_floats[2]; |
---|
506 | } |
---|
507 | if (m_floats[3] > maxVal) |
---|
508 | { |
---|
509 | maxIndex = 3; |
---|
510 | maxVal = m_floats[3]; |
---|
511 | } |
---|
512 | |
---|
513 | |
---|
514 | |
---|
515 | |
---|
516 | return maxIndex; |
---|
517 | |
---|
518 | } |
---|
519 | |
---|
520 | |
---|
521 | SIMD_FORCE_INLINE int minAxis4() const |
---|
522 | { |
---|
523 | int minIndex = -1; |
---|
524 | btScalar minVal = btScalar(1e30); |
---|
525 | if (m_floats[0] < minVal) |
---|
526 | { |
---|
527 | minIndex = 0; |
---|
528 | minVal = m_floats[0]; |
---|
529 | } |
---|
530 | if (m_floats[1] < minVal) |
---|
531 | { |
---|
532 | minIndex = 1; |
---|
533 | minVal = m_floats[1]; |
---|
534 | } |
---|
535 | if (m_floats[2] < minVal) |
---|
536 | { |
---|
537 | minIndex = 2; |
---|
538 | minVal =m_floats[2]; |
---|
539 | } |
---|
540 | if (m_floats[3] < minVal) |
---|
541 | { |
---|
542 | minIndex = 3; |
---|
543 | minVal = m_floats[3]; |
---|
544 | } |
---|
545 | |
---|
546 | return minIndex; |
---|
547 | |
---|
548 | } |
---|
549 | |
---|
550 | |
---|
551 | SIMD_FORCE_INLINE int closestAxis4() const |
---|
552 | { |
---|
553 | return absolute4().maxAxis4(); |
---|
554 | } |
---|
555 | |
---|
556 | |
---|
557 | |
---|
558 | |
---|
559 | /**@brief Set x,y,z and zero w |
---|
560 | * @param x Value of x |
---|
561 | * @param y Value of y |
---|
562 | * @param z Value of z |
---|
563 | */ |
---|
564 | |
---|
565 | |
---|
566 | /* void getValue(btScalar *m) const |
---|
567 | { |
---|
568 | m[0] = m_floats[0]; |
---|
569 | m[1] = m_floats[1]; |
---|
570 | m[2] =m_floats[2]; |
---|
571 | } |
---|
572 | */ |
---|
573 | /**@brief Set the values |
---|
574 | * @param x Value of x |
---|
575 | * @param y Value of y |
---|
576 | * @param z Value of z |
---|
577 | * @param w Value of w |
---|
578 | */ |
---|
579 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w) |
---|
580 | { |
---|
581 | m_floats[0]=x; |
---|
582 | m_floats[1]=y; |
---|
583 | m_floats[2]=z; |
---|
584 | m_floats[3]=w; |
---|
585 | } |
---|
586 | |
---|
587 | |
---|
588 | |
---|
589 | |
---|
590 | }; |
---|
591 | |
---|
592 | |
---|
593 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
594 | SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) |
---|
595 | { |
---|
596 | #ifdef BT_USE_DOUBLE_PRECISION |
---|
597 | unsigned char* dest = (unsigned char*) &destVal; |
---|
598 | unsigned char* src = (unsigned char*) &sourceVal; |
---|
599 | dest[0] = src[7]; |
---|
600 | dest[1] = src[6]; |
---|
601 | dest[2] = src[5]; |
---|
602 | dest[3] = src[4]; |
---|
603 | dest[4] = src[3]; |
---|
604 | dest[5] = src[2]; |
---|
605 | dest[6] = src[1]; |
---|
606 | dest[7] = src[0]; |
---|
607 | #else |
---|
608 | unsigned char* dest = (unsigned char*) &destVal; |
---|
609 | unsigned char* src = (unsigned char*) &sourceVal; |
---|
610 | dest[0] = src[3]; |
---|
611 | dest[1] = src[2]; |
---|
612 | dest[2] = src[1]; |
---|
613 | dest[3] = src[0]; |
---|
614 | #endif //BT_USE_DOUBLE_PRECISION |
---|
615 | } |
---|
616 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
617 | SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) |
---|
618 | { |
---|
619 | for (int i=0;i<4;i++) |
---|
620 | { |
---|
621 | btSwapScalarEndian(sourceVec[i],destVec[i]); |
---|
622 | } |
---|
623 | |
---|
624 | } |
---|
625 | |
---|
626 | ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
---|
627 | SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) |
---|
628 | { |
---|
629 | |
---|
630 | btVector3 swappedVec; |
---|
631 | for (int i=0;i<4;i++) |
---|
632 | { |
---|
633 | btSwapScalarEndian(vector[i],swappedVec[i]); |
---|
634 | } |
---|
635 | vector = swappedVec; |
---|
636 | } |
---|
637 | |
---|
638 | #endif //SIMD__VECTOR3_H |
---|