1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | #include "btQuantizedBvh.h" |
---|
17 | |
---|
18 | #include "LinearMath/btAabbUtil2.h" |
---|
19 | #include "LinearMath/btIDebugDraw.h" |
---|
20 | |
---|
21 | #define RAYAABB2 |
---|
22 | |
---|
23 | btQuantizedBvh::btQuantizedBvh() : |
---|
24 | m_bulletVersion(BT_BULLET_VERSION), |
---|
25 | m_useQuantization(false), |
---|
26 | //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) |
---|
27 | m_traversalMode(TRAVERSAL_STACKLESS) |
---|
28 | //m_traversalMode(TRAVERSAL_RECURSIVE) |
---|
29 | ,m_subtreeHeaderCount(0) //PCK: add this line |
---|
30 | { |
---|
31 | m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY); |
---|
32 | m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY); |
---|
33 | } |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | |
---|
38 | |
---|
39 | void btQuantizedBvh::buildInternal() |
---|
40 | { |
---|
41 | ///assumes that caller filled in the m_quantizedLeafNodes |
---|
42 | m_useQuantization = true; |
---|
43 | int numLeafNodes = 0; |
---|
44 | |
---|
45 | if (m_useQuantization) |
---|
46 | { |
---|
47 | //now we have an array of leafnodes in m_leafNodes |
---|
48 | numLeafNodes = m_quantizedLeafNodes.size(); |
---|
49 | |
---|
50 | m_quantizedContiguousNodes.resize(2*numLeafNodes); |
---|
51 | |
---|
52 | } |
---|
53 | |
---|
54 | m_curNodeIndex = 0; |
---|
55 | |
---|
56 | buildTree(0,numLeafNodes); |
---|
57 | |
---|
58 | ///if the entire tree is small then subtree size, we need to create a header info for the tree |
---|
59 | if(m_useQuantization && !m_SubtreeHeaders.size()) |
---|
60 | { |
---|
61 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
62 | subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); |
---|
63 | subtree.m_rootNodeIndex = 0; |
---|
64 | subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); |
---|
65 | } |
---|
66 | |
---|
67 | //PCK: update the copy of the size |
---|
68 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
69 | |
---|
70 | //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary |
---|
71 | m_quantizedLeafNodes.clear(); |
---|
72 | m_leafNodes.clear(); |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | |
---|
77 | ///just for debugging, to visualize the individual patches/subtrees |
---|
78 | #ifdef DEBUG_PATCH_COLORS |
---|
79 | btVector3 color[4]= |
---|
80 | { |
---|
81 | btVector3(255,0,0), |
---|
82 | btVector3(0,255,0), |
---|
83 | btVector3(0,0,255), |
---|
84 | btVector3(0,255,255) |
---|
85 | }; |
---|
86 | #endif //DEBUG_PATCH_COLORS |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) |
---|
91 | { |
---|
92 | //enlarge the AABB to avoid division by zero when initializing the quantization values |
---|
93 | btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); |
---|
94 | m_bvhAabbMin = bvhAabbMin - clampValue; |
---|
95 | m_bvhAabbMax = bvhAabbMax + clampValue; |
---|
96 | btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; |
---|
97 | m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; |
---|
98 | m_useQuantization = true; |
---|
99 | } |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | btQuantizedBvh::~btQuantizedBvh() |
---|
105 | { |
---|
106 | } |
---|
107 | |
---|
108 | #ifdef DEBUG_TREE_BUILDING |
---|
109 | int gStackDepth = 0; |
---|
110 | int gMaxStackDepth = 0; |
---|
111 | #endif //DEBUG_TREE_BUILDING |
---|
112 | |
---|
113 | void btQuantizedBvh::buildTree (int startIndex,int endIndex) |
---|
114 | { |
---|
115 | #ifdef DEBUG_TREE_BUILDING |
---|
116 | gStackDepth++; |
---|
117 | if (gStackDepth > gMaxStackDepth) |
---|
118 | gMaxStackDepth = gStackDepth; |
---|
119 | #endif //DEBUG_TREE_BUILDING |
---|
120 | |
---|
121 | |
---|
122 | int splitAxis, splitIndex, i; |
---|
123 | int numIndices =endIndex-startIndex; |
---|
124 | int curIndex = m_curNodeIndex; |
---|
125 | |
---|
126 | btAssert(numIndices>0); |
---|
127 | |
---|
128 | if (numIndices==1) |
---|
129 | { |
---|
130 | #ifdef DEBUG_TREE_BUILDING |
---|
131 | gStackDepth--; |
---|
132 | #endif //DEBUG_TREE_BUILDING |
---|
133 | |
---|
134 | assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); |
---|
135 | |
---|
136 | m_curNodeIndex++; |
---|
137 | return; |
---|
138 | } |
---|
139 | //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. |
---|
140 | |
---|
141 | splitAxis = calcSplittingAxis(startIndex,endIndex); |
---|
142 | |
---|
143 | splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); |
---|
144 | |
---|
145 | int internalNodeIndex = m_curNodeIndex; |
---|
146 | |
---|
147 | //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. |
---|
148 | //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values |
---|
149 | setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization |
---|
150 | setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization |
---|
151 | |
---|
152 | |
---|
153 | for (i=startIndex;i<endIndex;i++) |
---|
154 | { |
---|
155 | mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); |
---|
156 | } |
---|
157 | |
---|
158 | m_curNodeIndex++; |
---|
159 | |
---|
160 | |
---|
161 | //internalNode->m_escapeIndex; |
---|
162 | |
---|
163 | int leftChildNodexIndex = m_curNodeIndex; |
---|
164 | |
---|
165 | //build left child tree |
---|
166 | buildTree(startIndex,splitIndex); |
---|
167 | |
---|
168 | int rightChildNodexIndex = m_curNodeIndex; |
---|
169 | //build right child tree |
---|
170 | buildTree(splitIndex,endIndex); |
---|
171 | |
---|
172 | #ifdef DEBUG_TREE_BUILDING |
---|
173 | gStackDepth--; |
---|
174 | #endif //DEBUG_TREE_BUILDING |
---|
175 | |
---|
176 | int escapeIndex = m_curNodeIndex - curIndex; |
---|
177 | |
---|
178 | if (m_useQuantization) |
---|
179 | { |
---|
180 | //escapeIndex is the number of nodes of this subtree |
---|
181 | const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); |
---|
182 | const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; |
---|
183 | if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) |
---|
184 | { |
---|
185 | updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); |
---|
186 | } |
---|
187 | } else |
---|
188 | { |
---|
189 | |
---|
190 | } |
---|
191 | |
---|
192 | setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); |
---|
193 | |
---|
194 | } |
---|
195 | |
---|
196 | void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) |
---|
197 | { |
---|
198 | btAssert(m_useQuantization); |
---|
199 | |
---|
200 | btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; |
---|
201 | int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); |
---|
202 | int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
203 | |
---|
204 | btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; |
---|
205 | int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); |
---|
206 | int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
207 | |
---|
208 | if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
209 | { |
---|
210 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
211 | subtree.setAabbFromQuantizeNode(leftChildNode); |
---|
212 | subtree.m_rootNodeIndex = leftChildNodexIndex; |
---|
213 | subtree.m_subtreeSize = leftSubTreeSize; |
---|
214 | } |
---|
215 | |
---|
216 | if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
217 | { |
---|
218 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
219 | subtree.setAabbFromQuantizeNode(rightChildNode); |
---|
220 | subtree.m_rootNodeIndex = rightChildNodexIndex; |
---|
221 | subtree.m_subtreeSize = rightSubTreeSize; |
---|
222 | } |
---|
223 | |
---|
224 | //PCK: update the copy of the size |
---|
225 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
226 | } |
---|
227 | |
---|
228 | |
---|
229 | int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) |
---|
230 | { |
---|
231 | int i; |
---|
232 | int splitIndex =startIndex; |
---|
233 | int numIndices = endIndex - startIndex; |
---|
234 | btScalar splitValue; |
---|
235 | |
---|
236 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
237 | for (i=startIndex;i<endIndex;i++) |
---|
238 | { |
---|
239 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
240 | means+=center; |
---|
241 | } |
---|
242 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
243 | |
---|
244 | splitValue = means[splitAxis]; |
---|
245 | |
---|
246 | //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. |
---|
247 | for (i=startIndex;i<endIndex;i++) |
---|
248 | { |
---|
249 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
250 | if (center[splitAxis] > splitValue) |
---|
251 | { |
---|
252 | //swap |
---|
253 | swapLeafNodes(i,splitIndex); |
---|
254 | splitIndex++; |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex |
---|
259 | //otherwise the tree-building might fail due to stack-overflows in certain cases. |
---|
260 | //unbalanced1 is unsafe: it can cause stack overflows |
---|
261 | //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); |
---|
262 | |
---|
263 | //unbalanced2 should work too: always use center (perfect balanced trees) |
---|
264 | //bool unbalanced2 = true; |
---|
265 | |
---|
266 | //this should be safe too: |
---|
267 | int rangeBalancedIndices = numIndices/3; |
---|
268 | bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); |
---|
269 | |
---|
270 | if (unbalanced) |
---|
271 | { |
---|
272 | splitIndex = startIndex+ (numIndices>>1); |
---|
273 | } |
---|
274 | |
---|
275 | bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); |
---|
276 | (void)unbal; |
---|
277 | btAssert(!unbal); |
---|
278 | |
---|
279 | return splitIndex; |
---|
280 | } |
---|
281 | |
---|
282 | |
---|
283 | int btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) |
---|
284 | { |
---|
285 | int i; |
---|
286 | |
---|
287 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
288 | btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
289 | int numIndices = endIndex-startIndex; |
---|
290 | |
---|
291 | for (i=startIndex;i<endIndex;i++) |
---|
292 | { |
---|
293 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
294 | means+=center; |
---|
295 | } |
---|
296 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
297 | |
---|
298 | for (i=startIndex;i<endIndex;i++) |
---|
299 | { |
---|
300 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
301 | btVector3 diff2 = center-means; |
---|
302 | diff2 = diff2 * diff2; |
---|
303 | variance += diff2; |
---|
304 | } |
---|
305 | variance *= (btScalar(1.)/ ((btScalar)numIndices-1) ); |
---|
306 | |
---|
307 | return variance.maxAxis(); |
---|
308 | } |
---|
309 | |
---|
310 | |
---|
311 | |
---|
312 | void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
313 | { |
---|
314 | //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) |
---|
315 | |
---|
316 | if (m_useQuantization) |
---|
317 | { |
---|
318 | ///quantize query AABB |
---|
319 | unsigned short int quantizedQueryAabbMin[3]; |
---|
320 | unsigned short int quantizedQueryAabbMax[3]; |
---|
321 | quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); |
---|
322 | quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); |
---|
323 | |
---|
324 | switch (m_traversalMode) |
---|
325 | { |
---|
326 | case TRAVERSAL_STACKLESS: |
---|
327 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); |
---|
328 | break; |
---|
329 | case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: |
---|
330 | walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
331 | break; |
---|
332 | case TRAVERSAL_RECURSIVE: |
---|
333 | { |
---|
334 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; |
---|
335 | walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
336 | } |
---|
337 | break; |
---|
338 | default: |
---|
339 | //unsupported |
---|
340 | btAssert(0); |
---|
341 | } |
---|
342 | } else |
---|
343 | { |
---|
344 | walkStacklessTree(nodeCallback,aabbMin,aabbMax); |
---|
345 | } |
---|
346 | } |
---|
347 | |
---|
348 | |
---|
349 | int maxIterations = 0; |
---|
350 | |
---|
351 | |
---|
352 | void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
353 | { |
---|
354 | btAssert(!m_useQuantization); |
---|
355 | |
---|
356 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; |
---|
357 | int escapeIndex, curIndex = 0; |
---|
358 | int walkIterations = 0; |
---|
359 | bool isLeafNode; |
---|
360 | //PCK: unsigned instead of bool |
---|
361 | unsigned aabbOverlap; |
---|
362 | |
---|
363 | while (curIndex < m_curNodeIndex) |
---|
364 | { |
---|
365 | //catch bugs in tree data |
---|
366 | btAssert (walkIterations < m_curNodeIndex); |
---|
367 | |
---|
368 | walkIterations++; |
---|
369 | aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); |
---|
370 | isLeafNode = rootNode->m_escapeIndex == -1; |
---|
371 | |
---|
372 | //PCK: unsigned instead of bool |
---|
373 | if (isLeafNode && (aabbOverlap != 0)) |
---|
374 | { |
---|
375 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); |
---|
376 | } |
---|
377 | |
---|
378 | //PCK: unsigned instead of bool |
---|
379 | if ((aabbOverlap != 0) || isLeafNode) |
---|
380 | { |
---|
381 | rootNode++; |
---|
382 | curIndex++; |
---|
383 | } else |
---|
384 | { |
---|
385 | escapeIndex = rootNode->m_escapeIndex; |
---|
386 | rootNode += escapeIndex; |
---|
387 | curIndex += escapeIndex; |
---|
388 | } |
---|
389 | } |
---|
390 | if (maxIterations < walkIterations) |
---|
391 | maxIterations = walkIterations; |
---|
392 | |
---|
393 | } |
---|
394 | |
---|
395 | /* |
---|
396 | ///this was the original recursive traversal, before we optimized towards stackless traversal |
---|
397 | void btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
398 | { |
---|
399 | bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); |
---|
400 | if (aabbOverlap) |
---|
401 | { |
---|
402 | isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); |
---|
403 | if (isLeafNode) |
---|
404 | { |
---|
405 | nodeCallback->processNode(rootNode); |
---|
406 | } else |
---|
407 | { |
---|
408 | walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); |
---|
409 | walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); |
---|
410 | } |
---|
411 | } |
---|
412 | |
---|
413 | } |
---|
414 | */ |
---|
415 | |
---|
416 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
417 | { |
---|
418 | btAssert(m_useQuantization); |
---|
419 | |
---|
420 | bool isLeafNode; |
---|
421 | //PCK: unsigned instead of bool |
---|
422 | unsigned aabbOverlap; |
---|
423 | |
---|
424 | //PCK: unsigned instead of bool |
---|
425 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); |
---|
426 | isLeafNode = currentNode->isLeafNode(); |
---|
427 | |
---|
428 | //PCK: unsigned instead of bool |
---|
429 | if (aabbOverlap != 0) |
---|
430 | { |
---|
431 | if (isLeafNode) |
---|
432 | { |
---|
433 | nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); |
---|
434 | } else |
---|
435 | { |
---|
436 | //process left and right children |
---|
437 | const btQuantizedBvhNode* leftChildNode = currentNode+1; |
---|
438 | walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
439 | |
---|
440 | const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); |
---|
441 | walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
442 | } |
---|
443 | } |
---|
444 | } |
---|
445 | |
---|
446 | |
---|
447 | |
---|
448 | void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const |
---|
449 | { |
---|
450 | btAssert(!m_useQuantization); |
---|
451 | |
---|
452 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; |
---|
453 | int escapeIndex, curIndex = 0; |
---|
454 | int walkIterations = 0; |
---|
455 | bool isLeafNode; |
---|
456 | //PCK: unsigned instead of bool |
---|
457 | unsigned aabbOverlap=0; |
---|
458 | unsigned rayBoxOverlap=0; |
---|
459 | btScalar lambda_max = 1.0; |
---|
460 | |
---|
461 | /* Quick pruning by quantized box */ |
---|
462 | btVector3 rayAabbMin = raySource; |
---|
463 | btVector3 rayAabbMax = raySource; |
---|
464 | rayAabbMin.setMin(rayTarget); |
---|
465 | rayAabbMax.setMax(rayTarget); |
---|
466 | |
---|
467 | /* Add box cast extents to bounding box */ |
---|
468 | rayAabbMin += aabbMin; |
---|
469 | rayAabbMax += aabbMax; |
---|
470 | |
---|
471 | #ifdef RAYAABB2 |
---|
472 | btVector3 rayFrom = raySource; |
---|
473 | btVector3 rayDir = (rayTarget-raySource); |
---|
474 | rayDir.normalize (); |
---|
475 | lambda_max = rayDir.dot(rayTarget-raySource); |
---|
476 | ///what about division by zero? --> just set rayDirection[i] to 1.0 |
---|
477 | btVector3 rayDirectionInverse; |
---|
478 | rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0]; |
---|
479 | rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1]; |
---|
480 | rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2]; |
---|
481 | unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; |
---|
482 | #endif |
---|
483 | |
---|
484 | btVector3 bounds[2]; |
---|
485 | |
---|
486 | while (curIndex < m_curNodeIndex) |
---|
487 | { |
---|
488 | btScalar param = 1.0; |
---|
489 | //catch bugs in tree data |
---|
490 | btAssert (walkIterations < m_curNodeIndex); |
---|
491 | |
---|
492 | walkIterations++; |
---|
493 | |
---|
494 | bounds[0] = rootNode->m_aabbMinOrg; |
---|
495 | bounds[1] = rootNode->m_aabbMaxOrg; |
---|
496 | /* Add box cast extents */ |
---|
497 | bounds[0] += aabbMin; |
---|
498 | bounds[1] += aabbMax; |
---|
499 | |
---|
500 | aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); |
---|
501 | //perhaps profile if it is worth doing the aabbOverlap test first |
---|
502 | |
---|
503 | #ifdef RAYAABB2 |
---|
504 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method |
---|
505 | ///thanks Joerg/hiker for the reproduction case! |
---|
506 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 |
---|
507 | rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; |
---|
508 | |
---|
509 | #else |
---|
510 | btVector3 normal; |
---|
511 | rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal); |
---|
512 | #endif |
---|
513 | |
---|
514 | isLeafNode = rootNode->m_escapeIndex == -1; |
---|
515 | |
---|
516 | //PCK: unsigned instead of bool |
---|
517 | if (isLeafNode && (rayBoxOverlap != 0)) |
---|
518 | { |
---|
519 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); |
---|
520 | } |
---|
521 | |
---|
522 | //PCK: unsigned instead of bool |
---|
523 | if ((rayBoxOverlap != 0) || isLeafNode) |
---|
524 | { |
---|
525 | rootNode++; |
---|
526 | curIndex++; |
---|
527 | } else |
---|
528 | { |
---|
529 | escapeIndex = rootNode->m_escapeIndex; |
---|
530 | rootNode += escapeIndex; |
---|
531 | curIndex += escapeIndex; |
---|
532 | } |
---|
533 | } |
---|
534 | if (maxIterations < walkIterations) |
---|
535 | maxIterations = walkIterations; |
---|
536 | |
---|
537 | } |
---|
538 | |
---|
539 | |
---|
540 | |
---|
541 | void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const |
---|
542 | { |
---|
543 | btAssert(m_useQuantization); |
---|
544 | |
---|
545 | int curIndex = startNodeIndex; |
---|
546 | int walkIterations = 0; |
---|
547 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
548 | (void)subTreeSize; |
---|
549 | |
---|
550 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
551 | int escapeIndex; |
---|
552 | |
---|
553 | bool isLeafNode; |
---|
554 | //PCK: unsigned instead of bool |
---|
555 | unsigned boxBoxOverlap = 0; |
---|
556 | unsigned rayBoxOverlap = 0; |
---|
557 | |
---|
558 | btScalar lambda_max = 1.0; |
---|
559 | |
---|
560 | #ifdef RAYAABB2 |
---|
561 | btVector3 rayFrom = raySource; |
---|
562 | btVector3 rayDirection = (rayTarget-raySource); |
---|
563 | rayDirection.normalize (); |
---|
564 | lambda_max = rayDirection.dot(rayTarget-raySource); |
---|
565 | ///what about division by zero? --> just set rayDirection[i] to 1.0 |
---|
566 | rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[0]; |
---|
567 | rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[1]; |
---|
568 | rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[2]; |
---|
569 | unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; |
---|
570 | #endif |
---|
571 | |
---|
572 | /* Quick pruning by quantized box */ |
---|
573 | btVector3 rayAabbMin = raySource; |
---|
574 | btVector3 rayAabbMax = raySource; |
---|
575 | rayAabbMin.setMin(rayTarget); |
---|
576 | rayAabbMax.setMax(rayTarget); |
---|
577 | |
---|
578 | /* Add box cast extents to bounding box */ |
---|
579 | rayAabbMin += aabbMin; |
---|
580 | rayAabbMax += aabbMax; |
---|
581 | |
---|
582 | unsigned short int quantizedQueryAabbMin[3]; |
---|
583 | unsigned short int quantizedQueryAabbMax[3]; |
---|
584 | quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); |
---|
585 | quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); |
---|
586 | |
---|
587 | while (curIndex < endNodeIndex) |
---|
588 | { |
---|
589 | |
---|
590 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
591 | #ifdef VISUALLY_ANALYZE_BVH |
---|
592 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
593 | static int drawPatch = 0; |
---|
594 | //need some global access to a debugDrawer |
---|
595 | extern btIDebugDraw* debugDrawerPtr; |
---|
596 | if (curIndex==drawPatch) |
---|
597 | { |
---|
598 | btVector3 aabbMin,aabbMax; |
---|
599 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
600 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
601 | btVector3 color(1,0,0); |
---|
602 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
603 | } |
---|
604 | #endif//VISUALLY_ANALYZE_BVH |
---|
605 | |
---|
606 | //catch bugs in tree data |
---|
607 | btAssert (walkIterations < subTreeSize); |
---|
608 | |
---|
609 | walkIterations++; |
---|
610 | //PCK: unsigned instead of bool |
---|
611 | // only interested if this is closer than any previous hit |
---|
612 | btScalar param = 1.0; |
---|
613 | rayBoxOverlap = 0; |
---|
614 | boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
615 | isLeafNode = rootNode->isLeafNode(); |
---|
616 | if (boxBoxOverlap) |
---|
617 | { |
---|
618 | btVector3 bounds[2]; |
---|
619 | bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); |
---|
620 | bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); |
---|
621 | /* Add box cast extents */ |
---|
622 | bounds[0] += aabbMin; |
---|
623 | bounds[1] += aabbMax; |
---|
624 | btVector3 normal; |
---|
625 | #if 0 |
---|
626 | bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); |
---|
627 | bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
628 | if (ra2 != ra) |
---|
629 | { |
---|
630 | printf("functions don't match\n"); |
---|
631 | } |
---|
632 | #endif |
---|
633 | #ifdef RAYAABB2 |
---|
634 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method |
---|
635 | ///thanks Joerg/hiker for the reproduction case! |
---|
636 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 |
---|
637 | |
---|
638 | //BT_PROFILE("btRayAabb2"); |
---|
639 | rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); |
---|
640 | |
---|
641 | #else |
---|
642 | rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
643 | #endif |
---|
644 | } |
---|
645 | |
---|
646 | if (isLeafNode && rayBoxOverlap) |
---|
647 | { |
---|
648 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
649 | } |
---|
650 | |
---|
651 | //PCK: unsigned instead of bool |
---|
652 | if ((rayBoxOverlap != 0) || isLeafNode) |
---|
653 | { |
---|
654 | rootNode++; |
---|
655 | curIndex++; |
---|
656 | } else |
---|
657 | { |
---|
658 | escapeIndex = rootNode->getEscapeIndex(); |
---|
659 | rootNode += escapeIndex; |
---|
660 | curIndex += escapeIndex; |
---|
661 | } |
---|
662 | } |
---|
663 | if (maxIterations < walkIterations) |
---|
664 | maxIterations = walkIterations; |
---|
665 | |
---|
666 | } |
---|
667 | |
---|
668 | void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const |
---|
669 | { |
---|
670 | btAssert(m_useQuantization); |
---|
671 | |
---|
672 | int curIndex = startNodeIndex; |
---|
673 | int walkIterations = 0; |
---|
674 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
675 | (void)subTreeSize; |
---|
676 | |
---|
677 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
678 | int escapeIndex; |
---|
679 | |
---|
680 | bool isLeafNode; |
---|
681 | //PCK: unsigned instead of bool |
---|
682 | unsigned aabbOverlap; |
---|
683 | |
---|
684 | while (curIndex < endNodeIndex) |
---|
685 | { |
---|
686 | |
---|
687 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
688 | #ifdef VISUALLY_ANALYZE_BVH |
---|
689 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
690 | static int drawPatch = 0; |
---|
691 | //need some global access to a debugDrawer |
---|
692 | extern btIDebugDraw* debugDrawerPtr; |
---|
693 | if (curIndex==drawPatch) |
---|
694 | { |
---|
695 | btVector3 aabbMin,aabbMax; |
---|
696 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
697 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
698 | btVector3 color(1,0,0); |
---|
699 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
700 | } |
---|
701 | #endif//VISUALLY_ANALYZE_BVH |
---|
702 | |
---|
703 | //catch bugs in tree data |
---|
704 | btAssert (walkIterations < subTreeSize); |
---|
705 | |
---|
706 | walkIterations++; |
---|
707 | //PCK: unsigned instead of bool |
---|
708 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
709 | isLeafNode = rootNode->isLeafNode(); |
---|
710 | |
---|
711 | if (isLeafNode && aabbOverlap) |
---|
712 | { |
---|
713 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
714 | } |
---|
715 | |
---|
716 | //PCK: unsigned instead of bool |
---|
717 | if ((aabbOverlap != 0) || isLeafNode) |
---|
718 | { |
---|
719 | rootNode++; |
---|
720 | curIndex++; |
---|
721 | } else |
---|
722 | { |
---|
723 | escapeIndex = rootNode->getEscapeIndex(); |
---|
724 | rootNode += escapeIndex; |
---|
725 | curIndex += escapeIndex; |
---|
726 | } |
---|
727 | } |
---|
728 | if (maxIterations < walkIterations) |
---|
729 | maxIterations = walkIterations; |
---|
730 | |
---|
731 | } |
---|
732 | |
---|
733 | //This traversal can be called from Playstation 3 SPU |
---|
734 | void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
735 | { |
---|
736 | btAssert(m_useQuantization); |
---|
737 | |
---|
738 | int i; |
---|
739 | |
---|
740 | |
---|
741 | for (i=0;i<this->m_SubtreeHeaders.size();i++) |
---|
742 | { |
---|
743 | const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; |
---|
744 | |
---|
745 | //PCK: unsigned instead of bool |
---|
746 | unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); |
---|
747 | if (overlap != 0) |
---|
748 | { |
---|
749 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, |
---|
750 | subtree.m_rootNodeIndex, |
---|
751 | subtree.m_rootNodeIndex+subtree.m_subtreeSize); |
---|
752 | } |
---|
753 | } |
---|
754 | } |
---|
755 | |
---|
756 | |
---|
757 | void btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const |
---|
758 | { |
---|
759 | reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0)); |
---|
760 | } |
---|
761 | |
---|
762 | |
---|
763 | void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
764 | { |
---|
765 | //always use stackless |
---|
766 | |
---|
767 | if (m_useQuantization) |
---|
768 | { |
---|
769 | walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); |
---|
770 | } |
---|
771 | else |
---|
772 | { |
---|
773 | walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); |
---|
774 | } |
---|
775 | /* |
---|
776 | { |
---|
777 | //recursive traversal |
---|
778 | btVector3 qaabbMin = raySource; |
---|
779 | btVector3 qaabbMax = raySource; |
---|
780 | qaabbMin.setMin(rayTarget); |
---|
781 | qaabbMax.setMax(rayTarget); |
---|
782 | qaabbMin += aabbMin; |
---|
783 | qaabbMax += aabbMax; |
---|
784 | reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); |
---|
785 | } |
---|
786 | */ |
---|
787 | |
---|
788 | } |
---|
789 | |
---|
790 | |
---|
791 | void btQuantizedBvh::swapLeafNodes(int i,int splitIndex) |
---|
792 | { |
---|
793 | if (m_useQuantization) |
---|
794 | { |
---|
795 | btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; |
---|
796 | m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; |
---|
797 | m_quantizedLeafNodes[splitIndex] = tmp; |
---|
798 | } else |
---|
799 | { |
---|
800 | btOptimizedBvhNode tmp = m_leafNodes[i]; |
---|
801 | m_leafNodes[i] = m_leafNodes[splitIndex]; |
---|
802 | m_leafNodes[splitIndex] = tmp; |
---|
803 | } |
---|
804 | } |
---|
805 | |
---|
806 | void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) |
---|
807 | { |
---|
808 | if (m_useQuantization) |
---|
809 | { |
---|
810 | m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; |
---|
811 | } else |
---|
812 | { |
---|
813 | m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; |
---|
814 | } |
---|
815 | } |
---|
816 | |
---|
817 | //PCK: include |
---|
818 | #include <new> |
---|
819 | |
---|
820 | //PCK: consts |
---|
821 | static const unsigned BVH_ALIGNMENT = 16; |
---|
822 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; |
---|
823 | |
---|
824 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; |
---|
825 | |
---|
826 | |
---|
827 | |
---|
828 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() |
---|
829 | { |
---|
830 | // I changed this to 0 since the extra padding is not needed or used. |
---|
831 | return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; |
---|
832 | } |
---|
833 | |
---|
834 | unsigned btQuantizedBvh::calculateSerializeBufferSize() |
---|
835 | { |
---|
836 | unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); |
---|
837 | baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
838 | if (m_useQuantization) |
---|
839 | { |
---|
840 | return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); |
---|
841 | } |
---|
842 | return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); |
---|
843 | } |
---|
844 | |
---|
845 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) |
---|
846 | { |
---|
847 | btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); |
---|
848 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
849 | |
---|
850 | /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
851 | { |
---|
852 | ///check alignedment for buffer? |
---|
853 | btAssert(0); |
---|
854 | return false; |
---|
855 | } |
---|
856 | */ |
---|
857 | |
---|
858 | btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; |
---|
859 | |
---|
860 | // construct the class so the virtual function table, etc will be set up |
---|
861 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
862 | new (targetBvh) btQuantizedBvh; |
---|
863 | |
---|
864 | if (i_swapEndian) |
---|
865 | { |
---|
866 | targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); |
---|
867 | |
---|
868 | |
---|
869 | btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); |
---|
870 | btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); |
---|
871 | btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); |
---|
872 | |
---|
873 | targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); |
---|
874 | targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); |
---|
875 | } |
---|
876 | else |
---|
877 | { |
---|
878 | targetBvh->m_curNodeIndex = m_curNodeIndex; |
---|
879 | targetBvh->m_bvhAabbMin = m_bvhAabbMin; |
---|
880 | targetBvh->m_bvhAabbMax = m_bvhAabbMax; |
---|
881 | targetBvh->m_bvhQuantization = m_bvhQuantization; |
---|
882 | targetBvh->m_traversalMode = m_traversalMode; |
---|
883 | targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; |
---|
884 | } |
---|
885 | |
---|
886 | targetBvh->m_useQuantization = m_useQuantization; |
---|
887 | |
---|
888 | unsigned char *nodeData = (unsigned char *)targetBvh; |
---|
889 | nodeData += sizeof(btQuantizedBvh); |
---|
890 | |
---|
891 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
892 | nodeData += sizeToAdd; |
---|
893 | |
---|
894 | int nodeCount = m_curNodeIndex; |
---|
895 | |
---|
896 | if (m_useQuantization) |
---|
897 | { |
---|
898 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
899 | |
---|
900 | if (i_swapEndian) |
---|
901 | { |
---|
902 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
903 | { |
---|
904 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
905 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
906 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
907 | |
---|
908 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
909 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
910 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
911 | |
---|
912 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
913 | } |
---|
914 | } |
---|
915 | else |
---|
916 | { |
---|
917 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
918 | { |
---|
919 | |
---|
920 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; |
---|
921 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; |
---|
922 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; |
---|
923 | |
---|
924 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; |
---|
925 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; |
---|
926 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; |
---|
927 | |
---|
928 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; |
---|
929 | |
---|
930 | |
---|
931 | } |
---|
932 | } |
---|
933 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
934 | |
---|
935 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
936 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
937 | // so the memory (which is not freed) is left alone |
---|
938 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
939 | } |
---|
940 | else |
---|
941 | { |
---|
942 | targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
943 | |
---|
944 | if (i_swapEndian) |
---|
945 | { |
---|
946 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
947 | { |
---|
948 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
949 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
950 | |
---|
951 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
952 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); |
---|
953 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
954 | } |
---|
955 | } |
---|
956 | else |
---|
957 | { |
---|
958 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
959 | { |
---|
960 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; |
---|
961 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; |
---|
962 | |
---|
963 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; |
---|
964 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; |
---|
965 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; |
---|
966 | } |
---|
967 | } |
---|
968 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
969 | |
---|
970 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
971 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
972 | // so the memory (which is not freed) is left alone |
---|
973 | targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
974 | } |
---|
975 | |
---|
976 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
977 | nodeData += sizeToAdd; |
---|
978 | |
---|
979 | // Now serialize the subtree headers |
---|
980 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); |
---|
981 | if (i_swapEndian) |
---|
982 | { |
---|
983 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
984 | { |
---|
985 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
986 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
987 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
988 | |
---|
989 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
990 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
991 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
992 | |
---|
993 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
994 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); |
---|
995 | } |
---|
996 | } |
---|
997 | else |
---|
998 | { |
---|
999 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
1000 | { |
---|
1001 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
1002 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
1003 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
1004 | |
---|
1005 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
1006 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
1007 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
1008 | |
---|
1009 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); |
---|
1010 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); |
---|
1011 | |
---|
1012 | // need to clear padding in destination buffer |
---|
1013 | targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; |
---|
1014 | targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; |
---|
1015 | targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; |
---|
1016 | } |
---|
1017 | } |
---|
1018 | nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
1019 | |
---|
1020 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
1021 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
1022 | // so the memory (which is not freed) is left alone |
---|
1023 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); |
---|
1024 | |
---|
1025 | // this wipes the virtual function table pointer at the start of the buffer for the class |
---|
1026 | *((void**)o_alignedDataBuffer) = NULL; |
---|
1027 | |
---|
1028 | return true; |
---|
1029 | } |
---|
1030 | |
---|
1031 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) |
---|
1032 | { |
---|
1033 | |
---|
1034 | if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
1035 | { |
---|
1036 | return NULL; |
---|
1037 | } |
---|
1038 | btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; |
---|
1039 | |
---|
1040 | if (i_swapEndian) |
---|
1041 | { |
---|
1042 | bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); |
---|
1043 | |
---|
1044 | btUnSwapVector3Endian(bvh->m_bvhAabbMin); |
---|
1045 | btUnSwapVector3Endian(bvh->m_bvhAabbMax); |
---|
1046 | btUnSwapVector3Endian(bvh->m_bvhQuantization); |
---|
1047 | |
---|
1048 | bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); |
---|
1049 | bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); |
---|
1050 | } |
---|
1051 | |
---|
1052 | unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); |
---|
1053 | btAssert(calculatedBufSize <= i_dataBufferSize); |
---|
1054 | |
---|
1055 | if (calculatedBufSize > i_dataBufferSize) |
---|
1056 | { |
---|
1057 | return NULL; |
---|
1058 | } |
---|
1059 | |
---|
1060 | unsigned char *nodeData = (unsigned char *)bvh; |
---|
1061 | nodeData += sizeof(btQuantizedBvh); |
---|
1062 | |
---|
1063 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
1064 | nodeData += sizeToAdd; |
---|
1065 | |
---|
1066 | int nodeCount = bvh->m_curNodeIndex; |
---|
1067 | |
---|
1068 | // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor |
---|
1069 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
1070 | new (bvh) btQuantizedBvh(*bvh, false); |
---|
1071 | |
---|
1072 | if (bvh->m_useQuantization) |
---|
1073 | { |
---|
1074 | bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
1075 | |
---|
1076 | if (i_swapEndian) |
---|
1077 | { |
---|
1078 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
1079 | { |
---|
1080 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
1081 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
1082 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
1083 | |
---|
1084 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
1085 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
1086 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
1087 | |
---|
1088 | bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
1089 | } |
---|
1090 | } |
---|
1091 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
1092 | } |
---|
1093 | else |
---|
1094 | { |
---|
1095 | bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
1096 | |
---|
1097 | if (i_swapEndian) |
---|
1098 | { |
---|
1099 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
1100 | { |
---|
1101 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
1102 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
1103 | |
---|
1104 | bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
1105 | bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); |
---|
1106 | bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
1107 | } |
---|
1108 | } |
---|
1109 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
1110 | } |
---|
1111 | |
---|
1112 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
1113 | nodeData += sizeToAdd; |
---|
1114 | |
---|
1115 | // Now serialize the subtree headers |
---|
1116 | bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); |
---|
1117 | if (i_swapEndian) |
---|
1118 | { |
---|
1119 | for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) |
---|
1120 | { |
---|
1121 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
1122 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
1123 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
1124 | |
---|
1125 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
1126 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
1127 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
1128 | |
---|
1129 | bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
1130 | bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); |
---|
1131 | } |
---|
1132 | } |
---|
1133 | |
---|
1134 | return bvh; |
---|
1135 | } |
---|
1136 | |
---|
1137 | // Constructor that prevents btVector3's default constructor from being called |
---|
1138 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : |
---|
1139 | m_bvhAabbMin(self.m_bvhAabbMin), |
---|
1140 | m_bvhAabbMax(self.m_bvhAabbMax), |
---|
1141 | m_bvhQuantization(self.m_bvhQuantization), |
---|
1142 | m_bulletVersion(BT_BULLET_VERSION) |
---|
1143 | { |
---|
1144 | |
---|
1145 | } |
---|
1146 | |
---|
1147 | |
---|
1148 | |
---|