1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | #include "btHingeConstraint.h" |
---|
18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
19 | #include "LinearMath/btTransformUtil.h" |
---|
20 | #include "LinearMath/btMinMax.h" |
---|
21 | #include <new> |
---|
22 | |
---|
23 | |
---|
24 | btHingeConstraint::btHingeConstraint() |
---|
25 | : btTypedConstraint (HINGE_CONSTRAINT_TYPE), |
---|
26 | m_enableAngularMotor(false) |
---|
27 | { |
---|
28 | } |
---|
29 | |
---|
30 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, |
---|
31 | btVector3& axisInA,btVector3& axisInB) |
---|
32 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), |
---|
33 | m_angularOnly(false), |
---|
34 | m_enableAngularMotor(false) |
---|
35 | { |
---|
36 | m_rbAFrame.getOrigin() = pivotInA; |
---|
37 | |
---|
38 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
39 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); |
---|
40 | |
---|
41 | btVector3 rbAxisA2; |
---|
42 | btScalar projection = axisInA.dot(rbAxisA1); |
---|
43 | if (projection >= 1.0f - SIMD_EPSILON) { |
---|
44 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
45 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
46 | } else if (projection <= -1.0f + SIMD_EPSILON) { |
---|
47 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
48 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
49 | } else { |
---|
50 | rbAxisA2 = axisInA.cross(rbAxisA1); |
---|
51 | rbAxisA1 = rbAxisA2.cross(axisInA); |
---|
52 | } |
---|
53 | |
---|
54 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
55 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
56 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
57 | |
---|
58 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
59 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
60 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
61 | |
---|
62 | m_rbBFrame.getOrigin() = pivotInB; |
---|
63 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(), |
---|
64 | rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(), |
---|
65 | rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() ); |
---|
66 | |
---|
67 | //start with free |
---|
68 | m_lowerLimit = btScalar(1e30); |
---|
69 | m_upperLimit = btScalar(-1e30); |
---|
70 | m_biasFactor = 0.3f; |
---|
71 | m_relaxationFactor = 1.0f; |
---|
72 | m_limitSoftness = 0.9f; |
---|
73 | m_solveLimit = false; |
---|
74 | |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | |
---|
79 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA) |
---|
80 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false) |
---|
81 | { |
---|
82 | |
---|
83 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
84 | // fixed axis in worldspace |
---|
85 | btVector3 rbAxisA1, rbAxisA2; |
---|
86 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); |
---|
87 | |
---|
88 | m_rbAFrame.getOrigin() = pivotInA; |
---|
89 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
90 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
91 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
92 | |
---|
93 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA; |
---|
94 | |
---|
95 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
96 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
97 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
98 | |
---|
99 | |
---|
100 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); |
---|
101 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
102 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
103 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
104 | |
---|
105 | //start with free |
---|
106 | m_lowerLimit = btScalar(1e30); |
---|
107 | m_upperLimit = btScalar(-1e30); |
---|
108 | m_biasFactor = 0.3f; |
---|
109 | m_relaxationFactor = 1.0f; |
---|
110 | m_limitSoftness = 0.9f; |
---|
111 | m_solveLimit = false; |
---|
112 | } |
---|
113 | |
---|
114 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, |
---|
115 | const btTransform& rbAFrame, const btTransform& rbBFrame) |
---|
116 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
---|
117 | m_angularOnly(false), |
---|
118 | m_enableAngularMotor(false) |
---|
119 | { |
---|
120 | // flip axis |
---|
121 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
---|
122 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
---|
123 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
---|
124 | |
---|
125 | //start with free |
---|
126 | m_lowerLimit = btScalar(1e30); |
---|
127 | m_upperLimit = btScalar(-1e30); |
---|
128 | m_biasFactor = 0.3f; |
---|
129 | m_relaxationFactor = 1.0f; |
---|
130 | m_limitSoftness = 0.9f; |
---|
131 | m_solveLimit = false; |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame) |
---|
137 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), |
---|
138 | m_angularOnly(false), |
---|
139 | m_enableAngularMotor(false) |
---|
140 | { |
---|
141 | ///not providing rigidbody B means implicitly using worldspace for body B |
---|
142 | |
---|
143 | // flip axis |
---|
144 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
---|
145 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
---|
146 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
---|
147 | |
---|
148 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); |
---|
149 | |
---|
150 | //start with free |
---|
151 | m_lowerLimit = btScalar(1e30); |
---|
152 | m_upperLimit = btScalar(-1e30); |
---|
153 | m_biasFactor = 0.3f; |
---|
154 | m_relaxationFactor = 1.0f; |
---|
155 | m_limitSoftness = 0.9f; |
---|
156 | m_solveLimit = false; |
---|
157 | } |
---|
158 | |
---|
159 | void btHingeConstraint::buildJacobian() |
---|
160 | { |
---|
161 | m_appliedImpulse = btScalar(0.); |
---|
162 | |
---|
163 | if (!m_angularOnly) |
---|
164 | { |
---|
165 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
166 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
167 | btVector3 relPos = pivotBInW - pivotAInW; |
---|
168 | |
---|
169 | btVector3 normal[3]; |
---|
170 | if (relPos.length2() > SIMD_EPSILON) |
---|
171 | { |
---|
172 | normal[0] = relPos.normalized(); |
---|
173 | } |
---|
174 | else |
---|
175 | { |
---|
176 | normal[0].setValue(btScalar(1.0),0,0); |
---|
177 | } |
---|
178 | |
---|
179 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
---|
180 | |
---|
181 | for (int i=0;i<3;i++) |
---|
182 | { |
---|
183 | new (&m_jac[i]) btJacobianEntry( |
---|
184 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
185 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
186 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
187 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
188 | normal[i], |
---|
189 | m_rbA.getInvInertiaDiagLocal(), |
---|
190 | m_rbA.getInvMass(), |
---|
191 | m_rbB.getInvInertiaDiagLocal(), |
---|
192 | m_rbB.getInvMass()); |
---|
193 | } |
---|
194 | } |
---|
195 | |
---|
196 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis |
---|
197 | //these two jointAxis require equal angular velocities for both bodies |
---|
198 | |
---|
199 | //this is unused for now, it's a todo |
---|
200 | btVector3 jointAxis0local; |
---|
201 | btVector3 jointAxis1local; |
---|
202 | |
---|
203 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); |
---|
204 | |
---|
205 | getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
206 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; |
---|
207 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; |
---|
208 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
209 | |
---|
210 | new (&m_jacAng[0]) btJacobianEntry(jointAxis0, |
---|
211 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
212 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
213 | m_rbA.getInvInertiaDiagLocal(), |
---|
214 | m_rbB.getInvInertiaDiagLocal()); |
---|
215 | |
---|
216 | new (&m_jacAng[1]) btJacobianEntry(jointAxis1, |
---|
217 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
218 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
219 | m_rbA.getInvInertiaDiagLocal(), |
---|
220 | m_rbB.getInvInertiaDiagLocal()); |
---|
221 | |
---|
222 | new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld, |
---|
223 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
224 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
225 | m_rbA.getInvInertiaDiagLocal(), |
---|
226 | m_rbB.getInvInertiaDiagLocal()); |
---|
227 | |
---|
228 | |
---|
229 | // Compute limit information |
---|
230 | btScalar hingeAngle = getHingeAngle(); |
---|
231 | |
---|
232 | //set bias, sign, clear accumulator |
---|
233 | m_correction = btScalar(0.); |
---|
234 | m_limitSign = btScalar(0.); |
---|
235 | m_solveLimit = false; |
---|
236 | m_accLimitImpulse = btScalar(0.); |
---|
237 | |
---|
238 | // if (m_lowerLimit < m_upperLimit) |
---|
239 | if (m_lowerLimit <= m_upperLimit) |
---|
240 | { |
---|
241 | // if (hingeAngle <= m_lowerLimit*m_limitSoftness) |
---|
242 | if (hingeAngle <= m_lowerLimit) |
---|
243 | { |
---|
244 | m_correction = (m_lowerLimit - hingeAngle); |
---|
245 | m_limitSign = 1.0f; |
---|
246 | m_solveLimit = true; |
---|
247 | } |
---|
248 | // else if (hingeAngle >= m_upperLimit*m_limitSoftness) |
---|
249 | else if (hingeAngle >= m_upperLimit) |
---|
250 | { |
---|
251 | m_correction = m_upperLimit - hingeAngle; |
---|
252 | m_limitSign = -1.0f; |
---|
253 | m_solveLimit = true; |
---|
254 | } |
---|
255 | } |
---|
256 | |
---|
257 | //Compute K = J*W*J' for hinge axis |
---|
258 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
259 | m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + |
---|
260 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); |
---|
261 | |
---|
262 | } |
---|
263 | |
---|
264 | void btHingeConstraint::solveConstraint(btScalar timeStep) |
---|
265 | { |
---|
266 | |
---|
267 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
268 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
269 | |
---|
270 | btScalar tau = btScalar(0.3); |
---|
271 | |
---|
272 | //linear part |
---|
273 | if (!m_angularOnly) |
---|
274 | { |
---|
275 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
276 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
277 | |
---|
278 | btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1); |
---|
279 | btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2); |
---|
280 | btVector3 vel = vel1 - vel2; |
---|
281 | |
---|
282 | for (int i=0;i<3;i++) |
---|
283 | { |
---|
284 | const btVector3& normal = m_jac[i].m_linearJointAxis; |
---|
285 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); |
---|
286 | |
---|
287 | btScalar rel_vel; |
---|
288 | rel_vel = normal.dot(vel); |
---|
289 | //positional error (zeroth order error) |
---|
290 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
---|
291 | btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; |
---|
292 | m_appliedImpulse += impulse; |
---|
293 | btVector3 impulse_vector = normal * impulse; |
---|
294 | m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition()); |
---|
295 | m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition()); |
---|
296 | } |
---|
297 | } |
---|
298 | |
---|
299 | |
---|
300 | { |
---|
301 | ///solve angular part |
---|
302 | |
---|
303 | // get axes in world space |
---|
304 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
305 | btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2); |
---|
306 | |
---|
307 | const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); |
---|
308 | const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); |
---|
309 | |
---|
310 | btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); |
---|
311 | btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); |
---|
312 | |
---|
313 | btVector3 angAorthog = angVelA - angVelAroundHingeAxisA; |
---|
314 | btVector3 angBorthog = angVelB - angVelAroundHingeAxisB; |
---|
315 | btVector3 velrelOrthog = angAorthog-angBorthog; |
---|
316 | { |
---|
317 | //solve orthogonal angular velocity correction |
---|
318 | btScalar relaxation = btScalar(1.); |
---|
319 | btScalar len = velrelOrthog.length(); |
---|
320 | if (len > btScalar(0.00001)) |
---|
321 | { |
---|
322 | btVector3 normal = velrelOrthog.normalized(); |
---|
323 | btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) + |
---|
324 | getRigidBodyB().computeAngularImpulseDenominator(normal); |
---|
325 | // scale for mass and relaxation |
---|
326 | velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor; |
---|
327 | } |
---|
328 | |
---|
329 | //solve angular positional correction |
---|
330 | btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep); |
---|
331 | btScalar len2 = angularError.length(); |
---|
332 | if (len2>btScalar(0.00001)) |
---|
333 | { |
---|
334 | btVector3 normal2 = angularError.normalized(); |
---|
335 | btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) + |
---|
336 | getRigidBodyB().computeAngularImpulseDenominator(normal2); |
---|
337 | angularError *= (btScalar(1.)/denom2) * relaxation; |
---|
338 | } |
---|
339 | |
---|
340 | m_rbA.applyTorqueImpulse(-velrelOrthog+angularError); |
---|
341 | m_rbB.applyTorqueImpulse(velrelOrthog-angularError); |
---|
342 | |
---|
343 | // solve limit |
---|
344 | if (m_solveLimit) |
---|
345 | { |
---|
346 | btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign; |
---|
347 | |
---|
348 | btScalar impulseMag = amplitude * m_kHinge; |
---|
349 | |
---|
350 | // Clamp the accumulated impulse |
---|
351 | btScalar temp = m_accLimitImpulse; |
---|
352 | m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) ); |
---|
353 | impulseMag = m_accLimitImpulse - temp; |
---|
354 | |
---|
355 | |
---|
356 | btVector3 impulse = axisA * impulseMag * m_limitSign; |
---|
357 | m_rbA.applyTorqueImpulse(impulse); |
---|
358 | m_rbB.applyTorqueImpulse(-impulse); |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | //apply motor |
---|
363 | if (m_enableAngularMotor) |
---|
364 | { |
---|
365 | //todo: add limits too |
---|
366 | btVector3 angularLimit(0,0,0); |
---|
367 | |
---|
368 | btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; |
---|
369 | btScalar projRelVel = velrel.dot(axisA); |
---|
370 | |
---|
371 | btScalar desiredMotorVel = m_motorTargetVelocity; |
---|
372 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
---|
373 | |
---|
374 | btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;; |
---|
375 | //todo: should clip against accumulated impulse |
---|
376 | btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; |
---|
377 | clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; |
---|
378 | btVector3 motorImp = clippedMotorImpulse * axisA; |
---|
379 | |
---|
380 | m_rbA.applyTorqueImpulse(motorImp+angularLimit); |
---|
381 | m_rbB.applyTorqueImpulse(-motorImp-angularLimit); |
---|
382 | |
---|
383 | } |
---|
384 | } |
---|
385 | |
---|
386 | } |
---|
387 | |
---|
388 | void btHingeConstraint::updateRHS(btScalar timeStep) |
---|
389 | { |
---|
390 | (void)timeStep; |
---|
391 | |
---|
392 | } |
---|
393 | |
---|
394 | btScalar btHingeConstraint::getHingeAngle() |
---|
395 | { |
---|
396 | const btVector3 refAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); |
---|
397 | const btVector3 refAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); |
---|
398 | const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1); |
---|
399 | |
---|
400 | return btAtan2Fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) ); |
---|
401 | } |
---|
402 | |
---|