/* * ORXONOX - the hottest 3D action shooter ever to exist * > www.orxonox.net < * * * License notice: * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Author: * Fabian 'x3n' Landau * Co-authors: * Wolfgang Roenninger * */ /** @file @brief Implementation of several math-functions. */ #include "Math.h" #include #include "MathConvert.h" #include "SubString.h" namespace orxonox { #if OGRE_VERSION < 0x010603 /** @brief Function for writing a Radian to a stream. */ std::ostream& operator<<(std::ostream& out, const orxonox::Radian& radian) { out << radian.valueRadians(); return out; } /** @brief Function for writing a Degree to a stream. */ std::ostream& operator<<(std::ostream& out, const orxonox::Degree& degree) { out << degree.valueDegrees(); return out; } #endif /** @brief Function for reading a Radian from a stream. */ std::istream& operator>>(std::istream& in, orxonox::Radian& radian) { float temp; in >> temp; radian = temp; return in; } /** @brief Function for reading a Degree from a stream. */ std::istream& operator>>(std::istream& in, orxonox::Degree& degree) { float temp; in >> temp; degree = temp; return in; } /** @brief Gets the angle between my viewing direction and the direction to the position of the other object. @param myposition My position @param mydirection My viewing direction @param otherposition The position of the other object @return The angle in radian Examples: - If the other object is exactly in front of me, the function returns 0. - If the other object is exactly behind me, the function returns pi. - If the other object is exactly right/left to me (or above/below), the function returns pi/2. */ float getAngle(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& otherposition) { orxonox::Vector3 distance = otherposition - myposition; float distancelength = distance.length(); if (distancelength == 0) return 0; else return acos(clamp(mydirection.dotProduct(distance) / distancelength, -1, 1)); } /** @brief Gets the 2D viewing direction (up/down, left/right) to the position of the other object. @param myposition My position @param mydirection My viewing direction @param myorthonormal My orthonormalvector (pointing upwards through my head) @param otherposition The position of the other object @return The viewing direction Examples: - If the other object is exactly in front of me, the function returns Vector2(0, 0). - If the other object is exactly at my left, the function returns Vector2(-1, 0). - If the other object is exactly at my right, the function returns Vector2(1, 0). - If the other object is only a bit at my right, the function still returns Vector2(1, 0). - If the other object is exactly above me, the function returns Vector2(0, 1). */ orxonox::Vector2 get2DViewdirection(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition) { orxonox::Vector3 distance = otherposition - myposition; // project difference vector on our plane orxonox::Vector3 projection = Ogre::Plane(mydirection, myposition).projectVector(distance); float projectionlength = projection.length(); if (projectionlength == 0) { if (myposition.dotProduct(otherposition) >= 0) return orxonox::Vector2(0, 0); else return orxonox::Vector2(0, 1); } float cos_value = clamp(myorthonormal.dotProduct(projection) / projectionlength, -1, 1); float sin_value = sqrt( 1 - cos_value*cos_value ); if ((mydirection.crossProduct(myorthonormal)).dotProduct(distance) > 0) return orxonox::Vector2( sin_value, cos_value ); else return orxonox::Vector2( -sin_value, cos_value ); } /** @brief Gets the 2D viewing direction (up/down, left/right) to the position of the other object, multiplied with the viewing distance to the object (0� = 0, 180� = 1). @param myposition My position @param mydirection My viewing direction @param myorthonormal My orthonormalvector (pointing upwards through my head) @param otherposition The position of the other object @return The viewing direction Examples: - If the other object is exactly in front of me, the function returns Vector2(0, 0). - If the other object is exactly at my left, the function returns Vector2(-0.5, 0). - If the other object is exactly at my right, the function returns Vector2(0.5, 0). - If the other object is only a bit at my right, the function still returns Vector2(0.01, 0). - If the other object is exactly above me, the function returns Vector2(0, 0.5). */ orxonox::Vector2 get2DViewcoordinates(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition) { orxonox::Vector3 distance = otherposition - myposition; // project difference vector on our plane orxonox::Vector3 projection = Ogre::Plane(mydirection, myposition).projectVector(distance); float projectionlength = projection.length(); if (projectionlength == 0) { if (myposition.dotProduct(otherposition) >= 0) return orxonox::Vector2(0, 0); else return orxonox::Vector2(0, 1); } //float angle = acos(clamp(myorthonormal.dotProduct(projection) / projectionlength, -1, 1)); float cos_value = clamp(myorthonormal.dotProduct(projection) / projectionlength, -1, 1); float sin_value = sqrt( 1 - cos_value*cos_value ); float distancelength = distance.length(); if (distancelength == 0) return orxonox::Vector2(0, 0); float radius = acos(clamp(mydirection.dotProduct(distance) / distancelength, -1, 1)) / math::pi; if ((mydirection.crossProduct(myorthonormal)).dotProduct(distance) > 0) return orxonox::Vector2( sin_value * radius, cos_value * radius); else return orxonox::Vector2( -sin_value * radius, cos_value * radius); } /** @brief Gets the 2D project vector for the 3D Radar . @param myposition My position @param mydirection My viewing direction @param myorthonormal My orthonormalvector (pointing upwards through my head) @param otherposition The position of the other object @param mapangle The angle you look on the 3Dmap @param detectionlimit The limit in which objects are shown on the map @return The viewing direction Examples: - */ orxonox::Vector2 get3DProjection(const orxonox::Vector3& myposition, const orxonox::Vector3& mydirection, const orxonox::Vector3& myorthonormal, const orxonox::Vector3& otherposition, const float mapangle, const float detectionlimit) { // orxonox::Vector3 distance = otherposition - myposition; // new coordinate system base y_coordinate orxonox::Vector3 myside = mydirection.crossProduct(-myorthonormal); // inverse of the transform matrix float determinant = +mydirection.x * (myside.y*myorthonormal.z - myorthonormal.y*myside.z) -mydirection.y * (myside.x*myorthonormal.z - myside.z*myorthonormal.x) +mydirection.z * (myside.x*myorthonormal.y - myside.y*myorthonormal.x); float invdet = 1/determinant; // transform matrix orxonox::Vector3 xinvtransform; orxonox::Vector3 yinvtransform; orxonox::Vector3 zinvtransform; xinvtransform.x = (myside.y * myorthonormal.z - myorthonormal.y * myside.z )*invdet; xinvtransform.y = (mydirection.z * myorthonormal.y - mydirection.y * myorthonormal.z)*invdet; xinvtransform.z = (mydirection.y * myside.z - mydirection.z * myside.y )*invdet; yinvtransform.x = (myside.z * myorthonormal.x - myside.x * myorthonormal.z)*invdet; yinvtransform.y = (mydirection.x * myorthonormal.z - mydirection.z * myorthonormal.x)*invdet; yinvtransform.z = (myside.x * mydirection.z - mydirection.x * myside.z )*invdet; zinvtransform.x = (myside.x * myorthonormal.y - myorthonormal.x * myside.y )*invdet; zinvtransform.y = (myorthonormal.x * mydirection.y - mydirection.x * myorthonormal.y)*invdet; zinvtransform.z = (mydirection.x * myside.y - myside.x * mydirection.y )*invdet; // coordinate transformation distance.x = (xinvtransform.x + yinvtransform.x + zinvtransform.x) * distance.x; distance.y = (xinvtransform.y + yinvtransform.y + zinvtransform.y) * distance.y; distance.z = (xinvtransform.z + yinvtransform.z + zinvtransform.z) * distance.z; // cap vector for map //distance.x = clamp(distance.x, -detectionlimit/5, detectionlimit/5); //distance.y = clamp(distance.y, -detectionlimit/5, detectionlimit/5); //distance.z = clamp(distance.z, -detectionlimit/5, detectionlimit/5); //float distancelength = distance.length(); distance = 5 * distance / detectionlimit; // project vector for the rotated 3DMap on screen float xcoordinate = -distance.y; // -; cause in room myside points to the left, on screen x to the right float ycoordinate = (distance.x*sin(mapangle)+distance.z*cos(mapangle)); return orxonox::Vector2(xcoordinate , ycoordinate); } /** @brief Returns the predicted position I have to aim at, if I want to hit a moving target with a moving projectile. @param myposition My position @param projectilespeed The speed of my projectile @param targetposition The position of my target @param targetvelocity The velocity of my target @return The predicted position The function predicts the position based on a linear velocity of the target. If the target changes speed or direction, the projectile will miss. */ orxonox::Vector3 getPredictedPosition(const orxonox::Vector3& myposition, float projectilespeed, const orxonox::Vector3& targetposition, const orxonox::Vector3& targetvelocity) { float squaredProjectilespeed = projectilespeed * projectilespeed; orxonox::Vector3 distance = targetposition - myposition; float a = distance.squaredLength(); float b = 2 * (distance.x + distance.y + distance.z) * (targetvelocity.x + targetvelocity.y + targetvelocity.z); float c = targetvelocity.squaredLength(); float temp = 4*squaredProjectilespeed*c + a*a - 4*b*c; if (temp < 0) return orxonox::Vector3::ZERO; temp = sqrt(temp); float time = (temp + a) / (2 * (squaredProjectilespeed - b)); return (targetposition + targetvelocity * time); } /** @brief Returns a unique number. This function will never return the same value twice. */ unsigned long getUniqueNumber() { static unsigned long aNumber = 135; return aNumber++; } ////////////////////////// // Conversion functions // ////////////////////////// // std::string to Vector2 bool ConverterFallback::convert(orxonox::Vector2* output, const std::string& input) { size_t opening_parenthesis, closing_parenthesis = input.find('}'); if ((opening_parenthesis = input.find('{')) == std::string::npos) opening_parenthesis = 0; else opening_parenthesis++; SubString tokens(input.substr(opening_parenthesis, closing_parenthesis - opening_parenthesis), ",", SubString::WhiteSpaces, false, '\\', true, '"', true, '\0', '\0', true, '\0'); if (tokens.size() >= 2) { if (!convertValue(&(output->x), tokens[0])) return false; if (!convertValue(&(output->y), tokens[1])) return false; return true; } return false; } // std::string to Vector3 bool ConverterFallback::convert(orxonox::Vector3* output, const std::string& input) { size_t opening_parenthesis, closing_parenthesis = input.find('}'); if ((opening_parenthesis = input.find('{')) == std::string::npos) opening_parenthesis = 0; else opening_parenthesis++; SubString tokens(input.substr(opening_parenthesis, closing_parenthesis - opening_parenthesis), ",", SubString::WhiteSpaces, false, '\\', true, '"', true, '\0', '\0', true, '\0'); if (tokens.size() >= 3) { if (!convertValue(&(output->x), tokens[0])) return false; if (!convertValue(&(output->y), tokens[1])) return false; if (!convertValue(&(output->z), tokens[2])) return false; return true; } return false; } // std::string to Vector4 bool ConverterFallback::convert(orxonox::Vector4* output, const std::string& input) { size_t opening_parenthesis, closing_parenthesis = input.find('}'); if ((opening_parenthesis = input.find('{')) == std::string::npos) opening_parenthesis = 0; else opening_parenthesis++; SubString tokens(input.substr(opening_parenthesis, closing_parenthesis - opening_parenthesis), ",", SubString::WhiteSpaces, false, '\\', true, '"', true, '\0', '\0', true, '\0'); if (tokens.size() >= 4) { if (!convertValue(&(output->x), tokens[0])) return false; if (!convertValue(&(output->y), tokens[1])) return false; if (!convertValue(&(output->z), tokens[2])) return false; if (!convertValue(&(output->w), tokens[3])) return false; return true; } return false; } // std::string to Quaternion bool ConverterFallback::convert(orxonox::Quaternion* output, const std::string& input) { size_t opening_parenthesis, closing_parenthesis = input.find('}'); if ((opening_parenthesis = input.find('{')) == std::string::npos) opening_parenthesis = 0; else opening_parenthesis++; SubString tokens(input.substr(opening_parenthesis, closing_parenthesis - opening_parenthesis), ",", SubString::WhiteSpaces, false, '\\', true, '"', true, '\0', '\0', true, '\0'); if (tokens.size() >= 4) { if (!convertValue(&(output->w), tokens[0])) return false; if (!convertValue(&(output->x), tokens[1])) return false; if (!convertValue(&(output->y), tokens[2])) return false; if (!convertValue(&(output->z), tokens[3])) return false; return true; } return false; } // std::string to ColourValue bool ConverterFallback::convert(orxonox::ColourValue* output, const std::string& input) { size_t opening_parenthesis, closing_parenthesis = input.find('}'); if ((opening_parenthesis = input.find('{')) == std::string::npos) opening_parenthesis = 0; else opening_parenthesis++; SubString tokens(input.substr(opening_parenthesis, closing_parenthesis - opening_parenthesis), ",", SubString::WhiteSpaces, false, '\\', true, '"', true, '\0', '\0', true, '\0'); if (tokens.size() >= 3) { if (!convertValue(&(output->r), tokens[0])) return false; if (!convertValue(&(output->g), tokens[1])) return false; if (!convertValue(&(output->b), tokens[2])) return false; if (tokens.size() >= 4) { if (!convertValue(&(output->a), tokens[3])) return false; } else output->a = 1.0; return true; } return false; } }