1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | #include "btHingeConstraint.h" |
---|
18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
19 | #include "LinearMath/btTransformUtil.h" |
---|
20 | #include "LinearMath/btMinMax.h" |
---|
21 | #include <new> |
---|
22 | #include "btSolverBody.h" |
---|
23 | |
---|
24 | //----------------------------------------------------------------------------- |
---|
25 | |
---|
26 | #define HINGE_USE_OBSOLETE_SOLVER false |
---|
27 | |
---|
28 | //----------------------------------------------------------------------------- |
---|
29 | |
---|
30 | |
---|
31 | btHingeConstraint::btHingeConstraint() |
---|
32 | : btTypedConstraint (HINGE_CONSTRAINT_TYPE), |
---|
33 | m_enableAngularMotor(false), |
---|
34 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
35 | m_useReferenceFrameA(false) |
---|
36 | { |
---|
37 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
38 | } |
---|
39 | |
---|
40 | //----------------------------------------------------------------------------- |
---|
41 | |
---|
42 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, |
---|
43 | btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA) |
---|
44 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), |
---|
45 | m_angularOnly(false), |
---|
46 | m_enableAngularMotor(false), |
---|
47 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
48 | m_useReferenceFrameA(useReferenceFrameA) |
---|
49 | { |
---|
50 | m_rbAFrame.getOrigin() = pivotInA; |
---|
51 | |
---|
52 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
53 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); |
---|
54 | |
---|
55 | btVector3 rbAxisA2; |
---|
56 | btScalar projection = axisInA.dot(rbAxisA1); |
---|
57 | if (projection >= 1.0f - SIMD_EPSILON) { |
---|
58 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
59 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
60 | } else if (projection <= -1.0f + SIMD_EPSILON) { |
---|
61 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
---|
62 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
---|
63 | } else { |
---|
64 | rbAxisA2 = axisInA.cross(rbAxisA1); |
---|
65 | rbAxisA1 = rbAxisA2.cross(axisInA); |
---|
66 | } |
---|
67 | |
---|
68 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
69 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
70 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
71 | |
---|
72 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
73 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
74 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
75 | |
---|
76 | m_rbBFrame.getOrigin() = pivotInB; |
---|
77 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
78 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
79 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
80 | |
---|
81 | //start with free |
---|
82 | m_lowerLimit = btScalar(1e30); |
---|
83 | m_upperLimit = btScalar(-1e30); |
---|
84 | m_biasFactor = 0.3f; |
---|
85 | m_relaxationFactor = 1.0f; |
---|
86 | m_limitSoftness = 0.9f; |
---|
87 | m_solveLimit = false; |
---|
88 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
89 | } |
---|
90 | |
---|
91 | //----------------------------------------------------------------------------- |
---|
92 | |
---|
93 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA) |
---|
94 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), |
---|
95 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
96 | m_useReferenceFrameA(useReferenceFrameA) |
---|
97 | { |
---|
98 | |
---|
99 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
---|
100 | // fixed axis in worldspace |
---|
101 | btVector3 rbAxisA1, rbAxisA2; |
---|
102 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); |
---|
103 | |
---|
104 | m_rbAFrame.getOrigin() = pivotInA; |
---|
105 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
---|
106 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
---|
107 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
---|
108 | |
---|
109 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA; |
---|
110 | |
---|
111 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
---|
112 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
---|
113 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
---|
114 | |
---|
115 | |
---|
116 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); |
---|
117 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
---|
118 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
---|
119 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
---|
120 | |
---|
121 | //start with free |
---|
122 | m_lowerLimit = btScalar(1e30); |
---|
123 | m_upperLimit = btScalar(-1e30); |
---|
124 | m_biasFactor = 0.3f; |
---|
125 | m_relaxationFactor = 1.0f; |
---|
126 | m_limitSoftness = 0.9f; |
---|
127 | m_solveLimit = false; |
---|
128 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
129 | } |
---|
130 | |
---|
131 | //----------------------------------------------------------------------------- |
---|
132 | |
---|
133 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, |
---|
134 | const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA) |
---|
135 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
---|
136 | m_angularOnly(false), |
---|
137 | m_enableAngularMotor(false), |
---|
138 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
139 | m_useReferenceFrameA(useReferenceFrameA) |
---|
140 | { |
---|
141 | //start with free |
---|
142 | m_lowerLimit = btScalar(1e30); |
---|
143 | m_upperLimit = btScalar(-1e30); |
---|
144 | m_biasFactor = 0.3f; |
---|
145 | m_relaxationFactor = 1.0f; |
---|
146 | m_limitSoftness = 0.9f; |
---|
147 | m_solveLimit = false; |
---|
148 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
149 | } |
---|
150 | |
---|
151 | //----------------------------------------------------------------------------- |
---|
152 | |
---|
153 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA) |
---|
154 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), |
---|
155 | m_angularOnly(false), |
---|
156 | m_enableAngularMotor(false), |
---|
157 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), |
---|
158 | m_useReferenceFrameA(useReferenceFrameA) |
---|
159 | { |
---|
160 | ///not providing rigidbody B means implicitly using worldspace for body B |
---|
161 | |
---|
162 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); |
---|
163 | |
---|
164 | //start with free |
---|
165 | m_lowerLimit = btScalar(1e30); |
---|
166 | m_upperLimit = btScalar(-1e30); |
---|
167 | m_biasFactor = 0.3f; |
---|
168 | m_relaxationFactor = 1.0f; |
---|
169 | m_limitSoftness = 0.9f; |
---|
170 | m_solveLimit = false; |
---|
171 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); |
---|
172 | } |
---|
173 | |
---|
174 | //----------------------------------------------------------------------------- |
---|
175 | |
---|
176 | void btHingeConstraint::buildJacobian() |
---|
177 | { |
---|
178 | if (m_useSolveConstraintObsolete) |
---|
179 | { |
---|
180 | m_appliedImpulse = btScalar(0.); |
---|
181 | |
---|
182 | if (!m_angularOnly) |
---|
183 | { |
---|
184 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
185 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
186 | btVector3 relPos = pivotBInW - pivotAInW; |
---|
187 | |
---|
188 | btVector3 normal[3]; |
---|
189 | if (relPos.length2() > SIMD_EPSILON) |
---|
190 | { |
---|
191 | normal[0] = relPos.normalized(); |
---|
192 | } |
---|
193 | else |
---|
194 | { |
---|
195 | normal[0].setValue(btScalar(1.0),0,0); |
---|
196 | } |
---|
197 | |
---|
198 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
---|
199 | |
---|
200 | for (int i=0;i<3;i++) |
---|
201 | { |
---|
202 | new (&m_jac[i]) btJacobianEntry( |
---|
203 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
204 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
205 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
206 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
207 | normal[i], |
---|
208 | m_rbA.getInvInertiaDiagLocal(), |
---|
209 | m_rbA.getInvMass(), |
---|
210 | m_rbB.getInvInertiaDiagLocal(), |
---|
211 | m_rbB.getInvMass()); |
---|
212 | } |
---|
213 | } |
---|
214 | |
---|
215 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis |
---|
216 | //these two jointAxis require equal angular velocities for both bodies |
---|
217 | |
---|
218 | //this is unused for now, it's a todo |
---|
219 | btVector3 jointAxis0local; |
---|
220 | btVector3 jointAxis1local; |
---|
221 | |
---|
222 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); |
---|
223 | |
---|
224 | getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
225 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; |
---|
226 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; |
---|
227 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
228 | |
---|
229 | new (&m_jacAng[0]) btJacobianEntry(jointAxis0, |
---|
230 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
231 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
232 | m_rbA.getInvInertiaDiagLocal(), |
---|
233 | m_rbB.getInvInertiaDiagLocal()); |
---|
234 | |
---|
235 | new (&m_jacAng[1]) btJacobianEntry(jointAxis1, |
---|
236 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
237 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
238 | m_rbA.getInvInertiaDiagLocal(), |
---|
239 | m_rbB.getInvInertiaDiagLocal()); |
---|
240 | |
---|
241 | new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld, |
---|
242 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
243 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
244 | m_rbA.getInvInertiaDiagLocal(), |
---|
245 | m_rbB.getInvInertiaDiagLocal()); |
---|
246 | |
---|
247 | // clear accumulator |
---|
248 | m_accLimitImpulse = btScalar(0.); |
---|
249 | |
---|
250 | // test angular limit |
---|
251 | testLimit(); |
---|
252 | |
---|
253 | //Compute K = J*W*J' for hinge axis |
---|
254 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
255 | m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + |
---|
256 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); |
---|
257 | |
---|
258 | } |
---|
259 | } |
---|
260 | |
---|
261 | //----------------------------------------------------------------------------- |
---|
262 | |
---|
263 | void btHingeConstraint::getInfo1(btConstraintInfo1* info) |
---|
264 | { |
---|
265 | if (m_useSolveConstraintObsolete) |
---|
266 | { |
---|
267 | info->m_numConstraintRows = 0; |
---|
268 | info->nub = 0; |
---|
269 | } |
---|
270 | else |
---|
271 | { |
---|
272 | info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular |
---|
273 | info->nub = 1; |
---|
274 | //prepare constraint |
---|
275 | testLimit(); |
---|
276 | if(getSolveLimit() || getEnableAngularMotor()) |
---|
277 | { |
---|
278 | info->m_numConstraintRows++; // limit 3rd anguar as well |
---|
279 | info->nub--; |
---|
280 | } |
---|
281 | } |
---|
282 | } // btHingeConstraint::getInfo1 () |
---|
283 | |
---|
284 | //----------------------------------------------------------------------------- |
---|
285 | |
---|
286 | void btHingeConstraint::getInfo2 (btConstraintInfo2* info) |
---|
287 | { |
---|
288 | btAssert(!m_useSolveConstraintObsolete); |
---|
289 | int i, s = info->rowskip; |
---|
290 | // transforms in world space |
---|
291 | btTransform trA = m_rbA.getCenterOfMassTransform()*m_rbAFrame; |
---|
292 | btTransform trB = m_rbB.getCenterOfMassTransform()*m_rbBFrame; |
---|
293 | // pivot point |
---|
294 | btVector3 pivotAInW = trA.getOrigin(); |
---|
295 | btVector3 pivotBInW = trB.getOrigin(); |
---|
296 | // linear (all fixed) |
---|
297 | info->m_J1linearAxis[0] = 1; |
---|
298 | info->m_J1linearAxis[s + 1] = 1; |
---|
299 | info->m_J1linearAxis[2 * s + 2] = 1; |
---|
300 | btVector3 a1 = pivotAInW - m_rbA.getCenterOfMassTransform().getOrigin(); |
---|
301 | { |
---|
302 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); |
---|
303 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + s); |
---|
304 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * s); |
---|
305 | btVector3 a1neg = -a1; |
---|
306 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
307 | } |
---|
308 | btVector3 a2 = pivotBInW - m_rbB.getCenterOfMassTransform().getOrigin(); |
---|
309 | { |
---|
310 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); |
---|
311 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + s); |
---|
312 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * s); |
---|
313 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
314 | } |
---|
315 | // linear RHS |
---|
316 | btScalar k = info->fps * info->erp; |
---|
317 | for(i = 0; i < 3; i++) |
---|
318 | { |
---|
319 | info->m_constraintError[i * s] = k * (pivotBInW[i] - pivotAInW[i]); |
---|
320 | } |
---|
321 | // make rotations around X and Y equal |
---|
322 | // the hinge axis should be the only unconstrained |
---|
323 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
324 | // the hinge axis should be equal. thus the constraint equations are |
---|
325 | // p*w1 - p*w2 = 0 |
---|
326 | // q*w1 - q*w2 = 0 |
---|
327 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 |
---|
328 | // are the angular velocity vectors of the two bodies. |
---|
329 | // get hinge axis (Z) |
---|
330 | btVector3 ax1 = trA.getBasis().getColumn(2); |
---|
331 | // get 2 orthos to hinge axis (X, Y) |
---|
332 | btVector3 p = trA.getBasis().getColumn(0); |
---|
333 | btVector3 q = trA.getBasis().getColumn(1); |
---|
334 | // set the two hinge angular rows |
---|
335 | int s3 = 3 * info->rowskip; |
---|
336 | int s4 = 4 * info->rowskip; |
---|
337 | |
---|
338 | info->m_J1angularAxis[s3 + 0] = p[0]; |
---|
339 | info->m_J1angularAxis[s3 + 1] = p[1]; |
---|
340 | info->m_J1angularAxis[s3 + 2] = p[2]; |
---|
341 | info->m_J1angularAxis[s4 + 0] = q[0]; |
---|
342 | info->m_J1angularAxis[s4 + 1] = q[1]; |
---|
343 | info->m_J1angularAxis[s4 + 2] = q[2]; |
---|
344 | |
---|
345 | info->m_J2angularAxis[s3 + 0] = -p[0]; |
---|
346 | info->m_J2angularAxis[s3 + 1] = -p[1]; |
---|
347 | info->m_J2angularAxis[s3 + 2] = -p[2]; |
---|
348 | info->m_J2angularAxis[s4 + 0] = -q[0]; |
---|
349 | info->m_J2angularAxis[s4 + 1] = -q[1]; |
---|
350 | info->m_J2angularAxis[s4 + 2] = -q[2]; |
---|
351 | // compute the right hand side of the constraint equation. set relative |
---|
352 | // body velocities along p and q to bring the hinge back into alignment. |
---|
353 | // if ax1,ax2 are the unit length hinge axes as computed from body1 and |
---|
354 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
355 | // if `theta' is the angle between ax1 and ax2, we need an angular velocity |
---|
356 | // along u to cover angle erp*theta in one step : |
---|
357 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
358 | // = (erp*fps) * theta |
---|
359 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
360 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
361 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
362 | // theta ~= sin(theta), so |
---|
363 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
364 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
365 | // velocity to p and q to find the right hand side. |
---|
366 | btVector3 ax2 = trB.getBasis().getColumn(2); |
---|
367 | btVector3 u = ax1.cross(ax2); |
---|
368 | info->m_constraintError[s3] = k * u.dot(p); |
---|
369 | info->m_constraintError[s4] = k * u.dot(q); |
---|
370 | // check angular limits |
---|
371 | int nrow = 4; // last filled row |
---|
372 | int srow; |
---|
373 | btScalar limit_err = btScalar(0.0); |
---|
374 | int limit = 0; |
---|
375 | if(getSolveLimit()) |
---|
376 | { |
---|
377 | limit_err = m_correction * m_referenceSign; |
---|
378 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
379 | } |
---|
380 | // if the hinge has joint limits or motor, add in the extra row |
---|
381 | int powered = 0; |
---|
382 | if(getEnableAngularMotor()) |
---|
383 | { |
---|
384 | powered = 1; |
---|
385 | } |
---|
386 | if(limit || powered) |
---|
387 | { |
---|
388 | nrow++; |
---|
389 | srow = nrow * info->rowskip; |
---|
390 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
391 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
392 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
393 | |
---|
394 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
395 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
396 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
397 | |
---|
398 | btScalar lostop = getLowerLimit(); |
---|
399 | btScalar histop = getUpperLimit(); |
---|
400 | if(limit && (lostop == histop)) |
---|
401 | { // the joint motor is ineffective |
---|
402 | powered = 0; |
---|
403 | } |
---|
404 | info->m_constraintError[srow] = btScalar(0.0f); |
---|
405 | if(powered) |
---|
406 | { |
---|
407 | info->cfm[srow] = btScalar(0.0); |
---|
408 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * info->erp); |
---|
409 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; |
---|
410 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; |
---|
411 | info->m_upperLimit[srow] = m_maxMotorImpulse; |
---|
412 | } |
---|
413 | if(limit) |
---|
414 | { |
---|
415 | k = info->fps * info->erp; |
---|
416 | info->m_constraintError[srow] += k * limit_err; |
---|
417 | info->cfm[srow] = btScalar(0.0); |
---|
418 | if(lostop == histop) |
---|
419 | { |
---|
420 | // limited low and high simultaneously |
---|
421 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
422 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
423 | } |
---|
424 | else if(limit == 1) |
---|
425 | { // low limit |
---|
426 | info->m_lowerLimit[srow] = 0; |
---|
427 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
428 | } |
---|
429 | else |
---|
430 | { // high limit |
---|
431 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
432 | info->m_upperLimit[srow] = 0; |
---|
433 | } |
---|
434 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
435 | btScalar bounce = m_relaxationFactor; |
---|
436 | if(bounce > btScalar(0.0)) |
---|
437 | { |
---|
438 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); |
---|
439 | vel -= m_rbB.getAngularVelocity().dot(ax1); |
---|
440 | // only apply bounce if the velocity is incoming, and if the |
---|
441 | // resulting c[] exceeds what we already have. |
---|
442 | if(limit == 1) |
---|
443 | { // low limit |
---|
444 | if(vel < 0) |
---|
445 | { |
---|
446 | btScalar newc = -bounce * vel; |
---|
447 | if(newc > info->m_constraintError[srow]) |
---|
448 | { |
---|
449 | info->m_constraintError[srow] = newc; |
---|
450 | } |
---|
451 | } |
---|
452 | } |
---|
453 | else |
---|
454 | { // high limit - all those computations are reversed |
---|
455 | if(vel > 0) |
---|
456 | { |
---|
457 | btScalar newc = -bounce * vel; |
---|
458 | if(newc < info->m_constraintError[srow]) |
---|
459 | { |
---|
460 | info->m_constraintError[srow] = newc; |
---|
461 | } |
---|
462 | } |
---|
463 | } |
---|
464 | } |
---|
465 | info->m_constraintError[srow] *= m_biasFactor; |
---|
466 | } // if(limit) |
---|
467 | } // if angular limit or powered |
---|
468 | } |
---|
469 | |
---|
470 | //----------------------------------------------------------------------------- |
---|
471 | |
---|
472 | void btHingeConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep) |
---|
473 | { |
---|
474 | |
---|
475 | ///for backwards compatibility during the transition to 'getInfo/getInfo2' |
---|
476 | if (m_useSolveConstraintObsolete) |
---|
477 | { |
---|
478 | |
---|
479 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
480 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
481 | |
---|
482 | btScalar tau = btScalar(0.3); |
---|
483 | |
---|
484 | //linear part |
---|
485 | if (!m_angularOnly) |
---|
486 | { |
---|
487 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
488 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
489 | |
---|
490 | btVector3 vel1,vel2; |
---|
491 | bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); |
---|
492 | bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); |
---|
493 | btVector3 vel = vel1 - vel2; |
---|
494 | |
---|
495 | for (int i=0;i<3;i++) |
---|
496 | { |
---|
497 | const btVector3& normal = m_jac[i].m_linearJointAxis; |
---|
498 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); |
---|
499 | |
---|
500 | btScalar rel_vel; |
---|
501 | rel_vel = normal.dot(vel); |
---|
502 | //positional error (zeroth order error) |
---|
503 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
---|
504 | btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; |
---|
505 | m_appliedImpulse += impulse; |
---|
506 | btVector3 impulse_vector = normal * impulse; |
---|
507 | btVector3 ftorqueAxis1 = rel_pos1.cross(normal); |
---|
508 | btVector3 ftorqueAxis2 = rel_pos2.cross(normal); |
---|
509 | bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse); |
---|
510 | bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse); |
---|
511 | } |
---|
512 | } |
---|
513 | |
---|
514 | |
---|
515 | { |
---|
516 | ///solve angular part |
---|
517 | |
---|
518 | // get axes in world space |
---|
519 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
520 | btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2); |
---|
521 | |
---|
522 | btVector3 angVelA; |
---|
523 | bodyA.getAngularVelocity(angVelA); |
---|
524 | btVector3 angVelB; |
---|
525 | bodyB.getAngularVelocity(angVelB); |
---|
526 | |
---|
527 | btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); |
---|
528 | btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); |
---|
529 | |
---|
530 | btVector3 angAorthog = angVelA - angVelAroundHingeAxisA; |
---|
531 | btVector3 angBorthog = angVelB - angVelAroundHingeAxisB; |
---|
532 | btVector3 velrelOrthog = angAorthog-angBorthog; |
---|
533 | { |
---|
534 | |
---|
535 | |
---|
536 | //solve orthogonal angular velocity correction |
---|
537 | btScalar relaxation = btScalar(1.); |
---|
538 | btScalar len = velrelOrthog.length(); |
---|
539 | if (len > btScalar(0.00001)) |
---|
540 | { |
---|
541 | btVector3 normal = velrelOrthog.normalized(); |
---|
542 | btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) + |
---|
543 | getRigidBodyB().computeAngularImpulseDenominator(normal); |
---|
544 | // scale for mass and relaxation |
---|
545 | //velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor; |
---|
546 | |
---|
547 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*velrelOrthog,-(btScalar(1.)/denom)); |
---|
548 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*velrelOrthog,(btScalar(1.)/denom)); |
---|
549 | |
---|
550 | } |
---|
551 | |
---|
552 | //solve angular positional correction |
---|
553 | btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/timeStep); |
---|
554 | btScalar len2 = angularError.length(); |
---|
555 | if (len2>btScalar(0.00001)) |
---|
556 | { |
---|
557 | btVector3 normal2 = angularError.normalized(); |
---|
558 | btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) + |
---|
559 | getRigidBodyB().computeAngularImpulseDenominator(normal2); |
---|
560 | //angularError *= (btScalar(1.)/denom2) * relaxation; |
---|
561 | |
---|
562 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*angularError,(btScalar(1.)/denom2)); |
---|
563 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*angularError,-(btScalar(1.)/denom2)); |
---|
564 | |
---|
565 | } |
---|
566 | |
---|
567 | |
---|
568 | |
---|
569 | |
---|
570 | |
---|
571 | // solve limit |
---|
572 | if (m_solveLimit) |
---|
573 | { |
---|
574 | btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign; |
---|
575 | |
---|
576 | btScalar impulseMag = amplitude * m_kHinge; |
---|
577 | |
---|
578 | // Clamp the accumulated impulse |
---|
579 | btScalar temp = m_accLimitImpulse; |
---|
580 | m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) ); |
---|
581 | impulseMag = m_accLimitImpulse - temp; |
---|
582 | |
---|
583 | |
---|
584 | |
---|
585 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,impulseMag * m_limitSign); |
---|
586 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-(impulseMag * m_limitSign)); |
---|
587 | |
---|
588 | } |
---|
589 | } |
---|
590 | |
---|
591 | //apply motor |
---|
592 | if (m_enableAngularMotor) |
---|
593 | { |
---|
594 | //todo: add limits too |
---|
595 | btVector3 angularLimit(0,0,0); |
---|
596 | |
---|
597 | btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; |
---|
598 | btScalar projRelVel = velrel.dot(axisA); |
---|
599 | |
---|
600 | btScalar desiredMotorVel = m_motorTargetVelocity; |
---|
601 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
---|
602 | |
---|
603 | btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;; |
---|
604 | //todo: should clip against accumulated impulse |
---|
605 | btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; |
---|
606 | clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; |
---|
607 | btVector3 motorImp = clippedMotorImpulse * axisA; |
---|
608 | |
---|
609 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,clippedMotorImpulse); |
---|
610 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-clippedMotorImpulse); |
---|
611 | |
---|
612 | } |
---|
613 | } |
---|
614 | } |
---|
615 | |
---|
616 | } |
---|
617 | |
---|
618 | //----------------------------------------------------------------------------- |
---|
619 | |
---|
620 | void btHingeConstraint::updateRHS(btScalar timeStep) |
---|
621 | { |
---|
622 | (void)timeStep; |
---|
623 | |
---|
624 | } |
---|
625 | |
---|
626 | //----------------------------------------------------------------------------- |
---|
627 | |
---|
628 | btScalar btHingeConstraint::getHingeAngle() |
---|
629 | { |
---|
630 | const btVector3 refAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); |
---|
631 | const btVector3 refAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); |
---|
632 | const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1); |
---|
633 | btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); |
---|
634 | return m_referenceSign * angle; |
---|
635 | } |
---|
636 | |
---|
637 | //----------------------------------------------------------------------------- |
---|
638 | |
---|
639 | void btHingeConstraint::testLimit() |
---|
640 | { |
---|
641 | // Compute limit information |
---|
642 | m_hingeAngle = getHingeAngle(); |
---|
643 | m_correction = btScalar(0.); |
---|
644 | m_limitSign = btScalar(0.); |
---|
645 | m_solveLimit = false; |
---|
646 | if (m_lowerLimit <= m_upperLimit) |
---|
647 | { |
---|
648 | if (m_hingeAngle <= m_lowerLimit) |
---|
649 | { |
---|
650 | m_correction = (m_lowerLimit - m_hingeAngle); |
---|
651 | m_limitSign = 1.0f; |
---|
652 | m_solveLimit = true; |
---|
653 | } |
---|
654 | else if (m_hingeAngle >= m_upperLimit) |
---|
655 | { |
---|
656 | m_correction = m_upperLimit - m_hingeAngle; |
---|
657 | m_limitSign = -1.0f; |
---|
658 | m_solveLimit = true; |
---|
659 | } |
---|
660 | } |
---|
661 | return; |
---|
662 | } // btHingeConstraint::testLimit() |
---|
663 | |
---|
664 | //----------------------------------------------------------------------------- |
---|
665 | //----------------------------------------------------------------------------- |
---|
666 | //----------------------------------------------------------------------------- |
---|