Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/tutorial4/src/external/gmock/include/gmock/gmock-actions.h @ 10215

Last change on this file since 10215 was 9021, checked in by landauf, 13 years ago

added google test and google mock to external libraries

  • Property svn:eol-style set to native
File size: 36.3 KB
Line 
1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used actions.
35
36#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
39#include <algorithm>
40#include <string>
41
42#ifndef _WIN32_WCE
43# include <errno.h>
44#endif
45
46#include "gmock/internal/gmock-internal-utils.h"
47#include "gmock/internal/gmock-port.h"
48
49namespace testing {
50
51// To implement an action Foo, define:
52//   1. a class FooAction that implements the ActionInterface interface, and
53//   2. a factory function that creates an Action object from a
54//      const FooAction*.
55//
56// The two-level delegation design follows that of Matcher, providing
57// consistency for extension developers.  It also eases ownership
58// management as Action objects can now be copied like plain values.
59
60namespace internal {
61
62template <typename F1, typename F2>
63class ActionAdaptor;
64
65// BuiltInDefaultValue<T>::Get() returns the "built-in" default
66// value for type T, which is NULL when T is a pointer type, 0 when T
67// is a numeric type, false when T is bool, or "" when T is string or
68// std::string.  For any other type T, this value is undefined and the
69// function will abort the process.
70template <typename T>
71class BuiltInDefaultValue {
72 public:
73  // This function returns true iff type T has a built-in default value.
74  static bool Exists() { return false; }
75  static T Get() {
76    Assert(false, __FILE__, __LINE__,
77           "Default action undefined for the function return type.");
78    return internal::Invalid<T>();
79    // The above statement will never be reached, but is required in
80    // order for this function to compile.
81  }
82};
83
84// This partial specialization says that we use the same built-in
85// default value for T and const T.
86template <typename T>
87class BuiltInDefaultValue<const T> {
88 public:
89  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
90  static T Get() { return BuiltInDefaultValue<T>::Get(); }
91};
92
93// This partial specialization defines the default values for pointer
94// types.
95template <typename T>
96class BuiltInDefaultValue<T*> {
97 public:
98  static bool Exists() { return true; }
99  static T* Get() { return NULL; }
100};
101
102// The following specializations define the default values for
103// specific types we care about.
104#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
105  template <> \
106  class BuiltInDefaultValue<type> { \
107   public: \
108    static bool Exists() { return true; } \
109    static type Get() { return value; } \
110  }
111
112GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
113#if GTEST_HAS_GLOBAL_STRING
114GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
115#endif  // GTEST_HAS_GLOBAL_STRING
116GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
117GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
118GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
119GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
120GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
121
122// There's no need for a default action for signed wchar_t, as that
123// type is the same as wchar_t for gcc, and invalid for MSVC.
124//
125// There's also no need for a default action for unsigned wchar_t, as
126// that type is the same as unsigned int for gcc, and invalid for
127// MSVC.
128#if GMOCK_WCHAR_T_IS_NATIVE_
129GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
130#endif
131
132GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
133GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
134GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
135GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
136GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
137GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
138GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
139GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
140GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
141GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
142
143#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
144
145}  // namespace internal
146
147// When an unexpected function call is encountered, Google Mock will
148// let it return a default value if the user has specified one for its
149// return type, or if the return type has a built-in default value;
150// otherwise Google Mock won't know what value to return and will have
151// to abort the process.
152//
153// The DefaultValue<T> class allows a user to specify the
154// default value for a type T that is both copyable and publicly
155// destructible (i.e. anything that can be used as a function return
156// type).  The usage is:
157//
158//   // Sets the default value for type T to be foo.
159//   DefaultValue<T>::Set(foo);
160template <typename T>
161class DefaultValue {
162 public:
163  // Sets the default value for type T; requires T to be
164  // copy-constructable and have a public destructor.
165  static void Set(T x) {
166    delete value_;
167    value_ = new T(x);
168  }
169
170  // Unsets the default value for type T.
171  static void Clear() {
172    delete value_;
173    value_ = NULL;
174  }
175
176  // Returns true iff the user has set the default value for type T.
177  static bool IsSet() { return value_ != NULL; }
178
179  // Returns true if T has a default return value set by the user or there
180  // exists a built-in default value.
181  static bool Exists() {
182    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
183  }
184
185  // Returns the default value for type T if the user has set one;
186  // otherwise returns the built-in default value if there is one;
187  // otherwise aborts the process.
188  static T Get() {
189    return value_ == NULL ?
190        internal::BuiltInDefaultValue<T>::Get() : *value_;
191  }
192 private:
193  static const T* value_;
194};
195
196// This partial specialization allows a user to set default values for
197// reference types.
198template <typename T>
199class DefaultValue<T&> {
200 public:
201  // Sets the default value for type T&.
202  static void Set(T& x) {  // NOLINT
203    address_ = &x;
204  }
205
206  // Unsets the default value for type T&.
207  static void Clear() {
208    address_ = NULL;
209  }
210
211  // Returns true iff the user has set the default value for type T&.
212  static bool IsSet() { return address_ != NULL; }
213
214  // Returns true if T has a default return value set by the user or there
215  // exists a built-in default value.
216  static bool Exists() {
217    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
218  }
219
220  // Returns the default value for type T& if the user has set one;
221  // otherwise returns the built-in default value if there is one;
222  // otherwise aborts the process.
223  static T& Get() {
224    return address_ == NULL ?
225        internal::BuiltInDefaultValue<T&>::Get() : *address_;
226  }
227 private:
228  static T* address_;
229};
230
231// This specialization allows DefaultValue<void>::Get() to
232// compile.
233template <>
234class DefaultValue<void> {
235 public:
236  static bool Exists() { return true; }
237  static void Get() {}
238};
239
240// Points to the user-set default value for type T.
241template <typename T>
242const T* DefaultValue<T>::value_ = NULL;
243
244// Points to the user-set default value for type T&.
245template <typename T>
246T* DefaultValue<T&>::address_ = NULL;
247
248// Implement this interface to define an action for function type F.
249template <typename F>
250class ActionInterface {
251 public:
252  typedef typename internal::Function<F>::Result Result;
253  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
254
255  ActionInterface() {}
256  virtual ~ActionInterface() {}
257
258  // Performs the action.  This method is not const, as in general an
259  // action can have side effects and be stateful.  For example, a
260  // get-the-next-element-from-the-collection action will need to
261  // remember the current element.
262  virtual Result Perform(const ArgumentTuple& args) = 0;
263
264 private:
265  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
266};
267
268// An Action<F> is a copyable and IMMUTABLE (except by assignment)
269// object that represents an action to be taken when a mock function
270// of type F is called.  The implementation of Action<T> is just a
271// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
272// Don't inherit from Action!
273//
274// You can view an object implementing ActionInterface<F> as a
275// concrete action (including its current state), and an Action<F>
276// object as a handle to it.
277template <typename F>
278class Action {
279 public:
280  typedef typename internal::Function<F>::Result Result;
281  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
282
283  // Constructs a null Action.  Needed for storing Action objects in
284  // STL containers.
285  Action() : impl_(NULL) {}
286
287  // Constructs an Action from its implementation.  A NULL impl is
288  // used to represent the "do-default" action.
289  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
290
291  // Copy constructor.
292  Action(const Action& action) : impl_(action.impl_) {}
293
294  // This constructor allows us to turn an Action<Func> object into an
295  // Action<F>, as long as F's arguments can be implicitly converted
296  // to Func's and Func's return type can be implicitly converted to
297  // F's.
298  template <typename Func>
299  explicit Action(const Action<Func>& action);
300
301  // Returns true iff this is the DoDefault() action.
302  bool IsDoDefault() const { return impl_.get() == NULL; }
303
304  // Performs the action.  Note that this method is const even though
305  // the corresponding method in ActionInterface is not.  The reason
306  // is that a const Action<F> means that it cannot be re-bound to
307  // another concrete action, not that the concrete action it binds to
308  // cannot change state.  (Think of the difference between a const
309  // pointer and a pointer to const.)
310  Result Perform(const ArgumentTuple& args) const {
311    internal::Assert(
312        !IsDoDefault(), __FILE__, __LINE__,
313        "You are using DoDefault() inside a composite action like "
314        "DoAll() or WithArgs().  This is not supported for technical "
315        "reasons.  Please instead spell out the default action, or "
316        "assign the default action to an Action variable and use "
317        "the variable in various places.");
318    return impl_->Perform(args);
319  }
320
321 private:
322  template <typename F1, typename F2>
323  friend class internal::ActionAdaptor;
324
325  internal::linked_ptr<ActionInterface<F> > impl_;
326};
327
328// The PolymorphicAction class template makes it easy to implement a
329// polymorphic action (i.e. an action that can be used in mock
330// functions of than one type, e.g. Return()).
331//
332// To define a polymorphic action, a user first provides a COPYABLE
333// implementation class that has a Perform() method template:
334//
335//   class FooAction {
336//    public:
337//     template <typename Result, typename ArgumentTuple>
338//     Result Perform(const ArgumentTuple& args) const {
339//       // Processes the arguments and returns a result, using
340//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
341//     }
342//     ...
343//   };
344//
345// Then the user creates the polymorphic action using
346// MakePolymorphicAction(object) where object has type FooAction.  See
347// the definition of Return(void) and SetArgumentPointee<N>(value) for
348// complete examples.
349template <typename Impl>
350class PolymorphicAction {
351 public:
352  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
353
354  template <typename F>
355  operator Action<F>() const {
356    return Action<F>(new MonomorphicImpl<F>(impl_));
357  }
358
359 private:
360  template <typename F>
361  class MonomorphicImpl : public ActionInterface<F> {
362   public:
363    typedef typename internal::Function<F>::Result Result;
364    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
365
366    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
367
368    virtual Result Perform(const ArgumentTuple& args) {
369      return impl_.template Perform<Result>(args);
370    }
371
372   private:
373    Impl impl_;
374
375    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
376  };
377
378  Impl impl_;
379
380  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
381};
382
383// Creates an Action from its implementation and returns it.  The
384// created Action object owns the implementation.
385template <typename F>
386Action<F> MakeAction(ActionInterface<F>* impl) {
387  return Action<F>(impl);
388}
389
390// Creates a polymorphic action from its implementation.  This is
391// easier to use than the PolymorphicAction<Impl> constructor as it
392// doesn't require you to explicitly write the template argument, e.g.
393//
394//   MakePolymorphicAction(foo);
395// vs
396//   PolymorphicAction<TypeOfFoo>(foo);
397template <typename Impl>
398inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
399  return PolymorphicAction<Impl>(impl);
400}
401
402namespace internal {
403
404// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
405// and F1 are compatible.
406template <typename F1, typename F2>
407class ActionAdaptor : public ActionInterface<F1> {
408 public:
409  typedef typename internal::Function<F1>::Result Result;
410  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
411
412  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
413
414  virtual Result Perform(const ArgumentTuple& args) {
415    return impl_->Perform(args);
416  }
417
418 private:
419  const internal::linked_ptr<ActionInterface<F2> > impl_;
420
421  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
422};
423
424// Implements the polymorphic Return(x) action, which can be used in
425// any function that returns the type of x, regardless of the argument
426// types.
427//
428// Note: The value passed into Return must be converted into
429// Function<F>::Result when this action is cast to Action<F> rather than
430// when that action is performed. This is important in scenarios like
431//
432// MOCK_METHOD1(Method, T(U));
433// ...
434// {
435//   Foo foo;
436//   X x(&foo);
437//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
438// }
439//
440// In the example above the variable x holds reference to foo which leaves
441// scope and gets destroyed.  If copying X just copies a reference to foo,
442// that copy will be left with a hanging reference.  If conversion to T
443// makes a copy of foo, the above code is safe. To support that scenario, we
444// need to make sure that the type conversion happens inside the EXPECT_CALL
445// statement, and conversion of the result of Return to Action<T(U)> is a
446// good place for that.
447//
448template <typename R>
449class ReturnAction {
450 public:
451  // Constructs a ReturnAction object from the value to be returned.
452  // 'value' is passed by value instead of by const reference in order
453  // to allow Return("string literal") to compile.
454  explicit ReturnAction(R value) : value_(value) {}
455
456  // This template type conversion operator allows Return(x) to be
457  // used in ANY function that returns x's type.
458  template <typename F>
459  operator Action<F>() const {
460    // Assert statement belongs here because this is the best place to verify
461    // conditions on F. It produces the clearest error messages
462    // in most compilers.
463    // Impl really belongs in this scope as a local class but can't
464    // because MSVC produces duplicate symbols in different translation units
465    // in this case. Until MS fixes that bug we put Impl into the class scope
466    // and put the typedef both here (for use in assert statement) and
467    // in the Impl class. But both definitions must be the same.
468    typedef typename Function<F>::Result Result;
469    GTEST_COMPILE_ASSERT_(
470        !internal::is_reference<Result>::value,
471        use_ReturnRef_instead_of_Return_to_return_a_reference);
472    return Action<F>(new Impl<F>(value_));
473  }
474
475 private:
476  // Implements the Return(x) action for a particular function type F.
477  template <typename F>
478  class Impl : public ActionInterface<F> {
479   public:
480    typedef typename Function<F>::Result Result;
481    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
482
483    // The implicit cast is necessary when Result has more than one
484    // single-argument constructor (e.g. Result is std::vector<int>) and R
485    // has a type conversion operator template.  In that case, value_(value)
486    // won't compile as the compiler doesn't known which constructor of
487    // Result to call.  ImplicitCast_ forces the compiler to convert R to
488    // Result without considering explicit constructors, thus resolving the
489    // ambiguity. value_ is then initialized using its copy constructor.
490    explicit Impl(R value)
491        : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
492
493    virtual Result Perform(const ArgumentTuple&) { return value_; }
494
495   private:
496    GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
497                          Result_cannot_be_a_reference_type);
498    Result value_;
499
500    GTEST_DISALLOW_ASSIGN_(Impl);
501  };
502
503  R value_;
504
505  GTEST_DISALLOW_ASSIGN_(ReturnAction);
506};
507
508// Implements the ReturnNull() action.
509class ReturnNullAction {
510 public:
511  // Allows ReturnNull() to be used in any pointer-returning function.
512  template <typename Result, typename ArgumentTuple>
513  static Result Perform(const ArgumentTuple&) {
514    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
515                          ReturnNull_can_be_used_to_return_a_pointer_only);
516    return NULL;
517  }
518};
519
520// Implements the Return() action.
521class ReturnVoidAction {
522 public:
523  // Allows Return() to be used in any void-returning function.
524  template <typename Result, typename ArgumentTuple>
525  static void Perform(const ArgumentTuple&) {
526    CompileAssertTypesEqual<void, Result>();
527  }
528};
529
530// Implements the polymorphic ReturnRef(x) action, which can be used
531// in any function that returns a reference to the type of x,
532// regardless of the argument types.
533template <typename T>
534class ReturnRefAction {
535 public:
536  // Constructs a ReturnRefAction object from the reference to be returned.
537  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
538
539  // This template type conversion operator allows ReturnRef(x) to be
540  // used in ANY function that returns a reference to x's type.
541  template <typename F>
542  operator Action<F>() const {
543    typedef typename Function<F>::Result Result;
544    // Asserts that the function return type is a reference.  This
545    // catches the user error of using ReturnRef(x) when Return(x)
546    // should be used, and generates some helpful error message.
547    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
548                          use_Return_instead_of_ReturnRef_to_return_a_value);
549    return Action<F>(new Impl<F>(ref_));
550  }
551
552 private:
553  // Implements the ReturnRef(x) action for a particular function type F.
554  template <typename F>
555  class Impl : public ActionInterface<F> {
556   public:
557    typedef typename Function<F>::Result Result;
558    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
559
560    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
561
562    virtual Result Perform(const ArgumentTuple&) {
563      return ref_;
564    }
565
566   private:
567    T& ref_;
568
569    GTEST_DISALLOW_ASSIGN_(Impl);
570  };
571
572  T& ref_;
573
574  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
575};
576
577// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
578// used in any function that returns a reference to the type of x,
579// regardless of the argument types.
580template <typename T>
581class ReturnRefOfCopyAction {
582 public:
583  // Constructs a ReturnRefOfCopyAction object from the reference to
584  // be returned.
585  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
586
587  // This template type conversion operator allows ReturnRefOfCopy(x) to be
588  // used in ANY function that returns a reference to x's type.
589  template <typename F>
590  operator Action<F>() const {
591    typedef typename Function<F>::Result Result;
592    // Asserts that the function return type is a reference.  This
593    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
594    // should be used, and generates some helpful error message.
595    GTEST_COMPILE_ASSERT_(
596        internal::is_reference<Result>::value,
597        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
598    return Action<F>(new Impl<F>(value_));
599  }
600
601 private:
602  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
603  template <typename F>
604  class Impl : public ActionInterface<F> {
605   public:
606    typedef typename Function<F>::Result Result;
607    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
608
609    explicit Impl(const T& value) : value_(value) {}  // NOLINT
610
611    virtual Result Perform(const ArgumentTuple&) {
612      return value_;
613    }
614
615   private:
616    T value_;
617
618    GTEST_DISALLOW_ASSIGN_(Impl);
619  };
620
621  const T value_;
622
623  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
624};
625
626// Implements the polymorphic DoDefault() action.
627class DoDefaultAction {
628 public:
629  // This template type conversion operator allows DoDefault() to be
630  // used in any function.
631  template <typename F>
632  operator Action<F>() const { return Action<F>(NULL); }
633};
634
635// Implements the Assign action to set a given pointer referent to a
636// particular value.
637template <typename T1, typename T2>
638class AssignAction {
639 public:
640  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
641
642  template <typename Result, typename ArgumentTuple>
643  void Perform(const ArgumentTuple& /* args */) const {
644    *ptr_ = value_;
645  }
646
647 private:
648  T1* const ptr_;
649  const T2 value_;
650
651  GTEST_DISALLOW_ASSIGN_(AssignAction);
652};
653
654#if !GTEST_OS_WINDOWS_MOBILE
655
656// Implements the SetErrnoAndReturn action to simulate return from
657// various system calls and libc functions.
658template <typename T>
659class SetErrnoAndReturnAction {
660 public:
661  SetErrnoAndReturnAction(int errno_value, T result)
662      : errno_(errno_value),
663        result_(result) {}
664  template <typename Result, typename ArgumentTuple>
665  Result Perform(const ArgumentTuple& /* args */) const {
666    errno = errno_;
667    return result_;
668  }
669
670 private:
671  const int errno_;
672  const T result_;
673
674  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
675};
676
677#endif  // !GTEST_OS_WINDOWS_MOBILE
678
679// Implements the SetArgumentPointee<N>(x) action for any function
680// whose N-th argument (0-based) is a pointer to x's type.  The
681// template parameter kIsProto is true iff type A is ProtocolMessage,
682// proto2::Message, or a sub-class of those.
683template <size_t N, typename A, bool kIsProto>
684class SetArgumentPointeeAction {
685 public:
686  // Constructs an action that sets the variable pointed to by the
687  // N-th function argument to 'value'.
688  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
689
690  template <typename Result, typename ArgumentTuple>
691  void Perform(const ArgumentTuple& args) const {
692    CompileAssertTypesEqual<void, Result>();
693    *::std::tr1::get<N>(args) = value_;
694  }
695
696 private:
697  const A value_;
698
699  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
700};
701
702template <size_t N, typename Proto>
703class SetArgumentPointeeAction<N, Proto, true> {
704 public:
705  // Constructs an action that sets the variable pointed to by the
706  // N-th function argument to 'proto'.  Both ProtocolMessage and
707  // proto2::Message have the CopyFrom() method, so the same
708  // implementation works for both.
709  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
710    proto_->CopyFrom(proto);
711  }
712
713  template <typename Result, typename ArgumentTuple>
714  void Perform(const ArgumentTuple& args) const {
715    CompileAssertTypesEqual<void, Result>();
716    ::std::tr1::get<N>(args)->CopyFrom(*proto_);
717  }
718
719 private:
720  const internal::linked_ptr<Proto> proto_;
721
722  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
723};
724
725// Implements the InvokeWithoutArgs(f) action.  The template argument
726// FunctionImpl is the implementation type of f, which can be either a
727// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
728// Action<F> as long as f's type is compatible with F (i.e. f can be
729// assigned to a tr1::function<F>).
730template <typename FunctionImpl>
731class InvokeWithoutArgsAction {
732 public:
733  // The c'tor makes a copy of function_impl (either a function
734  // pointer or a functor).
735  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
736      : function_impl_(function_impl) {}
737
738  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
739  // compatible with f.
740  template <typename Result, typename ArgumentTuple>
741  Result Perform(const ArgumentTuple&) { return function_impl_(); }
742
743 private:
744  FunctionImpl function_impl_;
745
746  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
747};
748
749// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
750template <class Class, typename MethodPtr>
751class InvokeMethodWithoutArgsAction {
752 public:
753  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
754      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
755
756  template <typename Result, typename ArgumentTuple>
757  Result Perform(const ArgumentTuple&) const {
758    return (obj_ptr_->*method_ptr_)();
759  }
760
761 private:
762  Class* const obj_ptr_;
763  const MethodPtr method_ptr_;
764
765  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
766};
767
768// Implements the IgnoreResult(action) action.
769template <typename A>
770class IgnoreResultAction {
771 public:
772  explicit IgnoreResultAction(const A& action) : action_(action) {}
773
774  template <typename F>
775  operator Action<F>() const {
776    // Assert statement belongs here because this is the best place to verify
777    // conditions on F. It produces the clearest error messages
778    // in most compilers.
779    // Impl really belongs in this scope as a local class but can't
780    // because MSVC produces duplicate symbols in different translation units
781    // in this case. Until MS fixes that bug we put Impl into the class scope
782    // and put the typedef both here (for use in assert statement) and
783    // in the Impl class. But both definitions must be the same.
784    typedef typename internal::Function<F>::Result Result;
785
786    // Asserts at compile time that F returns void.
787    CompileAssertTypesEqual<void, Result>();
788
789    return Action<F>(new Impl<F>(action_));
790  }
791
792 private:
793  template <typename F>
794  class Impl : public ActionInterface<F> {
795   public:
796    typedef typename internal::Function<F>::Result Result;
797    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
798
799    explicit Impl(const A& action) : action_(action) {}
800
801    virtual void Perform(const ArgumentTuple& args) {
802      // Performs the action and ignores its result.
803      action_.Perform(args);
804    }
805
806   private:
807    // Type OriginalFunction is the same as F except that its return
808    // type is IgnoredValue.
809    typedef typename internal::Function<F>::MakeResultIgnoredValue
810        OriginalFunction;
811
812    const Action<OriginalFunction> action_;
813
814    GTEST_DISALLOW_ASSIGN_(Impl);
815  };
816
817  const A action_;
818
819  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
820};
821
822// A ReferenceWrapper<T> object represents a reference to type T,
823// which can be either const or not.  It can be explicitly converted
824// from, and implicitly converted to, a T&.  Unlike a reference,
825// ReferenceWrapper<T> can be copied and can survive template type
826// inference.  This is used to support by-reference arguments in the
827// InvokeArgument<N>(...) action.  The idea was from "reference
828// wrappers" in tr1, which we don't have in our source tree yet.
829template <typename T>
830class ReferenceWrapper {
831 public:
832  // Constructs a ReferenceWrapper<T> object from a T&.
833  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
834
835  // Allows a ReferenceWrapper<T> object to be implicitly converted to
836  // a T&.
837  operator T&() const { return *pointer_; }
838 private:
839  T* pointer_;
840};
841
842// Allows the expression ByRef(x) to be printed as a reference to x.
843template <typename T>
844void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
845  T& value = ref;
846  UniversalPrinter<T&>::Print(value, os);
847}
848
849// Does two actions sequentially.  Used for implementing the DoAll(a1,
850// a2, ...) action.
851template <typename Action1, typename Action2>
852class DoBothAction {
853 public:
854  DoBothAction(Action1 action1, Action2 action2)
855      : action1_(action1), action2_(action2) {}
856
857  // This template type conversion operator allows DoAll(a1, ..., a_n)
858  // to be used in ANY function of compatible type.
859  template <typename F>
860  operator Action<F>() const {
861    return Action<F>(new Impl<F>(action1_, action2_));
862  }
863
864 private:
865  // Implements the DoAll(...) action for a particular function type F.
866  template <typename F>
867  class Impl : public ActionInterface<F> {
868   public:
869    typedef typename Function<F>::Result Result;
870    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
871    typedef typename Function<F>::MakeResultVoid VoidResult;
872
873    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
874        : action1_(action1), action2_(action2) {}
875
876    virtual Result Perform(const ArgumentTuple& args) {
877      action1_.Perform(args);
878      return action2_.Perform(args);
879    }
880
881   private:
882    const Action<VoidResult> action1_;
883    const Action<F> action2_;
884
885    GTEST_DISALLOW_ASSIGN_(Impl);
886  };
887
888  Action1 action1_;
889  Action2 action2_;
890
891  GTEST_DISALLOW_ASSIGN_(DoBothAction);
892};
893
894}  // namespace internal
895
896// An Unused object can be implicitly constructed from ANY value.
897// This is handy when defining actions that ignore some or all of the
898// mock function arguments.  For example, given
899//
900//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
901//   MOCK_METHOD3(Bar, double(int index, double x, double y));
902//
903// instead of
904//
905//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
906//     return sqrt(x*x + y*y);
907//   }
908//   double DistanceToOriginWithIndex(int index, double x, double y) {
909//     return sqrt(x*x + y*y);
910//   }
911//   ...
912//   EXEPCT_CALL(mock, Foo("abc", _, _))
913//       .WillOnce(Invoke(DistanceToOriginWithLabel));
914//   EXEPCT_CALL(mock, Bar(5, _, _))
915//       .WillOnce(Invoke(DistanceToOriginWithIndex));
916//
917// you could write
918//
919//   // We can declare any uninteresting argument as Unused.
920//   double DistanceToOrigin(Unused, double x, double y) {
921//     return sqrt(x*x + y*y);
922//   }
923//   ...
924//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
925//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
926typedef internal::IgnoredValue Unused;
927
928// This constructor allows us to turn an Action<From> object into an
929// Action<To>, as long as To's arguments can be implicitly converted
930// to From's and From's return type cann be implicitly converted to
931// To's.
932template <typename To>
933template <typename From>
934Action<To>::Action(const Action<From>& from)
935    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
936
937// Creates an action that returns 'value'.  'value' is passed by value
938// instead of const reference - otherwise Return("string literal")
939// will trigger a compiler error about using array as initializer.
940template <typename R>
941internal::ReturnAction<R> Return(R value) {
942  return internal::ReturnAction<R>(value);
943}
944
945// Creates an action that returns NULL.
946inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
947  return MakePolymorphicAction(internal::ReturnNullAction());
948}
949
950// Creates an action that returns from a void function.
951inline PolymorphicAction<internal::ReturnVoidAction> Return() {
952  return MakePolymorphicAction(internal::ReturnVoidAction());
953}
954
955// Creates an action that returns the reference to a variable.
956template <typename R>
957inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
958  return internal::ReturnRefAction<R>(x);
959}
960
961// Creates an action that returns the reference to a copy of the
962// argument.  The copy is created when the action is constructed and
963// lives as long as the action.
964template <typename R>
965inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
966  return internal::ReturnRefOfCopyAction<R>(x);
967}
968
969// Creates an action that does the default action for the give mock function.
970inline internal::DoDefaultAction DoDefault() {
971  return internal::DoDefaultAction();
972}
973
974// Creates an action that sets the variable pointed by the N-th
975// (0-based) function argument to 'value'.
976template <size_t N, typename T>
977PolymorphicAction<
978  internal::SetArgumentPointeeAction<
979    N, T, internal::IsAProtocolMessage<T>::value> >
980SetArgPointee(const T& x) {
981  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
982      N, T, internal::IsAProtocolMessage<T>::value>(x));
983}
984
985#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
986// This overload allows SetArgPointee() to accept a string literal.
987// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
988// this overload from the templated version and emit a compile error.
989template <size_t N>
990PolymorphicAction<
991  internal::SetArgumentPointeeAction<N, const char*, false> >
992SetArgPointee(const char* p) {
993  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
994      N, const char*, false>(p));
995}
996
997template <size_t N>
998PolymorphicAction<
999  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1000SetArgPointee(const wchar_t* p) {
1001  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1002      N, const wchar_t*, false>(p));
1003}
1004#endif
1005
1006// The following version is DEPRECATED.
1007template <size_t N, typename T>
1008PolymorphicAction<
1009  internal::SetArgumentPointeeAction<
1010    N, T, internal::IsAProtocolMessage<T>::value> >
1011SetArgumentPointee(const T& x) {
1012  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1013      N, T, internal::IsAProtocolMessage<T>::value>(x));
1014}
1015
1016// Creates an action that sets a pointer referent to a given value.
1017template <typename T1, typename T2>
1018PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1019  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1020}
1021
1022#if !GTEST_OS_WINDOWS_MOBILE
1023
1024// Creates an action that sets errno and returns the appropriate error.
1025template <typename T>
1026PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1027SetErrnoAndReturn(int errval, T result) {
1028  return MakePolymorphicAction(
1029      internal::SetErrnoAndReturnAction<T>(errval, result));
1030}
1031
1032#endif  // !GTEST_OS_WINDOWS_MOBILE
1033
1034// Various overloads for InvokeWithoutArgs().
1035
1036// Creates an action that invokes 'function_impl' with no argument.
1037template <typename FunctionImpl>
1038PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1039InvokeWithoutArgs(FunctionImpl function_impl) {
1040  return MakePolymorphicAction(
1041      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1042}
1043
1044// Creates an action that invokes the given method on the given object
1045// with no argument.
1046template <class Class, typename MethodPtr>
1047PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1048InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1049  return MakePolymorphicAction(
1050      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1051          obj_ptr, method_ptr));
1052}
1053
1054// Creates an action that performs an_action and throws away its
1055// result.  In other words, it changes the return type of an_action to
1056// void.  an_action MUST NOT return void, or the code won't compile.
1057template <typename A>
1058inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1059  return internal::IgnoreResultAction<A>(an_action);
1060}
1061
1062// Creates a reference wrapper for the given L-value.  If necessary,
1063// you can explicitly specify the type of the reference.  For example,
1064// suppose 'derived' is an object of type Derived, ByRef(derived)
1065// would wrap a Derived&.  If you want to wrap a const Base& instead,
1066// where Base is a base class of Derived, just write:
1067//
1068//   ByRef<const Base>(derived)
1069template <typename T>
1070inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1071  return internal::ReferenceWrapper<T>(l_value);
1072}
1073
1074}  // namespace testing
1075
1076#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
Note: See TracBrowser for help on using the repository browser.