[9780] | 1 | #include "training.h" |
---|
| 2 | |
---|
| 3 | /** |
---|
| 4 | * Dataset destructor, which calls clear. |
---|
| 5 | */ |
---|
| 6 | Training::~Training() |
---|
| 7 | { |
---|
| 8 | clear(); |
---|
| 9 | } |
---|
| 10 | |
---|
| 11 | /** |
---|
| 12 | * Load a training stored in a file. |
---|
| 13 | * |
---|
| 14 | * @param training File stream of the contained training |
---|
| 15 | */ |
---|
| 16 | bool Training::loadTraining(ifstream& training) |
---|
| 17 | { |
---|
| 18 | string sample, cmd; |
---|
| 19 | |
---|
| 20 | // Get a sample |
---|
| 21 | getline(training, sample); |
---|
| 22 | |
---|
| 23 | // Parse every sample to get the log type |
---|
| 24 | istringstream sStr(sample); |
---|
| 25 | sStr >> cmd; |
---|
| 26 | |
---|
| 27 | while(!training.eof() && cmd != "END" && cmd != "") { |
---|
| 28 | if(cmd == "ACC") |
---|
| 29 | addSample(new AccSample(sStr.str())); |
---|
| 30 | else if(cmd == "GYRO") |
---|
| 31 | addSample(new GyroSample(sStr.str())); |
---|
| 32 | else { |
---|
| 33 | cout << "[Error] Bad log type." << endl; |
---|
| 34 | return false; |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | getline(training, sample); |
---|
| 38 | sStr.str(sample); |
---|
| 39 | sStr >> cmd; |
---|
| 40 | } |
---|
| 41 | |
---|
| 42 | return true; |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | * Save the training into a file for training and recognition. |
---|
| 47 | * |
---|
| 48 | * @param out Stream of the destination file |
---|
| 49 | */ |
---|
| 50 | void Training::save(ofstream& out) const |
---|
| 51 | { |
---|
| 52 | // Training Header |
---|
| 53 | out << "START " << timestamp << endl; |
---|
| 54 | |
---|
| 55 | // Samples |
---|
| 56 | for(unsigned int i = 0 ; i < samples.size() ; i++) |
---|
| 57 | samples[i]->save(out); |
---|
| 58 | |
---|
| 59 | out << "END" << endl; |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | /** |
---|
| 63 | * Add a new training to the dataset. |
---|
| 64 | * |
---|
| 65 | * @param sample Add a sample to the training set. |
---|
| 66 | */ |
---|
| 67 | void Training::addSample(Sample* sample) |
---|
| 68 | { |
---|
| 69 | // We retrieve the overall gesture timestamp |
---|
| 70 | struct timeval t; |
---|
| 71 | gettimeofday(&t,0); |
---|
| 72 | unsigned long sampleTs = (t.tv_sec % 86400) * 1000 + t.tv_usec / 1000; |
---|
| 73 | |
---|
| 74 | // We compute the relative timestamp in msec |
---|
| 75 | unsigned long deltaT = sampleTs - timestamp; |
---|
| 76 | |
---|
| 77 | if(sample) { |
---|
| 78 | sample->setTimestampFromGestureStart(deltaT); |
---|
| 79 | samples.push_back(sample); |
---|
| 80 | } |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | /** |
---|
| 84 | * Delete all samples and clear the buffer. This method will take |
---|
| 85 | * care of freeing the memory of each sample in the training set, |
---|
| 86 | * hence you don't need to free them in your code. |
---|
| 87 | */ |
---|
| 88 | void Training::clear() |
---|
| 89 | { |
---|
| 90 | for(unsigned int i = 0 ; i < samples.size() ; i++) { |
---|
| 91 | if(samples[i]) { |
---|
| 92 | delete samples[i]; |
---|
| 93 | samples[i] = 0; |
---|
| 94 | } |
---|
| 95 | } |
---|
| 96 | samples.clear(); |
---|
| 97 | } |
---|