[25] | 1 | // General functions |
---|
| 2 | |
---|
| 3 | // Expand a range-compressed vector |
---|
| 4 | float3 expand(float3 v) |
---|
| 5 | { |
---|
| 6 | return (v - 0.5) * 2; |
---|
| 7 | } |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | /* Bump mapping vertex program |
---|
| 11 | In this program, we want to calculate the tangent space light vector |
---|
| 12 | on a per-vertex level which will get passed to the fragment program, |
---|
| 13 | or to the fixed function dot3 operation, to produce the per-pixel |
---|
| 14 | lighting effect. |
---|
| 15 | */ |
---|
| 16 | void main_vp(float4 position : POSITION, |
---|
| 17 | float3 normal : NORMAL, |
---|
| 18 | float2 uv : TEXCOORD0, |
---|
| 19 | float3 tangent : TANGENT0, |
---|
| 20 | // outputs |
---|
| 21 | out float4 oPosition : POSITION, |
---|
| 22 | out float2 oUv : TEXCOORD0, |
---|
| 23 | out float3 oTSLightDir : TEXCOORD1, |
---|
| 24 | // parameters |
---|
| 25 | uniform float4 lightPosition, // object space |
---|
| 26 | uniform float4x4 worldViewProj) |
---|
| 27 | { |
---|
| 28 | // calculate output position |
---|
| 29 | oPosition = mul(worldViewProj, position); |
---|
| 30 | |
---|
| 31 | // pass the main uvs straight through unchanged |
---|
| 32 | oUv = uv; |
---|
| 33 | |
---|
| 34 | // calculate tangent space light vector |
---|
| 35 | // Get object space light direction |
---|
| 36 | // Non-normalised since we'll do that in the fragment program anyway |
---|
| 37 | float3 lightDir = lightPosition.xyz - (position * lightPosition.w); |
---|
| 38 | |
---|
| 39 | // Calculate the binormal (NB we assume both normal and tangent are |
---|
| 40 | // already normalised) |
---|
| 41 | // NB looks like nvidia cross params are BACKWARDS to what you'd expect |
---|
| 42 | // this equates to NxT, not TxN |
---|
| 43 | float3 binormal = cross(tangent, normal); |
---|
| 44 | |
---|
| 45 | // Form a rotation matrix out of the vectors |
---|
| 46 | float3x3 rotation = float3x3(tangent, binormal, normal); |
---|
| 47 | |
---|
| 48 | // Transform the light vector according to this matrix |
---|
| 49 | oTSLightDir = mul(rotation, lightDir); |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | /* Bump mapping vertex program for shadow receiving |
---|
| 55 | In this program, we want to calculate the tangent space light vector |
---|
| 56 | on a per-vertex level which will get passed to the fragment program, |
---|
| 57 | or to the fixed function dot3 operation, to produce the per-pixel |
---|
| 58 | lighting effect. |
---|
| 59 | */ |
---|
| 60 | void main_shadowreceiver_vp(float4 position : POSITION, |
---|
| 61 | float3 normal : NORMAL, |
---|
| 62 | float2 uv : TEXCOORD0, |
---|
| 63 | float3 tangent : TANGENT0, |
---|
| 64 | |
---|
| 65 | // outputs |
---|
| 66 | out float4 oPosition : POSITION, |
---|
| 67 | out float4 uvproj : TEXCOORD0, |
---|
| 68 | out float2 oUv : TEXCOORD1, |
---|
| 69 | out float3 oTSLightDir : TEXCOORD2, |
---|
| 70 | |
---|
| 71 | // parameters |
---|
| 72 | uniform float4 lightPosition, // object space |
---|
| 73 | uniform float4x4 worldViewProj, |
---|
| 74 | uniform float4x4 worldMatrix, |
---|
| 75 | uniform float4x4 texViewProj) |
---|
| 76 | { |
---|
| 77 | // calculate output position |
---|
| 78 | oPosition = mul(worldViewProj, position); |
---|
| 79 | |
---|
| 80 | // pass the main uvs straight through unchanged |
---|
| 81 | oUv = uv; |
---|
| 82 | |
---|
| 83 | // calculate tangent space light vector |
---|
| 84 | // Get object space light direction |
---|
| 85 | // Non-normalised since we'll do that in the fragment program anyway |
---|
| 86 | float3 lightDir = lightPosition.xyz - (position * lightPosition.w); |
---|
| 87 | |
---|
| 88 | // Calculate the binormal (NB we assume both normal and tangent are |
---|
| 89 | // already normalised) |
---|
| 90 | // NB looks like nvidia cross params are BACKWARDS to what you'd expect |
---|
| 91 | // this equates to NxT, not TxN |
---|
| 92 | float3 binormal = cross(tangent, normal); |
---|
| 93 | |
---|
| 94 | // Form a rotation matrix out of the vectors |
---|
| 95 | float3x3 rotation = float3x3(tangent, binormal, normal); |
---|
| 96 | |
---|
| 97 | // Transform the light vector according to this matrix |
---|
| 98 | oTSLightDir = mul(rotation, lightDir); |
---|
| 99 | |
---|
| 100 | // Projection |
---|
| 101 | uvproj = mul(worldMatrix, position); |
---|
| 102 | uvproj = mul(texViewProj, uvproj); |
---|
| 103 | |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | void main_fp( float2 uv : TEXCOORD0, |
---|
| 108 | float3 TSlightDir : TEXCOORD1, |
---|
| 109 | |
---|
| 110 | out float4 colour : COLOR, |
---|
| 111 | |
---|
| 112 | uniform float4 lightDiffuse, |
---|
| 113 | uniform sampler2D normalMap : register(s0), |
---|
| 114 | uniform samplerCUBE normalCubeMap : register(s1) ) |
---|
| 115 | { |
---|
| 116 | // retrieve normalised light vector, expand from range-compressed |
---|
| 117 | float3 lightVec = expand(texCUBE(normalCubeMap, TSlightDir).xyz); |
---|
| 118 | |
---|
| 119 | // get bump map vector, again expand from range-compressed |
---|
| 120 | float3 bumpVec = expand(tex2D(normalMap, uv).xyz); |
---|
| 121 | |
---|
| 122 | // Calculate dot product |
---|
| 123 | colour = lightDiffuse * dot(bumpVec, lightVec); |
---|
| 124 | |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | void main_shadowreceiver_fp( |
---|
| 128 | float4 uvproj : TEXCOORD0, |
---|
| 129 | float2 uv : TEXCOORD1, |
---|
| 130 | float3 TSlightDir : TEXCOORD2, |
---|
| 131 | |
---|
| 132 | out float4 colour : COLOR, |
---|
| 133 | |
---|
| 134 | uniform float4 lightDiffuse, |
---|
| 135 | uniform sampler2D shadowMap : register(s0), |
---|
| 136 | uniform sampler2D normalMap : register(s1), |
---|
| 137 | uniform samplerCUBE normalCubeMap : register(s2)) |
---|
| 138 | { |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | // retrieve normalised light vector, expand from range-compressed |
---|
| 142 | float3 lightVec = expand(texCUBE(normalCubeMap, TSlightDir).xyz); |
---|
| 143 | |
---|
| 144 | // get bump map vector, again expand from range-compressed |
---|
| 145 | float3 bumpVec = expand(tex2D(normalMap, uv).xyz); |
---|
| 146 | |
---|
| 147 | // get shadow value |
---|
| 148 | float3 shadow = tex2Dproj(shadowMap, uvproj).xyz; |
---|
| 149 | |
---|
| 150 | // Calculate dot product |
---|
| 151 | colour = float4(shadow * lightDiffuse * dot(bumpVec, lightVec), 1.0f); |
---|
| 152 | |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /* Vertex program which includes specular component */ |
---|
| 156 | void specular_vp(float4 position : POSITION, |
---|
| 157 | float3 normal : NORMAL, |
---|
| 158 | float2 uv : TEXCOORD0, |
---|
| 159 | float3 tangent : TANGENT0, |
---|
| 160 | // outputs |
---|
| 161 | out float4 oPosition : POSITION, |
---|
| 162 | out float2 oUv : TEXCOORD0, |
---|
| 163 | out float3 oTSLightDir : TEXCOORD1, |
---|
| 164 | out float3 oTSHalfAngle : TEXCOORD2, |
---|
| 165 | // parameters |
---|
| 166 | uniform float4 lightPosition, // object space |
---|
| 167 | uniform float3 eyePosition, // object space |
---|
| 168 | uniform float4x4 worldViewProj) |
---|
| 169 | { |
---|
| 170 | // calculate output position |
---|
| 171 | oPosition = mul(worldViewProj, position); |
---|
| 172 | |
---|
| 173 | // pass the main uvs straight through unchanged |
---|
| 174 | oUv = uv; |
---|
| 175 | |
---|
| 176 | // calculate tangent space light vector |
---|
| 177 | // Get object space light direction |
---|
| 178 | float3 lightDir = normalize(lightPosition.xyz - (position * lightPosition.w)); |
---|
| 179 | |
---|
| 180 | // Calculate the binormal (NB we assume both normal and tangent are |
---|
| 181 | // already normalised) |
---|
| 182 | // NB looks like nvidia cross params are BACKWARDS to what you'd expect |
---|
| 183 | // this equates to NxT, not TxN |
---|
| 184 | float3 binormal = cross(tangent, normal); |
---|
| 185 | |
---|
| 186 | // Form a rotation matrix out of the vectors |
---|
| 187 | float3x3 rotation = float3x3(tangent, binormal, normal); |
---|
| 188 | |
---|
| 189 | // Transform the light vector according to this matrix |
---|
| 190 | oTSLightDir = mul(rotation, lightDir); |
---|
| 191 | |
---|
| 192 | // Calculate half-angle in tangent space |
---|
| 193 | float3 eyeDir = normalize(eyePosition - position.xyz); |
---|
| 194 | float3 halfAngle = normalize(eyeDir + lightDir); |
---|
| 195 | oTSHalfAngle = mul(rotation, halfAngle); |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | /* Fragment program which supports specular component */ |
---|
| 201 | void specular_fp( float2 uv : TEXCOORD0, |
---|
| 202 | float3 TSlightDir : TEXCOORD1, |
---|
| 203 | float3 TShalfAngle: TEXCOORD2, |
---|
| 204 | |
---|
| 205 | out float4 colour : COLOR, |
---|
| 206 | |
---|
| 207 | uniform float4 lightDiffuse, |
---|
| 208 | uniform float4 lightSpecular, |
---|
| 209 | uniform sampler2D normalMap : register(s0), |
---|
| 210 | uniform samplerCUBE normalCubeMap : register(s1), |
---|
| 211 | uniform samplerCUBE normalCubeMap2 : register(s2)) // we need this second binding to be compatible with ps_1_1, ps_2_0 could reuse the other |
---|
| 212 | { |
---|
| 213 | // retrieve normalised light vector, expand from range-compressed |
---|
| 214 | float3 lightVec = expand(texCUBE(normalCubeMap, TSlightDir).xyz); |
---|
| 215 | |
---|
| 216 | // retrieve half angle and normalise through cube map |
---|
| 217 | float3 halfAngle = expand(texCUBE(normalCubeMap2, TShalfAngle).xyz); |
---|
| 218 | |
---|
| 219 | // get bump map vector, again expand from range-compressed |
---|
| 220 | float3 bumpVec = expand(tex2D(normalMap, uv).xyz); |
---|
| 221 | |
---|
| 222 | // Pre-raise the specular exponent to the eight power |
---|
| 223 | // Note we have no 'pow' function in basic fragment programs, if we were willing to accept compatibility |
---|
| 224 | // with ps_2_0 / arbfp1 and above, we could have a variable shininess parameter |
---|
| 225 | // This is equivalent to |
---|
| 226 | float specFactor = dot(bumpVec, halfAngle); |
---|
| 227 | for (int i = 0; i < 3; ++i) |
---|
| 228 | specFactor *= specFactor; |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | // Calculate dot product for diffuse |
---|
| 232 | colour = (lightDiffuse * saturate(dot(bumpVec, lightVec))) + |
---|
| 233 | (lightSpecular * specFactor); |
---|
| 234 | |
---|
| 235 | } |
---|
| 236 | |
---|