1 | |
---|
2 | /* |
---|
3 | * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith |
---|
4 | * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. |
---|
5 | * All rights reserved. Email: russ@q12.org Web: www.q12.org |
---|
6 | Bullet Continuous Collision Detection and Physics Library |
---|
7 | Bullet is Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
8 | |
---|
9 | This software is provided 'as-is', without any express or implied warranty. |
---|
10 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
11 | Permission is granted to anyone to use this software for any purpose, |
---|
12 | including commercial applications, and to alter it and redistribute it freely, |
---|
13 | subject to the following restrictions: |
---|
14 | |
---|
15 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
16 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
17 | 3. This notice may not be removed or altered from any source distribution. |
---|
18 | */ |
---|
19 | |
---|
20 | ///ODE box-box collision detection is adapted to work with Bullet |
---|
21 | |
---|
22 | #include "btBoxBoxDetector.h" |
---|
23 | #include "BulletCollision/CollisionShapes/btBoxShape.h" |
---|
24 | |
---|
25 | #include <float.h> |
---|
26 | #include <string.h> |
---|
27 | |
---|
28 | btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2) |
---|
29 | : m_box1(box1), |
---|
30 | m_box2(box2) |
---|
31 | { |
---|
32 | |
---|
33 | } |
---|
34 | |
---|
35 | |
---|
36 | // given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and |
---|
37 | // generate contact points. this returns 0 if there is no contact otherwise |
---|
38 | // it returns the number of contacts generated. |
---|
39 | // `normal' returns the contact normal. |
---|
40 | // `depth' returns the maximum penetration depth along that normal. |
---|
41 | // `return_code' returns a number indicating the type of contact that was |
---|
42 | // detected: |
---|
43 | // 1,2,3 = box 2 intersects with a face of box 1 |
---|
44 | // 4,5,6 = box 1 intersects with a face of box 2 |
---|
45 | // 7..15 = edge-edge contact |
---|
46 | // `maxc' is the maximum number of contacts allowed to be generated, i.e. |
---|
47 | // the size of the `contact' array. |
---|
48 | // `contact' and `skip' are the contact array information provided to the |
---|
49 | // collision functions. this function only fills in the position and depth |
---|
50 | // fields. |
---|
51 | struct dContactGeom; |
---|
52 | #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)]) |
---|
53 | #define dInfinity FLT_MAX |
---|
54 | |
---|
55 | |
---|
56 | /*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } |
---|
57 | PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); } |
---|
58 | PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); } |
---|
59 | PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); } |
---|
60 | */ |
---|
61 | static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } |
---|
62 | static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); } |
---|
63 | static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); } |
---|
64 | static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); } |
---|
65 | #define dMULTIPLYOP1_331(A,op,B,C) \ |
---|
66 | {\ |
---|
67 | (A)[0] op dDOT41((B),(C)); \ |
---|
68 | (A)[1] op dDOT41((B+1),(C)); \ |
---|
69 | (A)[2] op dDOT41((B+2),(C)); \ |
---|
70 | } |
---|
71 | |
---|
72 | #define dMULTIPLYOP0_331(A,op,B,C) \ |
---|
73 | { \ |
---|
74 | (A)[0] op dDOT((B),(C)); \ |
---|
75 | (A)[1] op dDOT((B+4),(C)); \ |
---|
76 | (A)[2] op dDOT((B+8),(C)); \ |
---|
77 | } |
---|
78 | |
---|
79 | #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) |
---|
80 | #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) |
---|
81 | |
---|
82 | typedef btScalar dMatrix3[4*3]; |
---|
83 | |
---|
84 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, |
---|
85 | const btVector3& pb, const btVector3& ub, |
---|
86 | btScalar *alpha, btScalar *beta); |
---|
87 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, |
---|
88 | const btVector3& pb, const btVector3& ub, |
---|
89 | btScalar *alpha, btScalar *beta) |
---|
90 | { |
---|
91 | btVector3 p; |
---|
92 | p[0] = pb[0] - pa[0]; |
---|
93 | p[1] = pb[1] - pa[1]; |
---|
94 | p[2] = pb[2] - pa[2]; |
---|
95 | btScalar uaub = dDOT(ua,ub); |
---|
96 | btScalar q1 = dDOT(ua,p); |
---|
97 | btScalar q2 = -dDOT(ub,p); |
---|
98 | btScalar d = 1-uaub*uaub; |
---|
99 | if (d <= btScalar(0.0001f)) { |
---|
100 | // @@@ this needs to be made more robust |
---|
101 | *alpha = 0; |
---|
102 | *beta = 0; |
---|
103 | } |
---|
104 | else { |
---|
105 | d = 1.f/d; |
---|
106 | *alpha = (q1 + uaub*q2)*d; |
---|
107 | *beta = (uaub*q1 + q2)*d; |
---|
108 | } |
---|
109 | } |
---|
110 | |
---|
111 | |
---|
112 | |
---|
113 | // find all the intersection points between the 2D rectangle with vertices |
---|
114 | // at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]), |
---|
115 | // (p[2],p[3]),(p[4],p[5]),(p[6],p[7]). |
---|
116 | // |
---|
117 | // the intersection points are returned as x,y pairs in the 'ret' array. |
---|
118 | // the number of intersection points is returned by the function (this will |
---|
119 | // be in the range 0 to 8). |
---|
120 | |
---|
121 | static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16]) |
---|
122 | { |
---|
123 | // q (and r) contain nq (and nr) coordinate points for the current (and |
---|
124 | // chopped) polygons |
---|
125 | int nq=4,nr=0; |
---|
126 | btScalar buffer[16]; |
---|
127 | btScalar *q = p; |
---|
128 | btScalar *r = ret; |
---|
129 | for (int dir=0; dir <= 1; dir++) { |
---|
130 | // direction notation: xy[0] = x axis, xy[1] = y axis |
---|
131 | for (int sign=-1; sign <= 1; sign += 2) { |
---|
132 | // chop q along the line xy[dir] = sign*h[dir] |
---|
133 | btScalar *pq = q; |
---|
134 | btScalar *pr = r; |
---|
135 | nr = 0; |
---|
136 | for (int i=nq; i > 0; i--) { |
---|
137 | // go through all points in q and all lines between adjacent points |
---|
138 | if (sign*pq[dir] < h[dir]) { |
---|
139 | // this point is inside the chopping line |
---|
140 | pr[0] = pq[0]; |
---|
141 | pr[1] = pq[1]; |
---|
142 | pr += 2; |
---|
143 | nr++; |
---|
144 | if (nr & 8) { |
---|
145 | q = r; |
---|
146 | goto done; |
---|
147 | } |
---|
148 | } |
---|
149 | btScalar *nextq = (i > 1) ? pq+2 : q; |
---|
150 | if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) { |
---|
151 | // this line crosses the chopping line |
---|
152 | pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) / |
---|
153 | (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]); |
---|
154 | pr[dir] = sign*h[dir]; |
---|
155 | pr += 2; |
---|
156 | nr++; |
---|
157 | if (nr & 8) { |
---|
158 | q = r; |
---|
159 | goto done; |
---|
160 | } |
---|
161 | } |
---|
162 | pq += 2; |
---|
163 | } |
---|
164 | q = r; |
---|
165 | r = (q==ret) ? buffer : ret; |
---|
166 | nq = nr; |
---|
167 | } |
---|
168 | } |
---|
169 | done: |
---|
170 | if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar)); |
---|
171 | return nr; |
---|
172 | } |
---|
173 | |
---|
174 | |
---|
175 | #define M__PI 3.14159265f |
---|
176 | |
---|
177 | // given n points in the plane (array p, of size 2*n), generate m points that |
---|
178 | // best represent the whole set. the definition of 'best' here is not |
---|
179 | // predetermined - the idea is to select points that give good box-box |
---|
180 | // collision detection behavior. the chosen point indexes are returned in the |
---|
181 | // array iret (of size m). 'i0' is always the first entry in the array. |
---|
182 | // n must be in the range [1..8]. m must be in the range [1..n]. i0 must be |
---|
183 | // in the range [0..n-1]. |
---|
184 | |
---|
185 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]); |
---|
186 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]) |
---|
187 | { |
---|
188 | // compute the centroid of the polygon in cx,cy |
---|
189 | int i,j; |
---|
190 | btScalar a,cx,cy,q; |
---|
191 | if (n==1) { |
---|
192 | cx = p[0]; |
---|
193 | cy = p[1]; |
---|
194 | } |
---|
195 | else if (n==2) { |
---|
196 | cx = btScalar(0.5)*(p[0] + p[2]); |
---|
197 | cy = btScalar(0.5)*(p[1] + p[3]); |
---|
198 | } |
---|
199 | else { |
---|
200 | a = 0; |
---|
201 | cx = 0; |
---|
202 | cy = 0; |
---|
203 | for (i=0; i<(n-1); i++) { |
---|
204 | q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1]; |
---|
205 | a += q; |
---|
206 | cx += q*(p[i*2]+p[i*2+2]); |
---|
207 | cy += q*(p[i*2+1]+p[i*2+3]); |
---|
208 | } |
---|
209 | q = p[n*2-2]*p[1] - p[0]*p[n*2-1]; |
---|
210 | if (btFabs(a+q) > SIMD_EPSILON) |
---|
211 | { |
---|
212 | a = 1.f/(btScalar(3.0)*(a+q)); |
---|
213 | } else |
---|
214 | { |
---|
215 | a=1e30f; |
---|
216 | } |
---|
217 | cx = a*(cx + q*(p[n*2-2]+p[0])); |
---|
218 | cy = a*(cy + q*(p[n*2-1]+p[1])); |
---|
219 | } |
---|
220 | |
---|
221 | // compute the angle of each point w.r.t. the centroid |
---|
222 | btScalar A[8]; |
---|
223 | for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx); |
---|
224 | |
---|
225 | // search for points that have angles closest to A[i0] + i*(2*pi/m). |
---|
226 | int avail[8]; |
---|
227 | for (i=0; i<n; i++) avail[i] = 1; |
---|
228 | avail[i0] = 0; |
---|
229 | iret[0] = i0; |
---|
230 | iret++; |
---|
231 | for (j=1; j<m; j++) { |
---|
232 | a = btScalar(j)*(2*M__PI/m) + A[i0]; |
---|
233 | if (a > M__PI) a -= 2*M__PI; |
---|
234 | btScalar maxdiff=1e9,diff; |
---|
235 | |
---|
236 | *iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0 |
---|
237 | |
---|
238 | for (i=0; i<n; i++) { |
---|
239 | if (avail[i]) { |
---|
240 | diff = btFabs (A[i]-a); |
---|
241 | if (diff > M__PI) diff = 2*M__PI - diff; |
---|
242 | if (diff < maxdiff) { |
---|
243 | maxdiff = diff; |
---|
244 | *iret = i; |
---|
245 | } |
---|
246 | } |
---|
247 | } |
---|
248 | #if defined(DEBUG) || defined (_DEBUG) |
---|
249 | btAssert (*iret != i0); // ensure iret got set |
---|
250 | #endif |
---|
251 | avail[*iret] = 0; |
---|
252 | iret++; |
---|
253 | } |
---|
254 | } |
---|
255 | |
---|
256 | |
---|
257 | |
---|
258 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, |
---|
259 | const btVector3& side1, const btVector3& p2, |
---|
260 | const dMatrix3 R2, const btVector3& side2, |
---|
261 | btVector3& normal, btScalar *depth, int *return_code, |
---|
262 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output); |
---|
263 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, |
---|
264 | const btVector3& side1, const btVector3& p2, |
---|
265 | const dMatrix3 R2, const btVector3& side2, |
---|
266 | btVector3& normal, btScalar *depth, int *return_code, |
---|
267 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output) |
---|
268 | { |
---|
269 | const btScalar fudge_factor = btScalar(1.05); |
---|
270 | btVector3 p,pp,normalC; |
---|
271 | const btScalar *normalR = 0; |
---|
272 | btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, |
---|
273 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; |
---|
274 | int i,j,invert_normal,code; |
---|
275 | |
---|
276 | // get vector from centers of box 1 to box 2, relative to box 1 |
---|
277 | p = p2 - p1; |
---|
278 | dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 |
---|
279 | |
---|
280 | // get side lengths / 2 |
---|
281 | A[0] = side1[0]*btScalar(0.5); |
---|
282 | A[1] = side1[1]*btScalar(0.5); |
---|
283 | A[2] = side1[2]*btScalar(0.5); |
---|
284 | B[0] = side2[0]*btScalar(0.5); |
---|
285 | B[1] = side2[1]*btScalar(0.5); |
---|
286 | B[2] = side2[2]*btScalar(0.5); |
---|
287 | |
---|
288 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 |
---|
289 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); |
---|
290 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); |
---|
291 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); |
---|
292 | |
---|
293 | Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); |
---|
294 | Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); |
---|
295 | Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); |
---|
296 | |
---|
297 | // for all 15 possible separating axes: |
---|
298 | // * see if the axis separates the boxes. if so, return 0. |
---|
299 | // * find the depth of the penetration along the separating axis (s2) |
---|
300 | // * if this is the largest depth so far, record it. |
---|
301 | // the normal vector will be set to the separating axis with the smallest |
---|
302 | // depth. note: normalR is set to point to a column of R1 or R2 if that is |
---|
303 | // the smallest depth normal so far. otherwise normalR is 0 and normalC is |
---|
304 | // set to a vector relative to body 1. invert_normal is 1 if the sign of |
---|
305 | // the normal should be flipped. |
---|
306 | |
---|
307 | #define TST(expr1,expr2,norm,cc) \ |
---|
308 | s2 = btFabs(expr1) - (expr2); \ |
---|
309 | if (s2 > 0) return 0; \ |
---|
310 | if (s2 > s) { \ |
---|
311 | s = s2; \ |
---|
312 | normalR = norm; \ |
---|
313 | invert_normal = ((expr1) < 0); \ |
---|
314 | code = (cc); \ |
---|
315 | } |
---|
316 | |
---|
317 | s = -dInfinity; |
---|
318 | invert_normal = 0; |
---|
319 | code = 0; |
---|
320 | |
---|
321 | // separating axis = u1,u2,u3 |
---|
322 | TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); |
---|
323 | TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); |
---|
324 | TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); |
---|
325 | |
---|
326 | // separating axis = v1,v2,v3 |
---|
327 | TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); |
---|
328 | TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); |
---|
329 | TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); |
---|
330 | |
---|
331 | // note: cross product axes need to be scaled when s is computed. |
---|
332 | // normal (n1,n2,n3) is relative to box 1. |
---|
333 | #undef TST |
---|
334 | #define TST(expr1,expr2,n1,n2,n3,cc) \ |
---|
335 | s2 = btFabs(expr1) - (expr2); \ |
---|
336 | if (s2 > 0) return 0; \ |
---|
337 | l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ |
---|
338 | if (l > 0) { \ |
---|
339 | s2 /= l; \ |
---|
340 | if (s2*fudge_factor > s) { \ |
---|
341 | s = s2; \ |
---|
342 | normalR = 0; \ |
---|
343 | normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ |
---|
344 | invert_normal = ((expr1) < 0); \ |
---|
345 | code = (cc); \ |
---|
346 | } \ |
---|
347 | } |
---|
348 | |
---|
349 | // separating axis = u1 x (v1,v2,v3) |
---|
350 | TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); |
---|
351 | TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); |
---|
352 | TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); |
---|
353 | |
---|
354 | // separating axis = u2 x (v1,v2,v3) |
---|
355 | TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); |
---|
356 | TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); |
---|
357 | TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); |
---|
358 | |
---|
359 | // separating axis = u3 x (v1,v2,v3) |
---|
360 | TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); |
---|
361 | TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); |
---|
362 | TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); |
---|
363 | |
---|
364 | #undef TST |
---|
365 | |
---|
366 | if (!code) return 0; |
---|
367 | |
---|
368 | // if we get to this point, the boxes interpenetrate. compute the normal |
---|
369 | // in global coordinates. |
---|
370 | if (normalR) { |
---|
371 | normal[0] = normalR[0]; |
---|
372 | normal[1] = normalR[4]; |
---|
373 | normal[2] = normalR[8]; |
---|
374 | } |
---|
375 | else { |
---|
376 | dMULTIPLY0_331 (normal,R1,normalC); |
---|
377 | } |
---|
378 | if (invert_normal) { |
---|
379 | normal[0] = -normal[0]; |
---|
380 | normal[1] = -normal[1]; |
---|
381 | normal[2] = -normal[2]; |
---|
382 | } |
---|
383 | *depth = -s; |
---|
384 | |
---|
385 | // compute contact point(s) |
---|
386 | |
---|
387 | if (code > 6) { |
---|
388 | // an edge from box 1 touches an edge from box 2. |
---|
389 | // find a point pa on the intersecting edge of box 1 |
---|
390 | btVector3 pa; |
---|
391 | btScalar sign; |
---|
392 | for (i=0; i<3; i++) pa[i] = p1[i]; |
---|
393 | for (j=0; j<3; j++) { |
---|
394 | sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0); |
---|
395 | for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; |
---|
396 | } |
---|
397 | |
---|
398 | // find a point pb on the intersecting edge of box 2 |
---|
399 | btVector3 pb; |
---|
400 | for (i=0; i<3; i++) pb[i] = p2[i]; |
---|
401 | for (j=0; j<3; j++) { |
---|
402 | sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0); |
---|
403 | for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; |
---|
404 | } |
---|
405 | |
---|
406 | btScalar alpha,beta; |
---|
407 | btVector3 ua,ub; |
---|
408 | for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; |
---|
409 | for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; |
---|
410 | |
---|
411 | dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); |
---|
412 | for (i=0; i<3; i++) pa[i] += ua[i]*alpha; |
---|
413 | for (i=0; i<3; i++) pb[i] += ub[i]*beta; |
---|
414 | |
---|
415 | { |
---|
416 | |
---|
417 | //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]); |
---|
418 | //contact[0].depth = *depth; |
---|
419 | btVector3 pointInWorld; |
---|
420 | |
---|
421 | #ifdef USE_CENTER_POINT |
---|
422 | for (i=0; i<3; i++) |
---|
423 | pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5); |
---|
424 | output.addContactPoint(-normal,pointInWorld,-*depth); |
---|
425 | #else |
---|
426 | output.addContactPoint(-normal,pb,-*depth); |
---|
427 | #endif // |
---|
428 | *return_code = code; |
---|
429 | } |
---|
430 | return 1; |
---|
431 | } |
---|
432 | |
---|
433 | // okay, we have a face-something intersection (because the separating |
---|
434 | // axis is perpendicular to a face). define face 'a' to be the reference |
---|
435 | // face (i.e. the normal vector is perpendicular to this) and face 'b' to be |
---|
436 | // the incident face (the closest face of the other box). |
---|
437 | |
---|
438 | const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; |
---|
439 | if (code <= 3) { |
---|
440 | Ra = R1; |
---|
441 | Rb = R2; |
---|
442 | pa = p1; |
---|
443 | pb = p2; |
---|
444 | Sa = A; |
---|
445 | Sb = B; |
---|
446 | } |
---|
447 | else { |
---|
448 | Ra = R2; |
---|
449 | Rb = R1; |
---|
450 | pa = p2; |
---|
451 | pb = p1; |
---|
452 | Sa = B; |
---|
453 | Sb = A; |
---|
454 | } |
---|
455 | |
---|
456 | // nr = normal vector of reference face dotted with axes of incident box. |
---|
457 | // anr = absolute values of nr. |
---|
458 | btVector3 normal2,nr,anr; |
---|
459 | if (code <= 3) { |
---|
460 | normal2[0] = normal[0]; |
---|
461 | normal2[1] = normal[1]; |
---|
462 | normal2[2] = normal[2]; |
---|
463 | } |
---|
464 | else { |
---|
465 | normal2[0] = -normal[0]; |
---|
466 | normal2[1] = -normal[1]; |
---|
467 | normal2[2] = -normal[2]; |
---|
468 | } |
---|
469 | dMULTIPLY1_331 (nr,Rb,normal2); |
---|
470 | anr[0] = btFabs (nr[0]); |
---|
471 | anr[1] = btFabs (nr[1]); |
---|
472 | anr[2] = btFabs (nr[2]); |
---|
473 | |
---|
474 | // find the largest compontent of anr: this corresponds to the normal |
---|
475 | // for the indident face. the other axis numbers of the indicent face |
---|
476 | // are stored in a1,a2. |
---|
477 | int lanr,a1,a2; |
---|
478 | if (anr[1] > anr[0]) { |
---|
479 | if (anr[1] > anr[2]) { |
---|
480 | a1 = 0; |
---|
481 | lanr = 1; |
---|
482 | a2 = 2; |
---|
483 | } |
---|
484 | else { |
---|
485 | a1 = 0; |
---|
486 | a2 = 1; |
---|
487 | lanr = 2; |
---|
488 | } |
---|
489 | } |
---|
490 | else { |
---|
491 | if (anr[0] > anr[2]) { |
---|
492 | lanr = 0; |
---|
493 | a1 = 1; |
---|
494 | a2 = 2; |
---|
495 | } |
---|
496 | else { |
---|
497 | a1 = 0; |
---|
498 | a2 = 1; |
---|
499 | lanr = 2; |
---|
500 | } |
---|
501 | } |
---|
502 | |
---|
503 | // compute center point of incident face, in reference-face coordinates |
---|
504 | btVector3 center; |
---|
505 | if (nr[lanr] < 0) { |
---|
506 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; |
---|
507 | } |
---|
508 | else { |
---|
509 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; |
---|
510 | } |
---|
511 | |
---|
512 | // find the normal and non-normal axis numbers of the reference box |
---|
513 | int codeN,code1,code2; |
---|
514 | if (code <= 3) codeN = code-1; else codeN = code-4; |
---|
515 | if (codeN==0) { |
---|
516 | code1 = 1; |
---|
517 | code2 = 2; |
---|
518 | } |
---|
519 | else if (codeN==1) { |
---|
520 | code1 = 0; |
---|
521 | code2 = 2; |
---|
522 | } |
---|
523 | else { |
---|
524 | code1 = 0; |
---|
525 | code2 = 1; |
---|
526 | } |
---|
527 | |
---|
528 | // find the four corners of the incident face, in reference-face coordinates |
---|
529 | btScalar quad[8]; // 2D coordinate of incident face (x,y pairs) |
---|
530 | btScalar c1,c2,m11,m12,m21,m22; |
---|
531 | c1 = dDOT14 (center,Ra+code1); |
---|
532 | c2 = dDOT14 (center,Ra+code2); |
---|
533 | // optimize this? - we have already computed this data above, but it is not |
---|
534 | // stored in an easy-to-index format. for now it's quicker just to recompute |
---|
535 | // the four dot products. |
---|
536 | m11 = dDOT44 (Ra+code1,Rb+a1); |
---|
537 | m12 = dDOT44 (Ra+code1,Rb+a2); |
---|
538 | m21 = dDOT44 (Ra+code2,Rb+a1); |
---|
539 | m22 = dDOT44 (Ra+code2,Rb+a2); |
---|
540 | { |
---|
541 | btScalar k1 = m11*Sb[a1]; |
---|
542 | btScalar k2 = m21*Sb[a1]; |
---|
543 | btScalar k3 = m12*Sb[a2]; |
---|
544 | btScalar k4 = m22*Sb[a2]; |
---|
545 | quad[0] = c1 - k1 - k3; |
---|
546 | quad[1] = c2 - k2 - k4; |
---|
547 | quad[2] = c1 - k1 + k3; |
---|
548 | quad[3] = c2 - k2 + k4; |
---|
549 | quad[4] = c1 + k1 + k3; |
---|
550 | quad[5] = c2 + k2 + k4; |
---|
551 | quad[6] = c1 + k1 - k3; |
---|
552 | quad[7] = c2 + k2 - k4; |
---|
553 | } |
---|
554 | |
---|
555 | // find the size of the reference face |
---|
556 | btScalar rect[2]; |
---|
557 | rect[0] = Sa[code1]; |
---|
558 | rect[1] = Sa[code2]; |
---|
559 | |
---|
560 | // intersect the incident and reference faces |
---|
561 | btScalar ret[16]; |
---|
562 | int n = intersectRectQuad2 (rect,quad,ret); |
---|
563 | if (n < 1) return 0; // this should never happen |
---|
564 | |
---|
565 | // convert the intersection points into reference-face coordinates, |
---|
566 | // and compute the contact position and depth for each point. only keep |
---|
567 | // those points that have a positive (penetrating) depth. delete points in |
---|
568 | // the 'ret' array as necessary so that 'point' and 'ret' correspond. |
---|
569 | btScalar point[3*8]; // penetrating contact points |
---|
570 | btScalar dep[8]; // depths for those points |
---|
571 | btScalar det1 = 1.f/(m11*m22 - m12*m21); |
---|
572 | m11 *= det1; |
---|
573 | m12 *= det1; |
---|
574 | m21 *= det1; |
---|
575 | m22 *= det1; |
---|
576 | int cnum = 0; // number of penetrating contact points found |
---|
577 | for (j=0; j < n; j++) { |
---|
578 | btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); |
---|
579 | btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); |
---|
580 | for (i=0; i<3; i++) point[cnum*3+i] = |
---|
581 | center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; |
---|
582 | dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); |
---|
583 | if (dep[cnum] >= 0) { |
---|
584 | ret[cnum*2] = ret[j*2]; |
---|
585 | ret[cnum*2+1] = ret[j*2+1]; |
---|
586 | cnum++; |
---|
587 | } |
---|
588 | } |
---|
589 | if (cnum < 1) return 0; // this should never happen |
---|
590 | |
---|
591 | // we can't generate more contacts than we actually have |
---|
592 | if (maxc > cnum) maxc = cnum; |
---|
593 | if (maxc < 1) maxc = 1; |
---|
594 | |
---|
595 | if (cnum <= maxc) { |
---|
596 | // we have less contacts than we need, so we use them all |
---|
597 | for (j=0; j < cnum; j++) { |
---|
598 | |
---|
599 | //AddContactPoint... |
---|
600 | |
---|
601 | //dContactGeom *con = CONTACT(contact,skip*j); |
---|
602 | //for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; |
---|
603 | //con->depth = dep[j]; |
---|
604 | |
---|
605 | btVector3 pointInWorld; |
---|
606 | for (i=0; i<3; i++) |
---|
607 | pointInWorld[i] = point[j*3+i] + pa[i]; |
---|
608 | output.addContactPoint(-normal,pointInWorld,-dep[j]); |
---|
609 | |
---|
610 | } |
---|
611 | } |
---|
612 | else { |
---|
613 | // we have more contacts than are wanted, some of them must be culled. |
---|
614 | // find the deepest point, it is always the first contact. |
---|
615 | int i1 = 0; |
---|
616 | btScalar maxdepth = dep[0]; |
---|
617 | for (i=1; i<cnum; i++) { |
---|
618 | if (dep[i] > maxdepth) { |
---|
619 | maxdepth = dep[i]; |
---|
620 | i1 = i; |
---|
621 | } |
---|
622 | } |
---|
623 | |
---|
624 | int iret[8]; |
---|
625 | cullPoints2 (cnum,ret,maxc,i1,iret); |
---|
626 | |
---|
627 | for (j=0; j < maxc; j++) { |
---|
628 | // dContactGeom *con = CONTACT(contact,skip*j); |
---|
629 | // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; |
---|
630 | // con->depth = dep[iret[j]]; |
---|
631 | |
---|
632 | btVector3 posInWorld; |
---|
633 | for (i=0; i<3; i++) |
---|
634 | posInWorld[i] = point[iret[j]*3+i] + pa[i]; |
---|
635 | output.addContactPoint(-normal,posInWorld,-dep[iret[j]]); |
---|
636 | } |
---|
637 | cnum = maxc; |
---|
638 | } |
---|
639 | |
---|
640 | *return_code = code; |
---|
641 | return cnum; |
---|
642 | } |
---|
643 | |
---|
644 | void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/) |
---|
645 | { |
---|
646 | |
---|
647 | const btTransform& transformA = input.m_transformA; |
---|
648 | const btTransform& transformB = input.m_transformB; |
---|
649 | |
---|
650 | int skip = 0; |
---|
651 | dContactGeom *contact = 0; |
---|
652 | |
---|
653 | dMatrix3 R1; |
---|
654 | dMatrix3 R2; |
---|
655 | |
---|
656 | for (int j=0;j<3;j++) |
---|
657 | { |
---|
658 | R1[0+4*j] = transformA.getBasis()[j].x(); |
---|
659 | R2[0+4*j] = transformB.getBasis()[j].x(); |
---|
660 | |
---|
661 | R1[1+4*j] = transformA.getBasis()[j].y(); |
---|
662 | R2[1+4*j] = transformB.getBasis()[j].y(); |
---|
663 | |
---|
664 | |
---|
665 | R1[2+4*j] = transformA.getBasis()[j].z(); |
---|
666 | R2[2+4*j] = transformB.getBasis()[j].z(); |
---|
667 | |
---|
668 | } |
---|
669 | |
---|
670 | |
---|
671 | |
---|
672 | btVector3 normal; |
---|
673 | btScalar depth; |
---|
674 | int return_code; |
---|
675 | int maxc = 4; |
---|
676 | |
---|
677 | |
---|
678 | dBoxBox2 (transformA.getOrigin(), |
---|
679 | R1, |
---|
680 | 2.f*m_box1->getHalfExtentsWithMargin(), |
---|
681 | transformB.getOrigin(), |
---|
682 | R2, |
---|
683 | 2.f*m_box2->getHalfExtentsWithMargin(), |
---|
684 | normal, &depth, &return_code, |
---|
685 | maxc, contact, skip, |
---|
686 | output |
---|
687 | ); |
---|
688 | |
---|
689 | } |
---|