1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | /* |
---|
16 | 2007-09-09 |
---|
17 | Refactored by Francisco Le?n |
---|
18 | email: projectileman@yahoo.com |
---|
19 | http://gimpact.sf.net |
---|
20 | */ |
---|
21 | |
---|
22 | |
---|
23 | #include "btGeneric6DofConstraint.h" |
---|
24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
25 | #include "LinearMath/btTransformUtil.h" |
---|
26 | #include <new> |
---|
27 | |
---|
28 | |
---|
29 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 |
---|
30 | |
---|
31 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); |
---|
32 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) |
---|
33 | { |
---|
34 | int i = index%3; |
---|
35 | int j = index/3; |
---|
36 | return mat[i][j]; |
---|
37 | } |
---|
38 | |
---|
39 | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html |
---|
40 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); |
---|
41 | bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) |
---|
42 | { |
---|
43 | // // rot = cy*cz -cy*sz sy |
---|
44 | // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
---|
45 | // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
---|
46 | // |
---|
47 | |
---|
48 | if (btGetMatrixElem(mat,2) < btScalar(1.0)) |
---|
49 | { |
---|
50 | if (btGetMatrixElem(mat,2) > btScalar(-1.0)) |
---|
51 | { |
---|
52 | xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); |
---|
53 | xyz[1] = btAsin(btGetMatrixElem(mat,2)); |
---|
54 | xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); |
---|
55 | return true; |
---|
56 | } |
---|
57 | else |
---|
58 | { |
---|
59 | // WARNING. Not unique. XA - ZA = -atan2(r10,r11) |
---|
60 | xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
61 | xyz[1] = -SIMD_HALF_PI; |
---|
62 | xyz[2] = btScalar(0.0); |
---|
63 | return false; |
---|
64 | } |
---|
65 | } |
---|
66 | else |
---|
67 | { |
---|
68 | // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) |
---|
69 | xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); |
---|
70 | xyz[1] = SIMD_HALF_PI; |
---|
71 | xyz[2] = 0.0; |
---|
72 | |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | return false; |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | |
---|
81 | //////////////////////////// btRotationalLimitMotor //////////////////////////////////// |
---|
82 | |
---|
83 | |
---|
84 | int btRotationalLimitMotor::testLimitValue(btScalar test_value) |
---|
85 | { |
---|
86 | if(m_loLimit>m_hiLimit) |
---|
87 | { |
---|
88 | m_currentLimit = 0;//Free from violation |
---|
89 | return 0; |
---|
90 | } |
---|
91 | |
---|
92 | if (test_value < m_loLimit) |
---|
93 | { |
---|
94 | m_currentLimit = 1;//low limit violation |
---|
95 | m_currentLimitError = test_value - m_loLimit; |
---|
96 | return 1; |
---|
97 | } |
---|
98 | else if (test_value> m_hiLimit) |
---|
99 | { |
---|
100 | m_currentLimit = 2;//High limit violation |
---|
101 | m_currentLimitError = test_value - m_hiLimit; |
---|
102 | return 2; |
---|
103 | }; |
---|
104 | |
---|
105 | m_currentLimit = 0;//Free from violation |
---|
106 | return 0; |
---|
107 | |
---|
108 | } |
---|
109 | |
---|
110 | |
---|
111 | btScalar btRotationalLimitMotor::solveAngularLimits( |
---|
112 | btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, |
---|
113 | btRigidBody * body0, btRigidBody * body1) |
---|
114 | { |
---|
115 | if (needApplyTorques()==false) return 0.0f; |
---|
116 | |
---|
117 | btScalar target_velocity = m_targetVelocity; |
---|
118 | btScalar maxMotorForce = m_maxMotorForce; |
---|
119 | |
---|
120 | //current error correction |
---|
121 | if (m_currentLimit!=0) |
---|
122 | { |
---|
123 | target_velocity = -m_ERP*m_currentLimitError/(timeStep); |
---|
124 | maxMotorForce = m_maxLimitForce; |
---|
125 | } |
---|
126 | |
---|
127 | maxMotorForce *= timeStep; |
---|
128 | |
---|
129 | // current velocity difference |
---|
130 | btVector3 vel_diff = body0->getAngularVelocity(); |
---|
131 | if (body1) |
---|
132 | { |
---|
133 | vel_diff -= body1->getAngularVelocity(); |
---|
134 | } |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | btScalar rel_vel = axis.dot(vel_diff); |
---|
139 | |
---|
140 | // correction velocity |
---|
141 | btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel); |
---|
142 | |
---|
143 | |
---|
144 | if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON ) |
---|
145 | { |
---|
146 | return 0.0f;//no need for applying force |
---|
147 | } |
---|
148 | |
---|
149 | |
---|
150 | // correction impulse |
---|
151 | btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; |
---|
152 | |
---|
153 | // clip correction impulse |
---|
154 | btScalar clippedMotorImpulse; |
---|
155 | |
---|
156 | ///@todo: should clip against accumulated impulse |
---|
157 | if (unclippedMotorImpulse>0.0f) |
---|
158 | { |
---|
159 | clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; |
---|
160 | } |
---|
161 | else |
---|
162 | { |
---|
163 | clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; |
---|
164 | } |
---|
165 | |
---|
166 | |
---|
167 | // sort with accumulated impulses |
---|
168 | btScalar lo = btScalar(-1e30); |
---|
169 | btScalar hi = btScalar(1e30); |
---|
170 | |
---|
171 | btScalar oldaccumImpulse = m_accumulatedImpulse; |
---|
172 | btScalar sum = oldaccumImpulse + clippedMotorImpulse; |
---|
173 | m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
174 | |
---|
175 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | btVector3 motorImp = clippedMotorImpulse * axis; |
---|
180 | |
---|
181 | |
---|
182 | body0->applyTorqueImpulse(motorImp); |
---|
183 | if (body1) body1->applyTorqueImpulse(-motorImp); |
---|
184 | |
---|
185 | return clippedMotorImpulse; |
---|
186 | |
---|
187 | |
---|
188 | } |
---|
189 | |
---|
190 | //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// |
---|
191 | |
---|
192 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
193 | btScalar btTranslationalLimitMotor::solveLinearAxis( |
---|
194 | btScalar timeStep, |
---|
195 | btScalar jacDiagABInv, |
---|
196 | btRigidBody& body1,const btVector3 &pointInA, |
---|
197 | btRigidBody& body2,const btVector3 &pointInB, |
---|
198 | int limit_index, |
---|
199 | const btVector3 & axis_normal_on_a, |
---|
200 | const btVector3 & anchorPos) |
---|
201 | { |
---|
202 | |
---|
203 | ///find relative velocity |
---|
204 | // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); |
---|
205 | // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); |
---|
206 | btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); |
---|
207 | btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); |
---|
208 | |
---|
209 | btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1); |
---|
210 | btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2); |
---|
211 | btVector3 vel = vel1 - vel2; |
---|
212 | |
---|
213 | btScalar rel_vel = axis_normal_on_a.dot(vel); |
---|
214 | |
---|
215 | |
---|
216 | |
---|
217 | /// apply displacement correction |
---|
218 | |
---|
219 | //positional error (zeroth order error) |
---|
220 | btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); |
---|
221 | btScalar lo = btScalar(-1e30); |
---|
222 | btScalar hi = btScalar(1e30); |
---|
223 | |
---|
224 | btScalar minLimit = m_lowerLimit[limit_index]; |
---|
225 | btScalar maxLimit = m_upperLimit[limit_index]; |
---|
226 | |
---|
227 | //handle the limits |
---|
228 | if (minLimit < maxLimit) |
---|
229 | { |
---|
230 | { |
---|
231 | if (depth > maxLimit) |
---|
232 | { |
---|
233 | depth -= maxLimit; |
---|
234 | lo = btScalar(0.); |
---|
235 | |
---|
236 | } |
---|
237 | else |
---|
238 | { |
---|
239 | if (depth < minLimit) |
---|
240 | { |
---|
241 | depth -= minLimit; |
---|
242 | hi = btScalar(0.); |
---|
243 | } |
---|
244 | else |
---|
245 | { |
---|
246 | return 0.0f; |
---|
247 | } |
---|
248 | } |
---|
249 | } |
---|
250 | } |
---|
251 | |
---|
252 | btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; |
---|
253 | |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; |
---|
258 | btScalar sum = oldNormalImpulse + normalImpulse; |
---|
259 | m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; |
---|
260 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; |
---|
261 | |
---|
262 | btVector3 impulse_vector = axis_normal_on_a * normalImpulse; |
---|
263 | body1.applyImpulse( impulse_vector, rel_pos1); |
---|
264 | body2.applyImpulse(-impulse_vector, rel_pos2); |
---|
265 | return normalImpulse; |
---|
266 | } |
---|
267 | |
---|
268 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// |
---|
269 | |
---|
270 | |
---|
271 | btGeneric6DofConstraint::btGeneric6DofConstraint() |
---|
272 | :btTypedConstraint(D6_CONSTRAINT_TYPE), |
---|
273 | m_useLinearReferenceFrameA(true) |
---|
274 | { |
---|
275 | } |
---|
276 | |
---|
277 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
278 | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) |
---|
279 | , m_frameInA(frameInA) |
---|
280 | , m_frameInB(frameInB), |
---|
281 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
282 | { |
---|
283 | |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | void btGeneric6DofConstraint::calculateAngleInfo() |
---|
291 | { |
---|
292 | btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); |
---|
293 | |
---|
294 | matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); |
---|
295 | |
---|
296 | |
---|
297 | |
---|
298 | // in euler angle mode we do not actually constrain the angular velocity |
---|
299 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : |
---|
300 | // |
---|
301 | // to get constrain w2-w1 along ...not |
---|
302 | // ------ --------------------- ------ |
---|
303 | // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] |
---|
304 | // d(angle[1])/dt = 0 ax[1] |
---|
305 | // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] |
---|
306 | // |
---|
307 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. |
---|
308 | // to prove the result for angle[0], write the expression for angle[0] from |
---|
309 | // GetInfo1 then take the derivative. to prove this for angle[2] it is |
---|
310 | // easier to take the euler rate expression for d(angle[2])/dt with respect |
---|
311 | // to the components of w and set that to 0. |
---|
312 | |
---|
313 | btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); |
---|
314 | btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
315 | |
---|
316 | m_calculatedAxis[1] = axis2.cross(axis0); |
---|
317 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); |
---|
318 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); |
---|
319 | |
---|
320 | |
---|
321 | // if(m_debugDrawer) |
---|
322 | // { |
---|
323 | // |
---|
324 | // char buff[300]; |
---|
325 | // sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", |
---|
326 | // m_calculatedAxisAngleDiff[0], |
---|
327 | // m_calculatedAxisAngleDiff[1], |
---|
328 | // m_calculatedAxisAngleDiff[2]); |
---|
329 | // m_debugDrawer->reportErrorWarning(buff); |
---|
330 | // } |
---|
331 | |
---|
332 | } |
---|
333 | |
---|
334 | void btGeneric6DofConstraint::calculateTransforms() |
---|
335 | { |
---|
336 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
337 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
338 | |
---|
339 | calculateAngleInfo(); |
---|
340 | } |
---|
341 | |
---|
342 | |
---|
343 | void btGeneric6DofConstraint::buildLinearJacobian( |
---|
344 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, |
---|
345 | const btVector3 & pivotAInW,const btVector3 & pivotBInW) |
---|
346 | { |
---|
347 | new (&jacLinear) btJacobianEntry( |
---|
348 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
349 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
350 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
351 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
352 | normalWorld, |
---|
353 | m_rbA.getInvInertiaDiagLocal(), |
---|
354 | m_rbA.getInvMass(), |
---|
355 | m_rbB.getInvInertiaDiagLocal(), |
---|
356 | m_rbB.getInvMass()); |
---|
357 | |
---|
358 | } |
---|
359 | |
---|
360 | void btGeneric6DofConstraint::buildAngularJacobian( |
---|
361 | btJacobianEntry & jacAngular,const btVector3 & jointAxisW) |
---|
362 | { |
---|
363 | new (&jacAngular) btJacobianEntry(jointAxisW, |
---|
364 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
365 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
366 | m_rbA.getInvInertiaDiagLocal(), |
---|
367 | m_rbB.getInvInertiaDiagLocal()); |
---|
368 | |
---|
369 | } |
---|
370 | |
---|
371 | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) |
---|
372 | { |
---|
373 | btScalar angle = m_calculatedAxisAngleDiff[axis_index]; |
---|
374 | |
---|
375 | //test limits |
---|
376 | m_angularLimits[axis_index].testLimitValue(angle); |
---|
377 | return m_angularLimits[axis_index].needApplyTorques(); |
---|
378 | } |
---|
379 | |
---|
380 | void btGeneric6DofConstraint::buildJacobian() |
---|
381 | { |
---|
382 | |
---|
383 | // Clear accumulated impulses for the next simulation step |
---|
384 | m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); |
---|
385 | int i; |
---|
386 | for(i = 0; i < 3; i++) |
---|
387 | { |
---|
388 | m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); |
---|
389 | } |
---|
390 | //calculates transform |
---|
391 | calculateTransforms(); |
---|
392 | |
---|
393 | // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); |
---|
394 | // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); |
---|
395 | calcAnchorPos(); |
---|
396 | btVector3 pivotAInW = m_AnchorPos; |
---|
397 | btVector3 pivotBInW = m_AnchorPos; |
---|
398 | |
---|
399 | // not used here |
---|
400 | // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
401 | // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
402 | |
---|
403 | btVector3 normalWorld; |
---|
404 | //linear part |
---|
405 | for (i=0;i<3;i++) |
---|
406 | { |
---|
407 | if (m_linearLimits.isLimited(i)) |
---|
408 | { |
---|
409 | if (m_useLinearReferenceFrameA) |
---|
410 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
411 | else |
---|
412 | normalWorld = m_calculatedTransformB.getBasis().getColumn(i); |
---|
413 | |
---|
414 | buildLinearJacobian( |
---|
415 | m_jacLinear[i],normalWorld , |
---|
416 | pivotAInW,pivotBInW); |
---|
417 | |
---|
418 | } |
---|
419 | } |
---|
420 | |
---|
421 | // angular part |
---|
422 | for (i=0;i<3;i++) |
---|
423 | { |
---|
424 | //calculates error angle |
---|
425 | if (testAngularLimitMotor(i)) |
---|
426 | { |
---|
427 | normalWorld = this->getAxis(i); |
---|
428 | // Create angular atom |
---|
429 | buildAngularJacobian(m_jacAng[i],normalWorld); |
---|
430 | } |
---|
431 | } |
---|
432 | |
---|
433 | |
---|
434 | } |
---|
435 | |
---|
436 | |
---|
437 | void btGeneric6DofConstraint::solveConstraint(btScalar timeStep) |
---|
438 | { |
---|
439 | m_timeStep = timeStep; |
---|
440 | |
---|
441 | //calculateTransforms(); |
---|
442 | |
---|
443 | int i; |
---|
444 | |
---|
445 | // linear |
---|
446 | |
---|
447 | btVector3 pointInA = m_calculatedTransformA.getOrigin(); |
---|
448 | btVector3 pointInB = m_calculatedTransformB.getOrigin(); |
---|
449 | |
---|
450 | btScalar jacDiagABInv; |
---|
451 | btVector3 linear_axis; |
---|
452 | for (i=0;i<3;i++) |
---|
453 | { |
---|
454 | if (m_linearLimits.isLimited(i)) |
---|
455 | { |
---|
456 | jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); |
---|
457 | |
---|
458 | if (m_useLinearReferenceFrameA) |
---|
459 | linear_axis = m_calculatedTransformA.getBasis().getColumn(i); |
---|
460 | else |
---|
461 | linear_axis = m_calculatedTransformB.getBasis().getColumn(i); |
---|
462 | |
---|
463 | m_linearLimits.solveLinearAxis( |
---|
464 | m_timeStep, |
---|
465 | jacDiagABInv, |
---|
466 | m_rbA,pointInA, |
---|
467 | m_rbB,pointInB, |
---|
468 | i,linear_axis, m_AnchorPos); |
---|
469 | |
---|
470 | } |
---|
471 | } |
---|
472 | |
---|
473 | // angular |
---|
474 | btVector3 angular_axis; |
---|
475 | btScalar angularJacDiagABInv; |
---|
476 | for (i=0;i<3;i++) |
---|
477 | { |
---|
478 | if (m_angularLimits[i].needApplyTorques()) |
---|
479 | { |
---|
480 | |
---|
481 | // get axis |
---|
482 | angular_axis = getAxis(i); |
---|
483 | |
---|
484 | angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); |
---|
485 | |
---|
486 | m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,&m_rbB); |
---|
487 | } |
---|
488 | } |
---|
489 | } |
---|
490 | |
---|
491 | void btGeneric6DofConstraint::updateRHS(btScalar timeStep) |
---|
492 | { |
---|
493 | (void)timeStep; |
---|
494 | |
---|
495 | } |
---|
496 | |
---|
497 | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const |
---|
498 | { |
---|
499 | return m_calculatedAxis[axis_index]; |
---|
500 | } |
---|
501 | |
---|
502 | btScalar btGeneric6DofConstraint::getAngle(int axis_index) const |
---|
503 | { |
---|
504 | return m_calculatedAxisAngleDiff[axis_index]; |
---|
505 | } |
---|
506 | |
---|
507 | void btGeneric6DofConstraint::calcAnchorPos(void) |
---|
508 | { |
---|
509 | btScalar imA = m_rbA.getInvMass(); |
---|
510 | btScalar imB = m_rbB.getInvMass(); |
---|
511 | btScalar weight; |
---|
512 | if(imB == btScalar(0.0)) |
---|
513 | { |
---|
514 | weight = btScalar(1.0); |
---|
515 | } |
---|
516 | else |
---|
517 | { |
---|
518 | weight = imA / (imA + imB); |
---|
519 | } |
---|
520 | const btVector3& pA = m_calculatedTransformA.getOrigin(); |
---|
521 | const btVector3& pB = m_calculatedTransformB.getOrigin(); |
---|
522 | m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); |
---|
523 | return; |
---|
524 | } // btGeneric6DofConstraint::calcAnchorPos() |
---|
525 | |
---|