[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | /* |
---|
| 17 | Added by Roman Ponomarev (rponom@gmail.com) |
---|
| 18 | April 04, 2008 |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | //----------------------------------------------------------------------------- |
---|
| 22 | |
---|
| 23 | #include "btSliderConstraint.h" |
---|
| 24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 25 | #include "LinearMath/btTransformUtil.h" |
---|
| 26 | #include <new> |
---|
| 27 | |
---|
| 28 | //----------------------------------------------------------------------------- |
---|
| 29 | |
---|
| 30 | void btSliderConstraint::initParams() |
---|
| 31 | { |
---|
| 32 | m_lowerLinLimit = btScalar(1.0); |
---|
| 33 | m_upperLinLimit = btScalar(-1.0); |
---|
| 34 | m_lowerAngLimit = btScalar(0.); |
---|
| 35 | m_upperAngLimit = btScalar(0.); |
---|
| 36 | m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 37 | m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 38 | m_dampingDirLin = btScalar(0.); |
---|
| 39 | m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 40 | m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 41 | m_dampingDirAng = btScalar(0.); |
---|
| 42 | m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 43 | m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 44 | m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 45 | m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 46 | m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 47 | m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 48 | m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 49 | m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 50 | m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 51 | m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 52 | m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 53 | m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 54 | |
---|
| 55 | m_poweredLinMotor = false; |
---|
| 56 | m_targetLinMotorVelocity = btScalar(0.); |
---|
| 57 | m_maxLinMotorForce = btScalar(0.); |
---|
| 58 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
| 59 | |
---|
| 60 | m_poweredAngMotor = false; |
---|
| 61 | m_targetAngMotorVelocity = btScalar(0.); |
---|
| 62 | m_maxAngMotorForce = btScalar(0.); |
---|
| 63 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
| 64 | |
---|
| 65 | } // btSliderConstraint::initParams() |
---|
| 66 | |
---|
| 67 | //----------------------------------------------------------------------------- |
---|
| 68 | |
---|
| 69 | btSliderConstraint::btSliderConstraint() |
---|
| 70 | :btTypedConstraint(SLIDER_CONSTRAINT_TYPE), |
---|
| 71 | m_useLinearReferenceFrameA(true) |
---|
| 72 | { |
---|
| 73 | initParams(); |
---|
| 74 | } // btSliderConstraint::btSliderConstraint() |
---|
| 75 | |
---|
| 76 | //----------------------------------------------------------------------------- |
---|
| 77 | |
---|
| 78 | btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
| 79 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB) |
---|
| 80 | , m_frameInA(frameInA) |
---|
| 81 | , m_frameInB(frameInB), |
---|
| 82 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) |
---|
| 83 | { |
---|
| 84 | initParams(); |
---|
| 85 | } // btSliderConstraint::btSliderConstraint() |
---|
| 86 | |
---|
| 87 | //----------------------------------------------------------------------------- |
---|
| 88 | |
---|
| 89 | void btSliderConstraint::buildJacobian() |
---|
| 90 | { |
---|
| 91 | if(m_useLinearReferenceFrameA) |
---|
| 92 | { |
---|
| 93 | buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB); |
---|
| 94 | } |
---|
| 95 | else |
---|
| 96 | { |
---|
| 97 | buildJacobianInt(m_rbB, m_rbA, m_frameInB, m_frameInA); |
---|
| 98 | } |
---|
| 99 | } // btSliderConstraint::buildJacobian() |
---|
| 100 | |
---|
| 101 | //----------------------------------------------------------------------------- |
---|
| 102 | |
---|
| 103 | void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB) |
---|
| 104 | { |
---|
| 105 | //calculate transforms |
---|
| 106 | m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA; |
---|
| 107 | m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB; |
---|
| 108 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 109 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 110 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
| 111 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
| 112 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
| 113 | m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition(); |
---|
| 114 | m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition(); |
---|
| 115 | btVector3 normalWorld; |
---|
| 116 | int i; |
---|
| 117 | //linear part |
---|
| 118 | for(i = 0; i < 3; i++) |
---|
| 119 | { |
---|
| 120 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 121 | new (&m_jacLin[i]) btJacobianEntry( |
---|
| 122 | rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 123 | rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 124 | m_relPosA, |
---|
| 125 | m_relPosB, |
---|
| 126 | normalWorld, |
---|
| 127 | rbA.getInvInertiaDiagLocal(), |
---|
| 128 | rbA.getInvMass(), |
---|
| 129 | rbB.getInvInertiaDiagLocal(), |
---|
| 130 | rbB.getInvMass() |
---|
| 131 | ); |
---|
| 132 | m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal(); |
---|
| 133 | m_depth[i] = m_delta.dot(normalWorld); |
---|
| 134 | } |
---|
| 135 | testLinLimits(); |
---|
| 136 | // angular part |
---|
| 137 | for(i = 0; i < 3; i++) |
---|
| 138 | { |
---|
| 139 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 140 | new (&m_jacAng[i]) btJacobianEntry( |
---|
| 141 | normalWorld, |
---|
| 142 | rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 143 | rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 144 | rbA.getInvInertiaDiagLocal(), |
---|
| 145 | rbB.getInvInertiaDiagLocal() |
---|
| 146 | ); |
---|
| 147 | } |
---|
| 148 | testAngLimits(); |
---|
| 149 | btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0); |
---|
| 150 | m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA)); |
---|
| 151 | // clear accumulator for motors |
---|
| 152 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
| 153 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
| 154 | } // btSliderConstraint::buildJacobianInt() |
---|
| 155 | |
---|
| 156 | //----------------------------------------------------------------------------- |
---|
| 157 | |
---|
| 158 | void btSliderConstraint::solveConstraint(btScalar timeStep) |
---|
| 159 | { |
---|
| 160 | m_timeStep = timeStep; |
---|
| 161 | if(m_useLinearReferenceFrameA) |
---|
| 162 | { |
---|
| 163 | solveConstraintInt(m_rbA, m_rbB); |
---|
| 164 | } |
---|
| 165 | else |
---|
| 166 | { |
---|
| 167 | solveConstraintInt(m_rbB, m_rbA); |
---|
| 168 | } |
---|
| 169 | } // btSliderConstraint::solveConstraint() |
---|
| 170 | |
---|
| 171 | //----------------------------------------------------------------------------- |
---|
| 172 | |
---|
| 173 | void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB) |
---|
| 174 | { |
---|
| 175 | int i; |
---|
| 176 | // linear |
---|
| 177 | btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA); |
---|
| 178 | btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB); |
---|
| 179 | btVector3 vel = velA - velB; |
---|
| 180 | for(i = 0; i < 3; i++) |
---|
| 181 | { |
---|
| 182 | const btVector3& normal = m_jacLin[i].m_linearJointAxis; |
---|
| 183 | btScalar rel_vel = normal.dot(vel); |
---|
| 184 | // calculate positional error |
---|
| 185 | btScalar depth = m_depth[i]; |
---|
| 186 | // get parameters |
---|
| 187 | btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); |
---|
| 188 | btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); |
---|
| 189 | btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); |
---|
| 190 | // calcutate and apply impulse |
---|
| 191 | btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i]; |
---|
| 192 | btVector3 impulse_vector = normal * normalImpulse; |
---|
| 193 | rbA.applyImpulse( impulse_vector, m_relPosA); |
---|
| 194 | rbB.applyImpulse(-impulse_vector, m_relPosB); |
---|
| 195 | if(m_poweredLinMotor && (!i)) |
---|
| 196 | { // apply linear motor |
---|
| 197 | if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce) |
---|
| 198 | { |
---|
| 199 | btScalar desiredMotorVel = m_targetLinMotorVelocity; |
---|
| 200 | btScalar motor_relvel = desiredMotorVel + rel_vel; |
---|
| 201 | normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; |
---|
| 202 | // clamp accumulated impulse |
---|
| 203 | btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse); |
---|
| 204 | if(new_acc > m_maxLinMotorForce) |
---|
| 205 | { |
---|
| 206 | new_acc = m_maxLinMotorForce; |
---|
| 207 | } |
---|
| 208 | btScalar del = new_acc - m_accumulatedLinMotorImpulse; |
---|
| 209 | if(normalImpulse < btScalar(0.0)) |
---|
| 210 | { |
---|
| 211 | normalImpulse = -del; |
---|
| 212 | } |
---|
| 213 | else |
---|
| 214 | { |
---|
| 215 | normalImpulse = del; |
---|
| 216 | } |
---|
| 217 | m_accumulatedLinMotorImpulse = new_acc; |
---|
| 218 | // apply clamped impulse |
---|
| 219 | impulse_vector = normal * normalImpulse; |
---|
| 220 | rbA.applyImpulse( impulse_vector, m_relPosA); |
---|
| 221 | rbB.applyImpulse(-impulse_vector, m_relPosB); |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | // angular |
---|
| 226 | // get axes in world space |
---|
| 227 | btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0); |
---|
| 228 | btVector3 axisB = m_calculatedTransformB.getBasis().getColumn(0); |
---|
| 229 | |
---|
| 230 | const btVector3& angVelA = rbA.getAngularVelocity(); |
---|
| 231 | const btVector3& angVelB = rbB.getAngularVelocity(); |
---|
| 232 | |
---|
| 233 | btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); |
---|
| 234 | btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); |
---|
| 235 | |
---|
| 236 | btVector3 angAorthog = angVelA - angVelAroundAxisA; |
---|
| 237 | btVector3 angBorthog = angVelB - angVelAroundAxisB; |
---|
| 238 | btVector3 velrelOrthog = angAorthog-angBorthog; |
---|
| 239 | //solve orthogonal angular velocity correction |
---|
| 240 | btScalar len = velrelOrthog.length(); |
---|
| 241 | if (len > btScalar(0.00001)) |
---|
| 242 | { |
---|
| 243 | btVector3 normal = velrelOrthog.normalized(); |
---|
| 244 | btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal); |
---|
| 245 | velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng; |
---|
| 246 | } |
---|
| 247 | //solve angular positional correction |
---|
| 248 | btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep); |
---|
| 249 | btScalar len2 = angularError.length(); |
---|
| 250 | if (len2>btScalar(0.00001)) |
---|
| 251 | { |
---|
| 252 | btVector3 normal2 = angularError.normalized(); |
---|
| 253 | btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2); |
---|
| 254 | angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; |
---|
| 255 | } |
---|
| 256 | // apply impulse |
---|
| 257 | rbA.applyTorqueImpulse(-velrelOrthog+angularError); |
---|
| 258 | rbB.applyTorqueImpulse(velrelOrthog-angularError); |
---|
| 259 | btScalar impulseMag; |
---|
| 260 | //solve angular limits |
---|
| 261 | if(m_solveAngLim) |
---|
| 262 | { |
---|
| 263 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep; |
---|
| 264 | impulseMag *= m_kAngle * m_softnessLimAng; |
---|
| 265 | } |
---|
| 266 | else |
---|
| 267 | { |
---|
| 268 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep; |
---|
| 269 | impulseMag *= m_kAngle * m_softnessDirAng; |
---|
| 270 | } |
---|
| 271 | btVector3 impulse = axisA * impulseMag; |
---|
| 272 | rbA.applyTorqueImpulse(impulse); |
---|
| 273 | rbB.applyTorqueImpulse(-impulse); |
---|
| 274 | //apply angular motor |
---|
| 275 | if(m_poweredAngMotor) |
---|
| 276 | { |
---|
| 277 | if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce) |
---|
| 278 | { |
---|
| 279 | btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB; |
---|
| 280 | btScalar projRelVel = velrel.dot(axisA); |
---|
| 281 | |
---|
| 282 | btScalar desiredMotorVel = m_targetAngMotorVelocity; |
---|
| 283 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
---|
| 284 | |
---|
| 285 | btScalar angImpulse = m_kAngle * motor_relvel; |
---|
| 286 | // clamp accumulated impulse |
---|
| 287 | btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse); |
---|
| 288 | if(new_acc > m_maxAngMotorForce) |
---|
| 289 | { |
---|
| 290 | new_acc = m_maxAngMotorForce; |
---|
| 291 | } |
---|
| 292 | btScalar del = new_acc - m_accumulatedAngMotorImpulse; |
---|
| 293 | if(angImpulse < btScalar(0.0)) |
---|
| 294 | { |
---|
| 295 | angImpulse = -del; |
---|
| 296 | } |
---|
| 297 | else |
---|
| 298 | { |
---|
| 299 | angImpulse = del; |
---|
| 300 | } |
---|
| 301 | m_accumulatedAngMotorImpulse = new_acc; |
---|
| 302 | // apply clamped impulse |
---|
| 303 | btVector3 motorImp = angImpulse * axisA; |
---|
| 304 | m_rbA.applyTorqueImpulse(motorImp); |
---|
| 305 | m_rbB.applyTorqueImpulse(-motorImp); |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | } // btSliderConstraint::solveConstraint() |
---|
| 309 | |
---|
| 310 | //----------------------------------------------------------------------------- |
---|
| 311 | |
---|
| 312 | //----------------------------------------------------------------------------- |
---|
| 313 | |
---|
| 314 | void btSliderConstraint::calculateTransforms(void){ |
---|
| 315 | if(m_useLinearReferenceFrameA) |
---|
| 316 | { |
---|
| 317 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
| 318 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 319 | } |
---|
| 320 | else |
---|
| 321 | { |
---|
| 322 | m_calculatedTransformA = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 323 | m_calculatedTransformB = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
| 324 | } |
---|
| 325 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 326 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 327 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
| 328 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
| 329 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
| 330 | btVector3 normalWorld; |
---|
| 331 | int i; |
---|
| 332 | //linear part |
---|
| 333 | for(i = 0; i < 3; i++) |
---|
| 334 | { |
---|
| 335 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 336 | m_depth[i] = m_delta.dot(normalWorld); |
---|
| 337 | } |
---|
| 338 | } // btSliderConstraint::calculateTransforms() |
---|
| 339 | |
---|
| 340 | //----------------------------------------------------------------------------- |
---|
| 341 | |
---|
| 342 | void btSliderConstraint::testLinLimits(void) |
---|
| 343 | { |
---|
| 344 | m_solveLinLim = false; |
---|
| 345 | m_linPos = m_depth[0]; |
---|
| 346 | if(m_lowerLinLimit <= m_upperLinLimit) |
---|
| 347 | { |
---|
| 348 | if(m_depth[0] > m_upperLinLimit) |
---|
| 349 | { |
---|
| 350 | m_depth[0] -= m_upperLinLimit; |
---|
| 351 | m_solveLinLim = true; |
---|
| 352 | } |
---|
| 353 | else if(m_depth[0] < m_lowerLinLimit) |
---|
| 354 | { |
---|
| 355 | m_depth[0] -= m_lowerLinLimit; |
---|
| 356 | m_solveLinLim = true; |
---|
| 357 | } |
---|
| 358 | else |
---|
| 359 | { |
---|
| 360 | m_depth[0] = btScalar(0.); |
---|
| 361 | } |
---|
| 362 | } |
---|
| 363 | else |
---|
| 364 | { |
---|
| 365 | m_depth[0] = btScalar(0.); |
---|
| 366 | } |
---|
| 367 | } // btSliderConstraint::testLinLimits() |
---|
| 368 | |
---|
| 369 | //----------------------------------------------------------------------------- |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | void btSliderConstraint::testAngLimits(void) |
---|
| 373 | { |
---|
| 374 | m_angDepth = btScalar(0.); |
---|
| 375 | m_solveAngLim = false; |
---|
| 376 | if(m_lowerAngLimit <= m_upperAngLimit) |
---|
| 377 | { |
---|
| 378 | const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1); |
---|
| 379 | const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
| 380 | const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1); |
---|
| 381 | btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
| 382 | if(rot < m_lowerAngLimit) |
---|
| 383 | { |
---|
| 384 | m_angDepth = rot - m_lowerAngLimit; |
---|
| 385 | m_solveAngLim = true; |
---|
| 386 | } |
---|
| 387 | else if(rot > m_upperAngLimit) |
---|
| 388 | { |
---|
| 389 | m_angDepth = rot - m_upperAngLimit; |
---|
| 390 | m_solveAngLim = true; |
---|
| 391 | } |
---|
| 392 | } |
---|
| 393 | } // btSliderConstraint::testAngLimits() |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | //----------------------------------------------------------------------------- |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | btVector3 btSliderConstraint::getAncorInA(void) |
---|
| 401 | { |
---|
| 402 | btVector3 ancorInA; |
---|
| 403 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis; |
---|
| 404 | ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA; |
---|
| 405 | return ancorInA; |
---|
| 406 | } // btSliderConstraint::getAncorInA() |
---|
| 407 | |
---|
| 408 | //----------------------------------------------------------------------------- |
---|
| 409 | |
---|
| 410 | btVector3 btSliderConstraint::getAncorInB(void) |
---|
| 411 | { |
---|
| 412 | btVector3 ancorInB; |
---|
| 413 | ancorInB = m_frameInB.getOrigin(); |
---|
| 414 | return ancorInB; |
---|
| 415 | } // btSliderConstraint::getAncorInB(); |
---|