[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | /* |
---|
| 17 | Added by Roman Ponomarev (rponom@gmail.com) |
---|
| 18 | April 04, 2008 |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | //----------------------------------------------------------------------------- |
---|
| 22 | |
---|
| 23 | #include "btSliderConstraint.h" |
---|
| 24 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 25 | #include "LinearMath/btTransformUtil.h" |
---|
| 26 | #include <new> |
---|
| 27 | |
---|
| 28 | //----------------------------------------------------------------------------- |
---|
| 29 | |
---|
| 30 | void btSliderConstraint::initParams() |
---|
| 31 | { |
---|
| 32 | m_lowerLinLimit = btScalar(1.0); |
---|
| 33 | m_upperLinLimit = btScalar(-1.0); |
---|
| 34 | m_lowerAngLimit = btScalar(0.); |
---|
| 35 | m_upperAngLimit = btScalar(0.); |
---|
| 36 | m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 37 | m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 38 | m_dampingDirLin = btScalar(0.); |
---|
| 39 | m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 40 | m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 41 | m_dampingDirAng = btScalar(0.); |
---|
| 42 | m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 43 | m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 44 | m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 45 | m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 46 | m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 47 | m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 48 | m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 49 | m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 50 | m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 51 | m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; |
---|
| 52 | m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; |
---|
| 53 | m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; |
---|
| 54 | |
---|
| 55 | m_poweredLinMotor = false; |
---|
| 56 | m_targetLinMotorVelocity = btScalar(0.); |
---|
| 57 | m_maxLinMotorForce = btScalar(0.); |
---|
| 58 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
| 59 | |
---|
| 60 | m_poweredAngMotor = false; |
---|
| 61 | m_targetAngMotorVelocity = btScalar(0.); |
---|
| 62 | m_maxAngMotorForce = btScalar(0.); |
---|
| 63 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
| 64 | |
---|
| 65 | } // btSliderConstraint::initParams() |
---|
| 66 | |
---|
| 67 | //----------------------------------------------------------------------------- |
---|
| 68 | |
---|
| 69 | btSliderConstraint::btSliderConstraint() |
---|
| 70 | :btTypedConstraint(SLIDER_CONSTRAINT_TYPE), |
---|
[2882] | 71 | m_useLinearReferenceFrameA(true), |
---|
| 72 | m_useSolveConstraintObsolete(false) |
---|
| 73 | // m_useSolveConstraintObsolete(true) |
---|
[1963] | 74 | { |
---|
| 75 | initParams(); |
---|
| 76 | } // btSliderConstraint::btSliderConstraint() |
---|
| 77 | |
---|
| 78 | //----------------------------------------------------------------------------- |
---|
| 79 | |
---|
| 80 | btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) |
---|
| 81 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB) |
---|
| 82 | , m_frameInA(frameInA) |
---|
| 83 | , m_frameInB(frameInB), |
---|
[2882] | 84 | m_useLinearReferenceFrameA(useLinearReferenceFrameA), |
---|
| 85 | m_useSolveConstraintObsolete(false) |
---|
| 86 | // m_useSolveConstraintObsolete(true) |
---|
[1963] | 87 | { |
---|
| 88 | initParams(); |
---|
| 89 | } // btSliderConstraint::btSliderConstraint() |
---|
| 90 | |
---|
| 91 | //----------------------------------------------------------------------------- |
---|
| 92 | |
---|
| 93 | void btSliderConstraint::buildJacobian() |
---|
| 94 | { |
---|
[2882] | 95 | if (!m_useSolveConstraintObsolete) |
---|
| 96 | { |
---|
| 97 | return; |
---|
| 98 | } |
---|
[1963] | 99 | if(m_useLinearReferenceFrameA) |
---|
| 100 | { |
---|
| 101 | buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB); |
---|
| 102 | } |
---|
| 103 | else |
---|
| 104 | { |
---|
| 105 | buildJacobianInt(m_rbB, m_rbA, m_frameInB, m_frameInA); |
---|
| 106 | } |
---|
| 107 | } // btSliderConstraint::buildJacobian() |
---|
| 108 | |
---|
| 109 | //----------------------------------------------------------------------------- |
---|
| 110 | |
---|
| 111 | void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB) |
---|
| 112 | { |
---|
| 113 | //calculate transforms |
---|
| 114 | m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA; |
---|
| 115 | m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB; |
---|
| 116 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 117 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 118 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
| 119 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
| 120 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
| 121 | m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition(); |
---|
| 122 | m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition(); |
---|
| 123 | btVector3 normalWorld; |
---|
| 124 | int i; |
---|
| 125 | //linear part |
---|
| 126 | for(i = 0; i < 3; i++) |
---|
| 127 | { |
---|
| 128 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 129 | new (&m_jacLin[i]) btJacobianEntry( |
---|
| 130 | rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 131 | rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 132 | m_relPosA, |
---|
| 133 | m_relPosB, |
---|
| 134 | normalWorld, |
---|
| 135 | rbA.getInvInertiaDiagLocal(), |
---|
| 136 | rbA.getInvMass(), |
---|
| 137 | rbB.getInvInertiaDiagLocal(), |
---|
| 138 | rbB.getInvMass() |
---|
| 139 | ); |
---|
| 140 | m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal(); |
---|
| 141 | m_depth[i] = m_delta.dot(normalWorld); |
---|
| 142 | } |
---|
| 143 | testLinLimits(); |
---|
| 144 | // angular part |
---|
| 145 | for(i = 0; i < 3; i++) |
---|
| 146 | { |
---|
| 147 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 148 | new (&m_jacAng[i]) btJacobianEntry( |
---|
| 149 | normalWorld, |
---|
| 150 | rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 151 | rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 152 | rbA.getInvInertiaDiagLocal(), |
---|
| 153 | rbB.getInvInertiaDiagLocal() |
---|
| 154 | ); |
---|
| 155 | } |
---|
| 156 | testAngLimits(); |
---|
| 157 | btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0); |
---|
| 158 | m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA)); |
---|
| 159 | // clear accumulator for motors |
---|
| 160 | m_accumulatedLinMotorImpulse = btScalar(0.0); |
---|
| 161 | m_accumulatedAngMotorImpulse = btScalar(0.0); |
---|
| 162 | } // btSliderConstraint::buildJacobianInt() |
---|
| 163 | |
---|
| 164 | //----------------------------------------------------------------------------- |
---|
| 165 | |
---|
[2882] | 166 | void btSliderConstraint::getInfo1(btConstraintInfo1* info) |
---|
[1963] | 167 | { |
---|
[2882] | 168 | if (m_useSolveConstraintObsolete) |
---|
[1963] | 169 | { |
---|
[2882] | 170 | info->m_numConstraintRows = 0; |
---|
| 171 | info->nub = 0; |
---|
[1963] | 172 | } |
---|
| 173 | else |
---|
| 174 | { |
---|
[2882] | 175 | info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular |
---|
| 176 | info->nub = 2; |
---|
| 177 | //prepare constraint |
---|
| 178 | calculateTransforms(); |
---|
| 179 | testLinLimits(); |
---|
| 180 | if(getSolveLinLimit() || getPoweredLinMotor()) |
---|
| 181 | { |
---|
| 182 | info->m_numConstraintRows++; // limit 3rd linear as well |
---|
| 183 | info->nub--; |
---|
| 184 | } |
---|
| 185 | testAngLimits(); |
---|
| 186 | if(getSolveAngLimit() || getPoweredAngMotor()) |
---|
| 187 | { |
---|
| 188 | info->m_numConstraintRows++; // limit 3rd angular as well |
---|
| 189 | info->nub--; |
---|
| 190 | } |
---|
[1963] | 191 | } |
---|
[2882] | 192 | } // btSliderConstraint::getInfo1() |
---|
| 193 | |
---|
| 194 | //----------------------------------------------------------------------------- |
---|
| 195 | |
---|
| 196 | void btSliderConstraint::getInfo2(btConstraintInfo2* info) |
---|
| 197 | { |
---|
| 198 | btAssert(!m_useSolveConstraintObsolete); |
---|
| 199 | int i, s = info->rowskip; |
---|
| 200 | const btTransform& trA = getCalculatedTransformA(); |
---|
| 201 | const btTransform& trB = getCalculatedTransformB(); |
---|
| 202 | btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f); |
---|
| 203 | // make rotations around Y and Z equal |
---|
| 204 | // the slider axis should be the only unconstrained |
---|
| 205 | // rotational axis, the angular velocity of the two bodies perpendicular to |
---|
| 206 | // the slider axis should be equal. thus the constraint equations are |
---|
| 207 | // p*w1 - p*w2 = 0 |
---|
| 208 | // q*w1 - q*w2 = 0 |
---|
| 209 | // where p and q are unit vectors normal to the slider axis, and w1 and w2 |
---|
| 210 | // are the angular velocity vectors of the two bodies. |
---|
| 211 | // get slider axis (X) |
---|
| 212 | btVector3 ax1 = trA.getBasis().getColumn(0); |
---|
| 213 | // get 2 orthos to slider axis (Y, Z) |
---|
| 214 | btVector3 p = trA.getBasis().getColumn(1); |
---|
| 215 | btVector3 q = trA.getBasis().getColumn(2); |
---|
| 216 | // set the two slider rows |
---|
| 217 | info->m_J1angularAxis[0] = p[0]; |
---|
| 218 | info->m_J1angularAxis[1] = p[1]; |
---|
| 219 | info->m_J1angularAxis[2] = p[2]; |
---|
| 220 | info->m_J1angularAxis[s+0] = q[0]; |
---|
| 221 | info->m_J1angularAxis[s+1] = q[1]; |
---|
| 222 | info->m_J1angularAxis[s+2] = q[2]; |
---|
| 223 | |
---|
| 224 | info->m_J2angularAxis[0] = -p[0]; |
---|
| 225 | info->m_J2angularAxis[1] = -p[1]; |
---|
| 226 | info->m_J2angularAxis[2] = -p[2]; |
---|
| 227 | info->m_J2angularAxis[s+0] = -q[0]; |
---|
| 228 | info->m_J2angularAxis[s+1] = -q[1]; |
---|
| 229 | info->m_J2angularAxis[s+2] = -q[2]; |
---|
| 230 | // compute the right hand side of the constraint equation. set relative |
---|
| 231 | // body velocities along p and q to bring the slider back into alignment. |
---|
| 232 | // if ax1,ax2 are the unit length slider axes as computed from body1 and |
---|
| 233 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). |
---|
| 234 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity |
---|
| 235 | // along u to cover angle erp*theta in one step : |
---|
| 236 | // |angular_velocity| = angle/time = erp*theta / stepsize |
---|
| 237 | // = (erp*fps) * theta |
---|
| 238 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| |
---|
| 239 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) |
---|
| 240 | // ...as ax1 and ax2 are unit length. if theta is smallish, |
---|
| 241 | // theta ~= sin(theta), so |
---|
| 242 | // angular_velocity = (erp*fps) * (ax1 x ax2) |
---|
| 243 | // ax1 x ax2 is in the plane space of ax1, so we project the angular |
---|
| 244 | // velocity to p and q to find the right hand side. |
---|
| 245 | btScalar k = info->fps * info->erp * getSoftnessOrthoAng(); |
---|
| 246 | btVector3 ax2 = trB.getBasis().getColumn(0); |
---|
| 247 | btVector3 u = ax1.cross(ax2); |
---|
| 248 | info->m_constraintError[0] = k * u.dot(p); |
---|
| 249 | info->m_constraintError[s] = k * u.dot(q); |
---|
| 250 | // pull out pos and R for both bodies. also get the connection |
---|
| 251 | // vector c = pos2-pos1. |
---|
| 252 | // next two rows. we want: vel2 = vel1 + w1 x c ... but this would |
---|
| 253 | // result in three equations, so we project along the planespace vectors |
---|
| 254 | // so that sliding along the slider axis is disregarded. for symmetry we |
---|
| 255 | // also consider rotation around center of mass of two bodies (factA and factB). |
---|
| 256 | btTransform bodyA_trans = m_rbA.getCenterOfMassTransform(); |
---|
| 257 | btTransform bodyB_trans = m_rbB.getCenterOfMassTransform(); |
---|
| 258 | int s2 = 2 * s, s3 = 3 * s; |
---|
| 259 | btVector3 c; |
---|
| 260 | btScalar miA = m_rbA.getInvMass(); |
---|
| 261 | btScalar miB = m_rbB.getInvMass(); |
---|
| 262 | btScalar miS = miA + miB; |
---|
| 263 | btScalar factA, factB; |
---|
| 264 | if(miS > btScalar(0.f)) |
---|
| 265 | { |
---|
| 266 | factA = miB / miS; |
---|
| 267 | } |
---|
| 268 | else |
---|
| 269 | { |
---|
| 270 | factA = btScalar(0.5f); |
---|
| 271 | } |
---|
| 272 | if(factA > 0.99f) factA = 0.99f; |
---|
| 273 | if(factA < 0.01f) factA = 0.01f; |
---|
| 274 | factB = btScalar(1.0f) - factA; |
---|
| 275 | c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin(); |
---|
| 276 | btVector3 tmp = c.cross(p); |
---|
| 277 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i]; |
---|
| 278 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i]; |
---|
| 279 | tmp = c.cross(q); |
---|
| 280 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i]; |
---|
| 281 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i]; |
---|
| 282 | |
---|
| 283 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; |
---|
| 284 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; |
---|
| 285 | // compute two elements of right hand side. we want to align the offset |
---|
| 286 | // point (in body 2's frame) with the center of body 1. |
---|
| 287 | btVector3 ofs; // offset point in global coordinates |
---|
| 288 | ofs = trB.getOrigin() - trA.getOrigin(); |
---|
| 289 | k = info->fps * info->erp * getSoftnessOrthoLin(); |
---|
| 290 | info->m_constraintError[s2] = k * p.dot(ofs); |
---|
| 291 | info->m_constraintError[s3] = k * q.dot(ofs); |
---|
| 292 | int nrow = 3; // last filled row |
---|
| 293 | int srow; |
---|
| 294 | // check linear limits linear |
---|
| 295 | btScalar limit_err = btScalar(0.0); |
---|
| 296 | int limit = 0; |
---|
| 297 | if(getSolveLinLimit()) |
---|
| 298 | { |
---|
| 299 | limit_err = getLinDepth() * signFact; |
---|
| 300 | limit = (limit_err > btScalar(0.0)) ? 2 : 1; |
---|
| 301 | } |
---|
| 302 | int powered = 0; |
---|
| 303 | if(getPoweredLinMotor()) |
---|
| 304 | { |
---|
| 305 | powered = 1; |
---|
| 306 | } |
---|
| 307 | // if the slider has joint limits or motor, add in the extra row |
---|
| 308 | if (limit || powered) |
---|
| 309 | { |
---|
| 310 | nrow++; |
---|
| 311 | srow = nrow * info->rowskip; |
---|
| 312 | info->m_J1linearAxis[srow+0] = ax1[0]; |
---|
| 313 | info->m_J1linearAxis[srow+1] = ax1[1]; |
---|
| 314 | info->m_J1linearAxis[srow+2] = ax1[2]; |
---|
| 315 | // linear torque decoupling step: |
---|
| 316 | // |
---|
| 317 | // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies |
---|
| 318 | // do not create a torque couple. in other words, the points that the |
---|
| 319 | // constraint force is applied at must lie along the same ax1 axis. |
---|
| 320 | // a torque couple will result in limited slider-jointed free |
---|
| 321 | // bodies from gaining angular momentum. |
---|
| 322 | // the solution used here is to apply the constraint forces at the center of mass of the two bodies |
---|
| 323 | btVector3 ltd; // Linear Torque Decoupling vector (a torque) |
---|
| 324 | // c = btScalar(0.5) * c; |
---|
| 325 | ltd = c.cross(ax1); |
---|
| 326 | info->m_J1angularAxis[srow+0] = factA*ltd[0]; |
---|
| 327 | info->m_J1angularAxis[srow+1] = factA*ltd[1]; |
---|
| 328 | info->m_J1angularAxis[srow+2] = factA*ltd[2]; |
---|
| 329 | info->m_J2angularAxis[srow+0] = factB*ltd[0]; |
---|
| 330 | info->m_J2angularAxis[srow+1] = factB*ltd[1]; |
---|
| 331 | info->m_J2angularAxis[srow+2] = factB*ltd[2]; |
---|
| 332 | // right-hand part |
---|
| 333 | btScalar lostop = getLowerLinLimit(); |
---|
| 334 | btScalar histop = getUpperLinLimit(); |
---|
| 335 | if(limit && (lostop == histop)) |
---|
| 336 | { // the joint motor is ineffective |
---|
| 337 | powered = 0; |
---|
| 338 | } |
---|
| 339 | info->m_constraintError[srow] = 0.; |
---|
| 340 | info->m_lowerLimit[srow] = 0.; |
---|
| 341 | info->m_upperLimit[srow] = 0.; |
---|
| 342 | if(powered) |
---|
| 343 | { |
---|
| 344 | info->cfm[nrow] = btScalar(0.0); |
---|
| 345 | btScalar tag_vel = getTargetLinMotorVelocity(); |
---|
| 346 | btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * info->erp); |
---|
| 347 | // info->m_constraintError[srow] += mot_fact * getTargetLinMotorVelocity(); |
---|
| 348 | info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity(); |
---|
| 349 | info->m_lowerLimit[srow] += -getMaxLinMotorForce() * info->fps; |
---|
| 350 | info->m_upperLimit[srow] += getMaxLinMotorForce() * info->fps; |
---|
| 351 | } |
---|
| 352 | if(limit) |
---|
| 353 | { |
---|
| 354 | k = info->fps * info->erp; |
---|
| 355 | info->m_constraintError[srow] += k * limit_err; |
---|
| 356 | info->cfm[srow] = btScalar(0.0); // stop_cfm; |
---|
| 357 | if(lostop == histop) |
---|
| 358 | { // limited low and high simultaneously |
---|
| 359 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 360 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 361 | } |
---|
| 362 | else if(limit == 1) |
---|
| 363 | { // low limit |
---|
| 364 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 365 | info->m_upperLimit[srow] = 0; |
---|
| 366 | } |
---|
| 367 | else |
---|
| 368 | { // high limit |
---|
| 369 | info->m_lowerLimit[srow] = 0; |
---|
| 370 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 371 | } |
---|
| 372 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that) |
---|
| 373 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin()); |
---|
| 374 | if(bounce > btScalar(0.0)) |
---|
| 375 | { |
---|
| 376 | btScalar vel = m_rbA.getLinearVelocity().dot(ax1); |
---|
| 377 | vel -= m_rbB.getLinearVelocity().dot(ax1); |
---|
| 378 | vel *= signFact; |
---|
| 379 | // only apply bounce if the velocity is incoming, and if the |
---|
| 380 | // resulting c[] exceeds what we already have. |
---|
| 381 | if(limit == 1) |
---|
| 382 | { // low limit |
---|
| 383 | if(vel < 0) |
---|
| 384 | { |
---|
| 385 | btScalar newc = -bounce * vel; |
---|
| 386 | if (newc > info->m_constraintError[srow]) |
---|
| 387 | { |
---|
| 388 | info->m_constraintError[srow] = newc; |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | } |
---|
| 392 | else |
---|
| 393 | { // high limit - all those computations are reversed |
---|
| 394 | if(vel > 0) |
---|
| 395 | { |
---|
| 396 | btScalar newc = -bounce * vel; |
---|
| 397 | if(newc < info->m_constraintError[srow]) |
---|
| 398 | { |
---|
| 399 | info->m_constraintError[srow] = newc; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | } |
---|
| 404 | info->m_constraintError[srow] *= getSoftnessLimLin(); |
---|
| 405 | } // if(limit) |
---|
| 406 | } // if linear limit |
---|
| 407 | // check angular limits |
---|
| 408 | limit_err = btScalar(0.0); |
---|
| 409 | limit = 0; |
---|
| 410 | if(getSolveAngLimit()) |
---|
| 411 | { |
---|
| 412 | limit_err = getAngDepth(); |
---|
| 413 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; |
---|
| 414 | } |
---|
| 415 | // if the slider has joint limits, add in the extra row |
---|
| 416 | powered = 0; |
---|
| 417 | if(getPoweredAngMotor()) |
---|
| 418 | { |
---|
| 419 | powered = 1; |
---|
| 420 | } |
---|
| 421 | if(limit || powered) |
---|
| 422 | { |
---|
| 423 | nrow++; |
---|
| 424 | srow = nrow * info->rowskip; |
---|
| 425 | info->m_J1angularAxis[srow+0] = ax1[0]; |
---|
| 426 | info->m_J1angularAxis[srow+1] = ax1[1]; |
---|
| 427 | info->m_J1angularAxis[srow+2] = ax1[2]; |
---|
| 428 | |
---|
| 429 | info->m_J2angularAxis[srow+0] = -ax1[0]; |
---|
| 430 | info->m_J2angularAxis[srow+1] = -ax1[1]; |
---|
| 431 | info->m_J2angularAxis[srow+2] = -ax1[2]; |
---|
| 432 | |
---|
| 433 | btScalar lostop = getLowerAngLimit(); |
---|
| 434 | btScalar histop = getUpperAngLimit(); |
---|
| 435 | if(limit && (lostop == histop)) |
---|
| 436 | { // the joint motor is ineffective |
---|
| 437 | powered = 0; |
---|
| 438 | } |
---|
| 439 | if(powered) |
---|
| 440 | { |
---|
| 441 | info->cfm[srow] = btScalar(0.0); |
---|
| 442 | btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * info->erp); |
---|
| 443 | info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity(); |
---|
| 444 | info->m_lowerLimit[srow] = -getMaxAngMotorForce() * info->fps; |
---|
| 445 | info->m_upperLimit[srow] = getMaxAngMotorForce() * info->fps; |
---|
| 446 | } |
---|
| 447 | if(limit) |
---|
| 448 | { |
---|
| 449 | k = info->fps * info->erp; |
---|
| 450 | info->m_constraintError[srow] += k * limit_err; |
---|
| 451 | info->cfm[srow] = btScalar(0.0); // stop_cfm; |
---|
| 452 | if(lostop == histop) |
---|
| 453 | { |
---|
| 454 | // limited low and high simultaneously |
---|
| 455 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 456 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 457 | } |
---|
| 458 | else if(limit == 1) |
---|
| 459 | { // low limit |
---|
| 460 | info->m_lowerLimit[srow] = 0; |
---|
| 461 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 462 | } |
---|
| 463 | else |
---|
| 464 | { // high limit |
---|
| 465 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 466 | info->m_upperLimit[srow] = 0; |
---|
| 467 | } |
---|
| 468 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) |
---|
| 469 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng()); |
---|
| 470 | if(bounce > btScalar(0.0)) |
---|
| 471 | { |
---|
| 472 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); |
---|
| 473 | vel -= m_rbB.getAngularVelocity().dot(ax1); |
---|
| 474 | // only apply bounce if the velocity is incoming, and if the |
---|
| 475 | // resulting c[] exceeds what we already have. |
---|
| 476 | if(limit == 1) |
---|
| 477 | { // low limit |
---|
| 478 | if(vel < 0) |
---|
| 479 | { |
---|
| 480 | btScalar newc = -bounce * vel; |
---|
| 481 | if(newc > info->m_constraintError[srow]) |
---|
| 482 | { |
---|
| 483 | info->m_constraintError[srow] = newc; |
---|
| 484 | } |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | else |
---|
| 488 | { // high limit - all those computations are reversed |
---|
| 489 | if(vel > 0) |
---|
| 490 | { |
---|
| 491 | btScalar newc = -bounce * vel; |
---|
| 492 | if(newc < info->m_constraintError[srow]) |
---|
| 493 | { |
---|
| 494 | info->m_constraintError[srow] = newc; |
---|
| 495 | } |
---|
| 496 | } |
---|
| 497 | } |
---|
| 498 | } |
---|
| 499 | info->m_constraintError[srow] *= getSoftnessLimAng(); |
---|
| 500 | } // if(limit) |
---|
| 501 | } // if angular limit or powered |
---|
| 502 | } // btSliderConstraint::getInfo2() |
---|
| 503 | |
---|
| 504 | //----------------------------------------------------------------------------- |
---|
| 505 | |
---|
| 506 | void btSliderConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep) |
---|
| 507 | { |
---|
| 508 | if (m_useSolveConstraintObsolete) |
---|
| 509 | { |
---|
| 510 | m_timeStep = timeStep; |
---|
| 511 | if(m_useLinearReferenceFrameA) |
---|
| 512 | { |
---|
| 513 | solveConstraintInt(m_rbA,bodyA, m_rbB,bodyB); |
---|
| 514 | } |
---|
| 515 | else |
---|
| 516 | { |
---|
| 517 | solveConstraintInt(m_rbB,bodyB, m_rbA,bodyA); |
---|
| 518 | } |
---|
| 519 | } |
---|
[1963] | 520 | } // btSliderConstraint::solveConstraint() |
---|
| 521 | |
---|
| 522 | //----------------------------------------------------------------------------- |
---|
| 523 | |
---|
[2882] | 524 | void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btSolverBody& bodyA,btRigidBody& rbB, btSolverBody& bodyB) |
---|
[1963] | 525 | { |
---|
| 526 | int i; |
---|
| 527 | // linear |
---|
[2882] | 528 | btVector3 velA; |
---|
| 529 | bodyA.getVelocityInLocalPointObsolete(m_relPosA,velA); |
---|
| 530 | btVector3 velB; |
---|
| 531 | bodyB.getVelocityInLocalPointObsolete(m_relPosB,velB); |
---|
[1963] | 532 | btVector3 vel = velA - velB; |
---|
| 533 | for(i = 0; i < 3; i++) |
---|
| 534 | { |
---|
| 535 | const btVector3& normal = m_jacLin[i].m_linearJointAxis; |
---|
| 536 | btScalar rel_vel = normal.dot(vel); |
---|
| 537 | // calculate positional error |
---|
| 538 | btScalar depth = m_depth[i]; |
---|
| 539 | // get parameters |
---|
| 540 | btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); |
---|
| 541 | btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); |
---|
| 542 | btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); |
---|
| 543 | // calcutate and apply impulse |
---|
| 544 | btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i]; |
---|
| 545 | btVector3 impulse_vector = normal * normalImpulse; |
---|
[2882] | 546 | |
---|
| 547 | //rbA.applyImpulse( impulse_vector, m_relPosA); |
---|
| 548 | //rbB.applyImpulse(-impulse_vector, m_relPosB); |
---|
| 549 | { |
---|
| 550 | btVector3 ftorqueAxis1 = m_relPosA.cross(normal); |
---|
| 551 | btVector3 ftorqueAxis2 = m_relPosB.cross(normal); |
---|
| 552 | bodyA.applyImpulse(normal*rbA.getInvMass(), rbA.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); |
---|
| 553 | bodyB.applyImpulse(normal*rbB.getInvMass(), rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); |
---|
| 554 | } |
---|
| 555 | |
---|
| 556 | |
---|
| 557 | |
---|
[1963] | 558 | if(m_poweredLinMotor && (!i)) |
---|
| 559 | { // apply linear motor |
---|
| 560 | if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce) |
---|
| 561 | { |
---|
| 562 | btScalar desiredMotorVel = m_targetLinMotorVelocity; |
---|
| 563 | btScalar motor_relvel = desiredMotorVel + rel_vel; |
---|
| 564 | normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; |
---|
| 565 | // clamp accumulated impulse |
---|
| 566 | btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse); |
---|
| 567 | if(new_acc > m_maxLinMotorForce) |
---|
| 568 | { |
---|
| 569 | new_acc = m_maxLinMotorForce; |
---|
| 570 | } |
---|
| 571 | btScalar del = new_acc - m_accumulatedLinMotorImpulse; |
---|
| 572 | if(normalImpulse < btScalar(0.0)) |
---|
| 573 | { |
---|
| 574 | normalImpulse = -del; |
---|
| 575 | } |
---|
| 576 | else |
---|
| 577 | { |
---|
| 578 | normalImpulse = del; |
---|
| 579 | } |
---|
| 580 | m_accumulatedLinMotorImpulse = new_acc; |
---|
| 581 | // apply clamped impulse |
---|
| 582 | impulse_vector = normal * normalImpulse; |
---|
[2882] | 583 | //rbA.applyImpulse( impulse_vector, m_relPosA); |
---|
| 584 | //rbB.applyImpulse(-impulse_vector, m_relPosB); |
---|
| 585 | |
---|
| 586 | { |
---|
| 587 | btVector3 ftorqueAxis1 = m_relPosA.cross(normal); |
---|
| 588 | btVector3 ftorqueAxis2 = m_relPosB.cross(normal); |
---|
| 589 | bodyA.applyImpulse(normal*rbA.getInvMass(), rbA.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); |
---|
| 590 | bodyB.applyImpulse(normal*rbB.getInvMass(), rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); |
---|
| 591 | } |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | |
---|
[1963] | 595 | } |
---|
| 596 | } |
---|
| 597 | } |
---|
| 598 | // angular |
---|
| 599 | // get axes in world space |
---|
| 600 | btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0); |
---|
| 601 | btVector3 axisB = m_calculatedTransformB.getBasis().getColumn(0); |
---|
| 602 | |
---|
[2882] | 603 | btVector3 angVelA; |
---|
| 604 | bodyA.getAngularVelocity(angVelA); |
---|
| 605 | btVector3 angVelB; |
---|
| 606 | bodyB.getAngularVelocity(angVelB); |
---|
[1963] | 607 | |
---|
| 608 | btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); |
---|
| 609 | btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); |
---|
| 610 | |
---|
| 611 | btVector3 angAorthog = angVelA - angVelAroundAxisA; |
---|
| 612 | btVector3 angBorthog = angVelB - angVelAroundAxisB; |
---|
| 613 | btVector3 velrelOrthog = angAorthog-angBorthog; |
---|
| 614 | //solve orthogonal angular velocity correction |
---|
| 615 | btScalar len = velrelOrthog.length(); |
---|
[2882] | 616 | btScalar orthorImpulseMag = 0.f; |
---|
| 617 | |
---|
[1963] | 618 | if (len > btScalar(0.00001)) |
---|
| 619 | { |
---|
| 620 | btVector3 normal = velrelOrthog.normalized(); |
---|
| 621 | btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal); |
---|
[2882] | 622 | //velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng; |
---|
| 623 | orthorImpulseMag = (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng; |
---|
[1963] | 624 | } |
---|
| 625 | //solve angular positional correction |
---|
| 626 | btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep); |
---|
[2882] | 627 | btVector3 angularAxis = angularError; |
---|
| 628 | btScalar angularImpulseMag = 0; |
---|
| 629 | |
---|
[1963] | 630 | btScalar len2 = angularError.length(); |
---|
| 631 | if (len2>btScalar(0.00001)) |
---|
| 632 | { |
---|
| 633 | btVector3 normal2 = angularError.normalized(); |
---|
| 634 | btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2); |
---|
[2882] | 635 | angularImpulseMag = (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; |
---|
| 636 | angularError *= angularImpulseMag; |
---|
[1963] | 637 | } |
---|
| 638 | // apply impulse |
---|
[2882] | 639 | //rbA.applyTorqueImpulse(-velrelOrthog+angularError); |
---|
| 640 | //rbB.applyTorqueImpulse(velrelOrthog-angularError); |
---|
| 641 | |
---|
| 642 | bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*velrelOrthog,-orthorImpulseMag); |
---|
| 643 | bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*velrelOrthog,orthorImpulseMag); |
---|
| 644 | bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*angularAxis,angularImpulseMag); |
---|
| 645 | bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*angularAxis,-angularImpulseMag); |
---|
| 646 | |
---|
| 647 | |
---|
[1963] | 648 | btScalar impulseMag; |
---|
| 649 | //solve angular limits |
---|
| 650 | if(m_solveAngLim) |
---|
| 651 | { |
---|
| 652 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep; |
---|
| 653 | impulseMag *= m_kAngle * m_softnessLimAng; |
---|
| 654 | } |
---|
| 655 | else |
---|
| 656 | { |
---|
| 657 | impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep; |
---|
| 658 | impulseMag *= m_kAngle * m_softnessDirAng; |
---|
| 659 | } |
---|
| 660 | btVector3 impulse = axisA * impulseMag; |
---|
[2882] | 661 | //rbA.applyTorqueImpulse(impulse); |
---|
| 662 | //rbB.applyTorqueImpulse(-impulse); |
---|
| 663 | |
---|
| 664 | bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*axisA,impulseMag); |
---|
| 665 | bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*axisA,-impulseMag); |
---|
| 666 | |
---|
| 667 | |
---|
| 668 | |
---|
[1963] | 669 | //apply angular motor |
---|
| 670 | if(m_poweredAngMotor) |
---|
| 671 | { |
---|
| 672 | if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce) |
---|
| 673 | { |
---|
| 674 | btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB; |
---|
| 675 | btScalar projRelVel = velrel.dot(axisA); |
---|
| 676 | |
---|
| 677 | btScalar desiredMotorVel = m_targetAngMotorVelocity; |
---|
| 678 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
---|
| 679 | |
---|
| 680 | btScalar angImpulse = m_kAngle * motor_relvel; |
---|
| 681 | // clamp accumulated impulse |
---|
| 682 | btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse); |
---|
| 683 | if(new_acc > m_maxAngMotorForce) |
---|
| 684 | { |
---|
| 685 | new_acc = m_maxAngMotorForce; |
---|
| 686 | } |
---|
| 687 | btScalar del = new_acc - m_accumulatedAngMotorImpulse; |
---|
| 688 | if(angImpulse < btScalar(0.0)) |
---|
| 689 | { |
---|
| 690 | angImpulse = -del; |
---|
| 691 | } |
---|
| 692 | else |
---|
| 693 | { |
---|
| 694 | angImpulse = del; |
---|
| 695 | } |
---|
| 696 | m_accumulatedAngMotorImpulse = new_acc; |
---|
| 697 | // apply clamped impulse |
---|
| 698 | btVector3 motorImp = angImpulse * axisA; |
---|
[2882] | 699 | //rbA.applyTorqueImpulse(motorImp); |
---|
| 700 | //rbB.applyTorqueImpulse(-motorImp); |
---|
| 701 | |
---|
| 702 | bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*axisA,angImpulse); |
---|
| 703 | bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*axisA,-angImpulse); |
---|
[1963] | 704 | } |
---|
| 705 | } |
---|
| 706 | } // btSliderConstraint::solveConstraint() |
---|
| 707 | |
---|
| 708 | //----------------------------------------------------------------------------- |
---|
| 709 | |
---|
| 710 | //----------------------------------------------------------------------------- |
---|
| 711 | |
---|
| 712 | void btSliderConstraint::calculateTransforms(void){ |
---|
[2882] | 713 | if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete)) |
---|
[1963] | 714 | { |
---|
| 715 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
| 716 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 717 | } |
---|
| 718 | else |
---|
| 719 | { |
---|
| 720 | m_calculatedTransformA = m_rbB.getCenterOfMassTransform() * m_frameInB; |
---|
| 721 | m_calculatedTransformB = m_rbA.getCenterOfMassTransform() * m_frameInA; |
---|
| 722 | } |
---|
| 723 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); |
---|
| 724 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); |
---|
| 725 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X |
---|
[2882] | 726 | if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete) |
---|
| 727 | { |
---|
| 728 | m_delta = m_realPivotBInW - m_realPivotAInW; |
---|
| 729 | } |
---|
| 730 | else |
---|
| 731 | { |
---|
| 732 | m_delta = m_realPivotAInW - m_realPivotBInW; |
---|
| 733 | } |
---|
[1963] | 734 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; |
---|
| 735 | btVector3 normalWorld; |
---|
| 736 | int i; |
---|
| 737 | //linear part |
---|
| 738 | for(i = 0; i < 3; i++) |
---|
| 739 | { |
---|
| 740 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); |
---|
| 741 | m_depth[i] = m_delta.dot(normalWorld); |
---|
| 742 | } |
---|
| 743 | } // btSliderConstraint::calculateTransforms() |
---|
| 744 | |
---|
| 745 | //----------------------------------------------------------------------------- |
---|
| 746 | |
---|
| 747 | void btSliderConstraint::testLinLimits(void) |
---|
| 748 | { |
---|
| 749 | m_solveLinLim = false; |
---|
| 750 | m_linPos = m_depth[0]; |
---|
| 751 | if(m_lowerLinLimit <= m_upperLinLimit) |
---|
| 752 | { |
---|
| 753 | if(m_depth[0] > m_upperLinLimit) |
---|
| 754 | { |
---|
| 755 | m_depth[0] -= m_upperLinLimit; |
---|
| 756 | m_solveLinLim = true; |
---|
| 757 | } |
---|
| 758 | else if(m_depth[0] < m_lowerLinLimit) |
---|
| 759 | { |
---|
| 760 | m_depth[0] -= m_lowerLinLimit; |
---|
| 761 | m_solveLinLim = true; |
---|
| 762 | } |
---|
| 763 | else |
---|
| 764 | { |
---|
| 765 | m_depth[0] = btScalar(0.); |
---|
| 766 | } |
---|
| 767 | } |
---|
| 768 | else |
---|
| 769 | { |
---|
| 770 | m_depth[0] = btScalar(0.); |
---|
| 771 | } |
---|
| 772 | } // btSliderConstraint::testLinLimits() |
---|
| 773 | |
---|
| 774 | //----------------------------------------------------------------------------- |
---|
| 775 | |
---|
| 776 | void btSliderConstraint::testAngLimits(void) |
---|
| 777 | { |
---|
| 778 | m_angDepth = btScalar(0.); |
---|
| 779 | m_solveAngLim = false; |
---|
| 780 | if(m_lowerAngLimit <= m_upperAngLimit) |
---|
| 781 | { |
---|
| 782 | const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1); |
---|
| 783 | const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2); |
---|
| 784 | const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1); |
---|
| 785 | btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); |
---|
[2882] | 786 | m_angPos = rot; |
---|
[1963] | 787 | if(rot < m_lowerAngLimit) |
---|
| 788 | { |
---|
| 789 | m_angDepth = rot - m_lowerAngLimit; |
---|
| 790 | m_solveAngLim = true; |
---|
| 791 | } |
---|
| 792 | else if(rot > m_upperAngLimit) |
---|
| 793 | { |
---|
| 794 | m_angDepth = rot - m_upperAngLimit; |
---|
| 795 | m_solveAngLim = true; |
---|
| 796 | } |
---|
| 797 | } |
---|
| 798 | } // btSliderConstraint::testAngLimits() |
---|
| 799 | |
---|
| 800 | //----------------------------------------------------------------------------- |
---|
| 801 | |
---|
| 802 | btVector3 btSliderConstraint::getAncorInA(void) |
---|
| 803 | { |
---|
| 804 | btVector3 ancorInA; |
---|
| 805 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis; |
---|
| 806 | ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA; |
---|
| 807 | return ancorInA; |
---|
| 808 | } // btSliderConstraint::getAncorInA() |
---|
| 809 | |
---|
| 810 | //----------------------------------------------------------------------------- |
---|
| 811 | |
---|
| 812 | btVector3 btSliderConstraint::getAncorInB(void) |
---|
| 813 | { |
---|
| 814 | btVector3 ancorInB; |
---|
| 815 | ancorInB = m_frameInB.getOrigin(); |
---|
| 816 | return ancorInB; |
---|
| 817 | } // btSliderConstraint::getAncorInB(); |
---|